
Jianxin Wang
Chee Yap (Eds.)

 123

LN
CS

 9
13

0

9th International Workshop, FAW 2015
Guilin, China, July 3–5, 2015
Proceedings

Frontiers
in Algorithmics

Lecture Notes in Computer Science 9130

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Jianxin Wang • Chee Yap (Eds.)

Frontiers
in Algorithmics
9th International Workshop, FAW 2015
Guilin, China, July 3–5, 2015
Proceedings

123

Editors
Jianxin Wang
Central South University
Changsha
China

Chee Yap
Courant Institute
New York University
New York, NY
USA

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-19646-6 ISBN 978-3-319-19647-3 (eBook)
DOI 10.1007/978-3-319-19647-3

Library of Congress Control Number: 2015940411

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

Springer Cham Heidelberg New York Dordrecht London
© Springer International Publishing Switzerland 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media
(www.springer.com)

Preface

The 9th International Frontiers of Algorithmics Workshop (FAW 2015) was held
during July 3–5, 2015, at Guilin, China. The workshop brings together researchers
working on all aspects of computer science for the exchange of ideas and results.

FAW 2015 was the ninth conference in the series. The previous eight meetings were
held during August 1–3, 2007, in Lanzhou, June 19–21, 2008, in Changsha, June 20–23,
2009, in Hefei, August 11–13, 2010, in Wuhan, May 28–31, 2011, in Jinhua, May
14–16, 2012, in Beijing, June 26–28, 2013, in Dalian, June 28–30, 2014, in Zhangjiajie.

In all, 65 submissions were received from more than 12 countries and regions. The
FAW 2015 Program Committee selected 28 papers for presentation at the conference.
In addition, we had two plenary speakers: Fedor Fomin (University of Bergen,
Norway) and Chee Yap (New York University, USA). Many thanks for their contri-
butions to the conference and proceedings.

We would like to thank the Program Committee members and external reviewers for
their hard work in reviewing and selecting papers. We are also very grateful to all the
authors who submitted their work to FAW 2015. Finally, we would like to thank the
editors at Springer and the local organization chairs for their hard work in the prepa-
ration of this conference.

July 2015 Jianxin Wang
Chee Yap

Organization

Program Committee

Hee-Kap Ahn Pohang University of Science and Technology, Korea
Hans L. Bodlaender Utrecht University, The Netherlands
Yixin Cao Hong Kong Polytechnic University, China
Marek Chrobak University of California, Riverside, USA
Barry Cooper University of Leeds, UK
Qilong Feng Central South University, China
Henning Fernau University of Trier, Germany
Mordecai J. Golin Hong Kong University of Science and Technology,

China
Jiong Guo Shandong University, China
Gregory Z. Gutin University of London, UK
Kun He Huazhong University of Science and Technology,

China
Tomio Hirata Nagoya University, Japan
Hiro Ito University of Electro-Communications, Japan
Klaus Jansen University of Kiel, Germany
Iyad Kanj DePaul University, USA
Ming-Yang Kao Northwestern University, USA
Naoki Katoh Kyoto University, Japan
Michael A. Langston University of Tennessee, USA
Guohui Lin University of Alberta, Canada
Tian Liu Peking University, China
Daniel Lokshtanov University of California San Diego, USA
Dániel Marx Hungarian Academy of Sciences, Hungary
Venkatesh Raman Institute of Mathematical Sciences, India
Ulrike Stege University of Victoria, Canada
Xiaoming Sun Institute of Computing Technology, CAS, China
Jianxin Wang (Co-chair) Central South University, China
Gerhard J. Woeginger Eindhoven University of Technology, The Netherlands
Ge Xia Lafayette College, USA
Ke Xu Beihang University, China
Boting Yang University of Regina, Canada
Chee Yap (Co-chair) New York University, USA
Binhai Zhu Montana State University, USA
Xiaofeng Zhu Guangxi Normal University, China

General Conference Chairs

John Hopcroft Cornell University, USA
Shichao Zhang University of Technology, Sydney, Australia

Program Chairs

Jianxin Wang Central South University, China
Chee Yap New York University, USA

Publication Chairs

Yixin Cao Hong Kong Polytechnic University, China
Xiaofeng Zhu Guangxi Normal University, China

Organizing Chairs

Qilong Feng Central South University, China
Zhenjun Tang Guangxi Normal University, China

Additional Reviewers

Andro-Vasko, James
Bae, Sang Won
Barbero, Florian
Belmonte, Rémy
Brodal, Gerth Stølting
Buchanan, Austin
Bulteau, Laurent
Cai, Leizhen
Chen, Xujin
Cho, Dae-Hyeong
Dutot, Pierre-Francois
Epstein, Leah
Fata, Elaheh
Fujiwara, Hiroshi
Gagarin, Andrei
Hagan, Ron
Higashikawa, Yuya
Jacobs, David
Jiang, Minghui
Jones, Mark
Kaluza, Maren

Kawahara, Jun
Kawamura, Akitoshi
Kehua, Guo
Kellerer, Hans
Kim, Min-Gyu
Kim, Sang-Sub
Kullmann, Oliver
Li, Minming
Li, Wenjun
Liu, Xingwu
Lu, Allan Yuping
Lu, Songjian
M.S., Ramanujan
Majumdar, Diptapriyo
Mastrolilli, Monaldo
Mertzios, George
Misra, Neeldhara
Miyazawa, Flavio K.
Nielsen, Jesper Sindahl
Oh, Eunjin
Okamoto, Yoshio

Panolan, Fahad
Park, Dongwoo
Pferschy, Ulrich
Phillips, Charles
Proietti, Guido
Reinhardt, Klaus
Seto, Kazuhisa
Sheng, Bin
Solis-Oba, Roberto
Stee, Rob Van
Strusevich, Vitaly
Teruyama, Junichi
Thorup, Mikkel
Trevisan, Vilmar
Wakatsuki, Mitsuo
Wang, Kai
Yoon, Sang-Duk
You, Jie
Zhang, Jialin

VIII Organization

Contents

Invited Talks

Graph Modification Problems: A Modern Perspective 3
Fedor V. Fomin, Saket Saurabh, and Neeldhara Misra

Soft Subdivision Search in Motion Planning, II: Axiomatics 7
Chee K. Yap

Contributed Papers

On r-Gatherings on the Line. 25
Toshihiro Akagi and Shin-ichi Nakano

A New Algorithm for Intermediate Dataset Storage
in a Cloud-Based Dataflow . 33

Jie Cheng, Daming Zhu, and Binhai Zhu

Efficient Computation of the Characteristic Polynomial
of a Threshold Graph . 45

Martin Fürer

A Fast and Practical Method to Estimate Volumes of Convex Polytopes 52
Cunjing Ge and Feifei Ma

Social Models and Algorithms for Optimization of Contact Immunity
of Oral Polio Vaccine . 66

Chengwei Guo, Chenglong Ma, and Shengyu Zhang

The Directed Dominating Set Problem: Generalized Leaf Removal
and Belief Propagation. 78

Yusupjan Habibulla, Jin-Hua Zhao, and Hai-Jun Zhou

A Linear Time Algorithm for Ordered Partition . 89
Yijie Han

Machine Scheduling with a Maintenance Interval and Job Delivery
Coordination. 104

Jueliang Hu, Taibo Luo, Xiaotong Su, Jianming Dong, Weitian Tong,
Randy Goebel, Yinfeng Xu, and Guohui Lin

Lower and Upper Bounds for Random Mimimum Satisfiability Problem 115
Ping Huang and Kaile Su

http://dx.doi.org/10.1007/978-3-319-19647-3_1
http://dx.doi.org/10.1007/978-3-319-19647-3_2
http://dx.doi.org/10.1007/978-3-319-19647-3_3
http://dx.doi.org/10.1007/978-3-319-19647-3_4
http://dx.doi.org/10.1007/978-3-319-19647-3_4
http://dx.doi.org/10.1007/978-3-319-19647-3_5
http://dx.doi.org/10.1007/978-3-319-19647-3_5
http://dx.doi.org/10.1007/978-3-319-19647-3_6
http://dx.doi.org/10.1007/978-3-319-19647-3_7
http://dx.doi.org/10.1007/978-3-319-19647-3_7
http://dx.doi.org/10.1007/978-3-319-19647-3_8
http://dx.doi.org/10.1007/978-3-319-19647-3_8
http://dx.doi.org/10.1007/978-3-319-19647-3_9
http://dx.doi.org/10.1007/978-3-319-19647-3_10
http://dx.doi.org/10.1007/978-3-319-19647-3_10
http://dx.doi.org/10.1007/978-3-319-19647-3_11

On Solving Systems of Diagonal Polynomial Equations Over Finite Fields . . . 125
Gábor Ivanyos and Miklos Santha

Pattern Backtracking Algorithm for the Workflow Satisfiability Problem
with User-Independent Constraints . 138

Daniel Karapetyan, Andrei Gagarin, and Gregory Gutin

On the Sound Covering Cycle Problem in Paired de Bruijn Graphs. 150
Christian Komusiewicz and Andreea Radulescu

Approximation Algorithms for the Multilevel Facility Location Problem
with Linear/Submodular Penalties . 162

Gaidi Li, Dachuan Xu, Donglei Du, and Chenchen Wu

Smaller Kernels for Several FPT Problems Based on Simple Observations . . . 170
Wenjun Li and Shuai Hu

Parameterized Minimum Cost Partition of a Tree with Supply and Demand 180
Mugang Lin, Wenjun Li, and Qilong Feng

The Online Storage Strategy for Automated Storage and Retrieval System
with Single Open in One Dimension . 190

Henan Liu and Yinfeng Xu

Union Closed Tree Convex Sets . 198
Tian Liu and Ke Xu

Fast Quantum Algorithms for Least Squares Regression and Statistic
Leverage Scores . 204

Yang Liu and Shengyu Zhang

A New Distributed Algorithm for Computing a Dominating Set on Grids . . . 217
Photchchara Pisantechakool and Xuehou Tan

Approximate Model Counting via Extension Rule . 229
Jinyan Wang, Minghao Yin, and Jingli Wu

Improved Information Set Decoding for Code-Based Cryptosystems
with Constrained Memory . 241

Maoning Wang and Mingjie Liu

Truthful Strategy and Resource Integration for Multi-tenant Data Center
Demand Response. 259

Youshi Wang, Fa Zhang, and Zhiyong Liu

Local Search to Approximate Max NAE-k-Sat Tightly. 271
Aiyong Xian, Kaiyuan Zhu, Daming Zhu, and Lianrong Pu

X Contents

http://dx.doi.org/10.1007/978-3-319-19647-3_12
http://dx.doi.org/10.1007/978-3-319-19647-3_13
http://dx.doi.org/10.1007/978-3-319-19647-3_13
http://dx.doi.org/10.1007/978-3-319-19647-3_14
http://dx.doi.org/10.1007/978-3-319-19647-3_15
http://dx.doi.org/10.1007/978-3-319-19647-3_15
http://dx.doi.org/10.1007/978-3-319-19647-3_16
http://dx.doi.org/10.1007/978-3-319-19647-3_17
http://dx.doi.org/10.1007/978-3-319-19647-3_18
http://dx.doi.org/10.1007/978-3-319-19647-3_18
http://dx.doi.org/10.1007/978-3-319-19647-3_19
http://dx.doi.org/10.1007/978-3-319-19647-3_20
http://dx.doi.org/10.1007/978-3-319-19647-3_20
http://dx.doi.org/10.1007/978-3-319-19647-3_21
http://dx.doi.org/10.1007/978-3-319-19647-3_22
http://dx.doi.org/10.1007/978-3-319-19647-3_23
http://dx.doi.org/10.1007/978-3-319-19647-3_23
http://dx.doi.org/10.1007/978-3-319-19647-3_24
http://dx.doi.org/10.1007/978-3-319-19647-3_24
http://dx.doi.org/10.1007/978-3-319-19647-3_25

Faster Computation of the Maximum Dissociation Set and Minimum 3-Path
Vertex Cover in Graphs . 282

Mingyu Xiao and Shaowei Kou

Enumeration, Counting, and Random Generation of Ladder Lotteries 294
Katsuhisa Yamanaka and Shin-ichi Nakano

Efficient Modular Reduction Algorithm Without Correction Phase 304
Haibo Yu, Guoqiang Bai, and Huikang Hao

Super Solutions of Random Instances of Satisfiability 314
Peng Zhang and Yong Gao

A Data Streams Analysis Strategy Based on Hadoop Scheduling
Optimization for Smart Grid Application . 326

Fengquan Zhou, Xin Song, Yinghua Han, and Jing Gao

Author Index . 335

Contents XI

http://dx.doi.org/10.1007/978-3-319-19647-3_26
http://dx.doi.org/10.1007/978-3-319-19647-3_26
http://dx.doi.org/10.1007/978-3-319-19647-3_27
http://dx.doi.org/10.1007/978-3-319-19647-3_28
http://dx.doi.org/10.1007/978-3-319-19647-3_29
http://dx.doi.org/10.1007/978-3-319-19647-3_30
http://dx.doi.org/10.1007/978-3-319-19647-3_30

Invited Talks

Graph Modification Problems: A Modern
Perspective

Fedor V. Fomin1(B), Saket Saurabh1, and Neeldhara Misra2

1 Department of Informatics, University of Bergen, Bergen, Norway
{fomin,saket}@ii.uib.no

2 Department of Computer Science and Automation, Indian Institute of Science,
Bangalore, India

Abstract. We give an overview of recent results and techniques in para-
meterized algorithms for graph modification problems.

In network (or graph) modifications problem we have to modify (repair, improve,
or adjust) a network to satisfy specific required properties while keeping the
cost of the modification to the minimum. The commonly adapted mathematical
model in the study of network problems is the graph modification problem. This
is a fundamental unifying problem with a tremendous number of applications
in various disciplines like machine learning, networking, sociology, data mining,
computational biology, computer vision, and numerical analysis, and many oth-
ers. We start with three generic examples of graph modification.

Our first example is the connectivity augmentation problem. Here the graph
models an existing network (say, a telecommunication network) and the goal is
to enhance the network to ensure resilience against link failures. In other words,
by adding a few links between nodes we wish to obtain a network with better
connectivity. This is a special case of the graph modification problem where we
want to improve the connectivity of a graph.

The second example is graph clustering. This is the fundamental problem
of identification of closely related objects that have many interactions within
themselves and few with the rest of the system. A group of objects of this
type is known as a cluster (or community). In Fig. 1 one can find a clustering
of the scientific-collaboration network of the members of the Algorithms groups
at the University of Bergen. One of the most popular common to clustering is to
model a system as a weighted graph. Then the task is to identify a set of low-cost
edges (insignificant interactions) which removal partition the graph into clusters
and this is again a special case of the graph modification problem.

The third example is the fundamental problem arising in sparse matrix com-
putations. During Gaussian eliminations of large sparse matrices new non-zero
elements called fill can replace original zeros thus increasing storage requirements
and running time needed to solve the system. The problem of finding the right

Supported by the European Research Council (ERC) via grant Rigorous Theory of
Preprocessing, reference 267959.

c© Springer International Publishing Switzerland 2015
J. Wang and C. Yap (Eds.): FAW 2015, LNCS 9130, pp. 3–6, 2015.
DOI: 10.1007/978-3-319-19647-3 1

4 F.V. Fomin et al.

elimination ordering minimizing the number of fill elements can be expressed as
the problem of adding the minimum number of edges transforming the graph
into a chordal graph, i.e. the graph without chordless cycles of length more than
four. Graph modification problems resulting in a graph with a nice combinator-
ial characterization like being an interval, perfect, or planar graph, is a common
theme in various applications.

Fig. 1. Example of clustering

Unfortunately, all mentioned examples of graph modifications are NP-hard
problems. NP-hardness is one of the most fundamental concepts in compu-
tational complexity, capturing the notion of computational intractability [5].
Although NP-hard problems frequently arise in practice (e.g., class scheduling,
protein folding, or designing faster microprocessors) and have been attacked from
many algorithmic angles [2–4,6,9–12], no polynomial time (efficient) algorithm
exists to date for any NP-hard problem. It is widely believed that NP-hard prob-
lems cannot be solved in polynomial time and thus are intractable. A proof of
this conjecture would solve the famous P vs NP question, one of the deepest
and most difficult problems in mathematics and science.

The systematic algorithmic study of the graph editing problems can be traced
to the classical work of Lewis and Yannakakis [8] from the 1980s. They investi-
gated the complexity of the vertex deletion problems, where the aim is to obtain
a graph that satisfies a given hereditary non-trivial property.

In this talk we give an overview of several recent results dealing with the
intractability of modification problems from the angle of parameterized com-
plexity and algorithms. The framework of parameterized complexity was intro-
duced by Downey and Fellows [2]. Parameterized complexity is basically a
two-dimensional generalization of “P vs NP” where in addition to the overall
input size n, one studies how a relevant secondary measurement affects the
computational complexity of problem instances. The philosophy of parameter-
ized complexity is that besides overall input size, in many scenarios there are

Graph Modification Problems: A Modern Perspective 5

other secondary measurements that fundamentally affect the computational com-
plexity of problems. These secondary measurements capture additional relevant
information about problems, like structural restrictions on the input distribution
considered, such as a bound on the treewidth of an input graph, and provide
opportunities for designing efficient algorithms. In parameterized complexity each
problem instance comes with a parameter k. A parameterized problem that can
be solved in O(f(k)nc) time is said to be fixed-parameter tractable (FPT). Above
FPT, there exists a hierarchy of complexity classes, known as the W-hierarchy.
Just as NP-hardness is used as an evidence that a problem is probably not poly-
nomial time solvable, showing that a parameterized problem is hard for one of
these classes gives evidence to the belief that the problem is unlikely to be fixed-
parameter tractable. The principal analogue of the classical intractability class NP
is W1. In particular, this means that an FPT algorithm for any W1-hard problem
would yield an O(f(k)nc) time algorithm for every problem in the class W1.

Graph modification problems were studied from parameterized complexity
perspective too. For example, Cai [1] proved that for any property defined by a
finite set of forbidden induced subgraphs, the corresponding modification prob-
lem is FPT. Further results for hereditary properties were obtained by Khot and
Raman [7]. While most of the results in the area concern hereditary properties,
for non-hereditary properties like for different types of connectivity demands,
density, or specific vertex degree requirements, until very recently, not much was
known. The situation changed drastically within the last 3–4 yr, when a number
of novel results paved several directions for further expansions of the area.

We give an overview of the most recent trends in parameterized algorithms
for graph modification problems including kernelization and subexponential algo-
rithms.

Acknowledgement. We thank P̊al Grøn̊as Drange for the figure.

References

1. Cai, L.: Fixed-parameter tractability of graph modification problems for hereditary
properties. Inf. Process. Lett. 58(4), 171–176 (1996)

2. Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity.
Springer, Texts in Computer Science (2013)

3. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Texts in Theo-
retical Computer Science. An EATCS Series (2006)

4. Fomin, F.V., Kratsch, D.: Exact Exponential Algorithms. Texts in Theoretical
Computer Science. An EATCS Series. Springer, Heidelberg (2010)

5. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W.H.Freeman, New York (1979)

6. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Annals of
Discrete Mathematics, vol. 57, 2nd edn. Elsevier, Amsterdam (2004)

7. Khot, S., Raman, V.: Parameterized complexity of finding subgraphs with heredi-
tary properties. Theor. Comput. Sci. 289(2), 997–1008 (2002)

8. Lewis, J.M., Yannakakis, M.: The node-deletion problem for hereditary properties
is np-complete. J. Comput. Syst. Sci. 20(2), 219–230 (1980)

6 F.V. Fomin et al.

9. Michalewicz, Z., Fogel, D.B.: How to Solve It: Modern Heuristics. Springer,
Heidelberg (2004)

10. Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press,
New York (1995)

11. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford Lecture Series
in Mathematics and its Applications, vol. 31. Oxford University Press, Oxford
(2006)

12. Vazirani, V.V.: Approximation Algorithms. Springer, Heidelberg (2001)

Soft Subdivision Search in Motion
Planning, II: Axiomatics

Chee K. Yap(B)

Department of Computer Science, Courant Institute of Mathematical Sciences,
New York University, New York, NY 10012, USA

yap@cs.nyu.edu

Abstract. We propose to design motion planning algorithms with a
strong form of resolution completeness, called resolution-exactness.
Such planners can be implemented using soft predicates within the
subdivision paradigm. The advantage of softness is that we avoid the
Zero problem and other issues of exact computation. Soft Subdivision
Search (SSS) is an algorithmic framework for such planners. There are
many parallels between our framework and the well-known Probabilistic
Road Map (PRM) framework. Both frameworks lead to algorithms that
are practical, flexible, extensible, with adaptive and local complexity. Our
several recent papers have demonstrated these favorable properties on
various non-trivial motion planning problems. In this paper, we provide
a general axiomatic theory underlying these results. We also address the
issue of subdivision in non-Euclidean configuration spaces, and how exact
algorithms can be recovered using soft methods.

1 Introduction

Motion planning has been studied for over 30 years, and remains a central prob-
lem in robotics. Path planning is the most basic form of motion planning in which
we only consider kinematics, ignoring issues of timing, dynamics, non-holonomic
constraints, sensing and mapping. In the algorithmic study of path planning, the
problem is reduced to connectivity or reachability in some configuration space.
There are three main approaches here: Exact, Sampling and Subdivision. Diver-
gent paths have been taken: theoreticians favor the Exact Approach [2], but
practical roboticists prefer the Sampling and Subdivision Approaches [9,11].
For two decades, the Sampling Approach has dominated the field. According
to Choset et al. [9, p. 201], “PRM, EST, RRT, SRT, and their variants have
changed the way path planning is performed for high-dimensional robots. They
have also paved the way for the development of planners for problems beyond
basic path planning.” The premise of this paper is that subdivision has many
merits over sampling, and this power has not been fully exploited. But to open

C.K. Yap—Plenary Talk at the 9th Int’l. Frontiers of Algorithmics Workshop (FAW
2015) in Guilin, China, July 3–5. This work is supported by NSF Grants CCF-
0917093 and CCF-1423228.

c© Springer International Publishing Switzerland 2015
J. Wang and C. Yap (Eds.): FAW 2015, LNCS 9130, pp. 7–22, 2015.
DOI: 10.1007/978-3-319-19647-3 2

8 C.K. Yap

up this exploitation, we need to give it a sound foundation. This paper will pro-
vide one such foundation. We formulate the Soft Subdivision Search or SSS to
unify and generalize our several recent papers [12,13,20,21] in which we designed
and implemented subdivision planners for several classes of robots. These SSS
planners are relatively easy to design and implement. In our experiments, they
outperform random sampling methods.

To introduce our approach, we compare the notion of correctness according
to the three approaches. In the path planning problem, the robot R0 is fixed,
and each input instance is (Ω,α, β) where Ω ⊆ R

k (k = 2, 3) is a description of
the obstacles, and α, β ∈ Cspace(R0) are the start and goal configurations. In
exact algorithms, the planner must return a path if one exists, and must return
NO-PATH otherwise. In sampling, the input has an extra parameter N that bounds
the maximum number of samples; the planner is said to be “sampling complete”
if the planner returns a path with high probability when one exists and N is
sufficiently large. In subdivision, the input has an extra resolution parameter
ε > 0, and the planner is “resolution complete” if the planner returns a path
when the ε is small enough. Thus sampling and (current) subdivision planners are
similar in that their behaviors are only prescribed when there is a path. If there
is no path, nothing is prescribed. In computability, such one-sided prescription
of algorithmic behavior is well-known and is called “partial completeness”. To
make the completeness “total”, we [20] introduce the concept of resolution-
exact planners. Such a planner has an accuracy constant K > 1 (independent
of input) such that:

(P) If there is a path of clearance Kε, it returns a path.
(N) If there is no path of clearance ε/K, it returns NO-PATH.

Thus the NO-PATH output guarantees that there is no path of clearance Kε.
But the true innovation is the gap between the clearance bounds Kε and ε/K:
our planner could either return a path or NO-PATH when the optimal clearance
lies in this gap. This “indeterminacy”, unavoidable in some sense [20], has a
big payoff — resolution-exact planners can be implemented with purely numer-
ical approximations. As all the standard fundamental constants1 of Physics are
known to no more than 8 digits of accuracy, and no robot dimension, actuator
control, sensors or environment is known to nearly such accuracy, we should not
see this indeterminacy as a limitation.

Our paper [25] is a companion to the present paper, providing background
and other motivations. It presents SSS alongside PRM [10] as two general algo-
rithmic “frameworks” based on a small number of subroutines and data struc-
tures. We get specific algorithms by instantiating these subroutines and data
structures. As framework, “PRM” can cover many of its known variants. These
two frameworks share many favorable properties, all lacking in exact algorithms.
But we claim one advantage of SSS over PRM: PRM has a halting problem which
SSS does not have. We clarify this remark: under the usual idea that NO-PATH

1 Except speed of light which is exactly known, by definition.

Soft Subdivision Search in Motion Planning, II: Axiomatics 9

means “non-existence of paths”, PRM cannot halt when there is no path. But
suppose PRM adopts our viewpoint that NO-PATH means “no path of sufficient
clearance”. Now, PRM could halt2 but this amounts to exhaustive (exponential)
search. In effect, exponential search amounts to non-halting. But our subdivi-
sion approach need not suffer from exponential behavior because we are able to
eliminate large regions of the configuration space with a single test. Conceivably,
there are adaptive search strategies that guarantee polynomial size search trees.
For example, such results are known in our subdivision work on root isolation
[6,18,19]: here, the worst-case subdivision tree sizes is provably linear (resp.,
quadratic) in terms of tree depth for real (resp., complex) root isolation.

1. Overview: In Sect. 2, we describe the SSS Framework. In Sect. 3, we provide
the abstract elements of SSS: configuration spaces are replaced by metric spaces
and Non-Euclidean spaces are subdivided via charts and atlases. Section 4 proves
properties of SSS planners that satisfy some general axioms. Section 5 shows that
exact algorithms can be recovered with SSS planners. We conclude in Sect. 6.
For reasons of space, some proofs are deferred to the full paper. Figures 1 and 2
are in color.

2 The SSS Framework

What sets Subdivision Search apart from sampling or grid methods is that its
predicates are not point-based but region-based. Suppose each γ ∈ Cspace has
a classification as FREE, STUCK, or MIXED. Write C(γ) for the classification of γ.
We extend the classification to a set (or region) B ⊆ Cspace as follows: define
C(B) = FREE (resp., = STUCK) iff each γ ∈ B is FREE (resp., STUCK); otherwise
C(B) = MIXED. A classification function ˜C is a soft predicate (relative to C)
if it is conservative (i.e., ˜C(B) �= MIXED implies C(B) = ˜C(B)) and convergent
(i.e., if limi→∞ Bi → γ ∈ Cspace then ˜C(Bi) = C(γ) for i large enough). Here
we write limi→∞ Bi → γ to mean that {Bi : i ≥ 0} is a monotone decreasing
sequence of sets that converge to γ.

Let us now use soft predicates for path planning. Fixed robot R0. The motion
planning input is (Ω,α, β, ε) as above. It is standard (and without much loss) to
also specify an initial box B0 ⊆ Cspace to confine our sought-for path. Our main
data structure is a subdivision tree, T . It is useful to initially imagine Cspace ⊆
R

d, and T as the standard multidimensional version of quadtrees, rooted at B0.
But bear in mind our goal of extending Cspace to non-Euclidean spaces, and B
to non-box geometries. The SSS planner amounts to a loop that “grows” T in
each iteration by expanding some leaf until we find a path or conclude NO-PATH.
There are two supporting data structures and three key routines:

– (Priority Queue) Q is a priority queue comprising those MIXED-leaves with
length �(B) (defined below) is at least ε.

2 To do this, it would have to detect (probabilistically) that the sampling is dense
enough, a non-trivial extension of the current PRM formulations.

10 C.K. Yap

– (Union-Find) D is a union-find data structure to maintain the connected
components of the FREE boxes. As soon as we find a new FREE box, we form
its union with the other adjacent FREE boxes. Boxes B,B′ are adjacent if
B ∩ B′ is a d − 1 dimensional set.

– (Classifier) The routine ˜C is a soft predicate that classifies each node in T as
FREE/STUCK/MIXED.

– (Search Strategy) This is represented by the queue’s Q.getNext() that returns
a box in Q of highest priority.

– (Expander) The subroutine Expand(B) subdivides B into two or more sub-
boxes. These subboxes become the children of B in T . In general, Expand(B)
represents a splitting strategy because it may have to choose from one or more
alternative expansions.

– For γ ∈ Cspace, let Box(γ) denote any leaf in T that contains γ. Also, Find(γ)
denote the box returned by the find operation of D when it is given Box(γ).
Thus, a path is found as soon as we discover Find(α) = Find(β).

Putting them together, we get our SSS framework:

This framework has been used successfully to implement our disc and triangle
planners [20], and our 2-link planner [12] including an interesting variant where
self-crossing is not allowed [13]. Illustrating the power of subdivision and soft-
ness, we can easily generalize all these examples by fattening the robots and/or
the polygonal obstacles. Notice that such extensions would be difficult for exact
methods (to our knowledge, exact algorithms are unknown for such extensions).
Of course many variants of this framework has appeared in the subdivision litera-
ture; conversely, some of these algorithms can be recaptured within SSS. E.g., the
hierarchical search of Zhu and Latombe [28], Barbehenn and Hutchinson [1], or
Zhang, Kim and Manocha (2008) [27]. One major difference is that these papers
expand along a “mixed channels” (i.e., path comprising FREE or MIXED boxes). We
could modify our getNext to achieve similar behavior; one advantage of this app-
roach is that NO-PATH could be detected before emptying the queue. This abstract
description hides an important feature of our technique: our computation of ˜C is

Soft Subdivision Search in Motion Planning, II: Axiomatics 11

deeply intertwined with the expansion of T (see [8]). Steve LaValle (insightfully)
described this as “opening up the blackbox” of collision testing.

3 Generalized Setting for SSS

Once the SSS framework has been instantiated with specific routines, we have
an SSS planner. How do we know that the planner is resolution-exact? Our
goal is to prove this under general “axiomatic” conditions. Designing a short
list of such axioms is very useful: first, it gives us a uniform way to check that
any proposed SSS algorithm is resolution-exact, just by checking the axioms.
We could for instance apply this to our previous planners [12,13,20]. Second,
because planning is a complex task, and we expect that SSS will suffer many
variants, we must know the boundaries of the variations. The axioms serve as
boundary markers.

The starting point is to replace Cspace by a metric space X, and replace
Cfree by an open set Y ⊆ X. Points in the boundary ∂Y of Y are said to
be semi-free. Let CY : X → {+1, 0,−1} denote the (exact) classifier for Y :
CY (γ):= + 1/0/ − 1 iff γ belongs to Y/∂(Y)/X \ Y where Y is the closure
of Y . Note that we have performed a simple (non-essential) translation in our
classification values: FREE → +1, MIXED → 0, and STUCK → −1.

We extend the classification of points to classification of sets. There are two
general ways to extend any function to a function on sets: let f : S → T be a
function. The set extension of f (still denoted f) is the function f : 2S → 2T

such that for B ⊆ S, f(B) = {f(b) : b ∈ B}. Here 2S denotes the power set
of S. Another general method applies to any geometric3 predicate g : S →
{+1, 0,−1}. The set extension of g (still denoted g) is the geometric predicate
g : 2S → {+1, 0,−1} such that for any definite value v ∈ {+1,−1}, g(B) = v iff
g(b) = v for all v ∈ B; otherwise g(B) = 0.

Although the set extension of the classifier CY : X → {+1, 0,−1} is applica-
ble to any subset B ⊆ X, in practice, we need B is be “nice” in order to carry out
our algorithm: B must be able to support subdivision, CY (B) must be (softly)
computable, and we should be able to discuss the limits of such sets, limi→∞ Bi.
We next capture these properties using “test cells”.

2. Test Cells and Subdivision Trees: Consider an Euclidean set B ⊆ R
d. It

is called a test cell if it is a full-dimensional, compact and convex polytope. For
d = 1 (d = 2), test cells are intervals (convex polygons). Our subdivision of the
metric space X will be carried out using such test cells.

Let the width w(B) (resp., length �(B)) refer to the minimum (resp., max-
imum) length of an edge of B. The unique smallest ball containing B is called
the circumball of B; its center and radius are denoted c(B) and r(B). Note
that c(B) need not lie in the interior of B. The inner radius r0(B) of B is the
3 A geometric predicate is a 3-valued function, with a distinguished value 0 called

the indefinite value. The others are called definite values. This is in contrast to
a logical predicate which is 2-valued.

12 C.K. Yap

largest radius of a ball contained in B. Let ic(B) comprises the centers of balls
of radius r0(B) that are contained in B. E.g., if B is a rectangle, then ic(B) is a
line segment. Clearly, ic(B) is convex. Then c(ic(B)) is called the inner center
of B, denoted c0(B). Unlike c(B), we now have c0(B) in the interior of B. We
use c0(B) as follows: for any α > 0, αB will mean scaling B by a factor α relative
to the center c0(B). If α > 1 (< 1) this amounts to growing (shrinking) B. The
inverse operation is denoted B/α. Thus (αB)/α = B. The aspect ratio of B is
ρ(B):=r(B)/r0(B) > 1.

By a subdivision of a test cell B, we mean any finite set of test cells
{B1, . . . , Bm} such that B =

⋃m
i=1 Bi and dim(Bi ∩ Bj) < d for all i �= j.

We denote the subdivision relationship as B = B1 � B2 � · · · � Bm.
Let R

d denote some set of test cells. For instance, R
d may the set of all

boxes, or the set of all simplices. Let the function Expand : R
d → 2 R

d

return a
subdivision Expand(B) of B. In general, Expand is a non-deterministic function4

and we may call it an “expansion scheme”. Using an expansion scheme, we can
grow subdivision trees rooted in any B ∈ R

d, by repeated expansion at any
chosen leaf. We note some concrete schemes:

– Longest Edge Bisection: let R
d be simplices and Expand(B) returns a

subdivision of B into two simplices by bisecting the longest edge in B (see
[17]).

– Box Subdivision Scheme: let R
d be the set of all (axes-parallel) boxes and

Expand(B) return a set of 2i congruent boxes (for some i = 1, . . . , d). This set
is defined by introducing i axes-parallel hyperplanes through the center of B.
There are

(

d
i

)

ways to choose these hyperplanes. So there are 2d − 1 possible
expansions.

– Dyadic Schemes: We call a scheme is dyadic if, for any test cell B, each
vertex of a subcell B′ ∈ Expand(B) is either a vertex of B or the midpoint of an
edge of B. The previous two examples are dyadic schemes. The significance of
such schemes is that they can be exactly and efficiently computed: recall that a
dyadic number (or BigFloat) is a rational number of the form m2n (m,n ∈ Z).
The operations +,−,× on dyadic numbers are very efficient and division by 2 is
exact. Vertices of test cells in a dyadic subdivision tree have the form

∑k
i=1 civi

where ci are dyadic numbers and v1, . . . , vk are the vertices of the root. The bit
size of the ci’s grows linearly with the depth, not exponentially.

3. Subdivision Atlases for Non − euclidean Spaces: Note that if we have
a point or ball robot in Euclidean space, then the resolution-exactness of SSS
algorithms is indeed trivial. But configuration spaces are rarely Euclidean. Sub-
division in non-Euclidean spaces is a nontrivial problem. Likewise, sampling in
such spaces is also a research issue (Yershova et al. [26]). Our approach is to
borrow the language of charts and atlases from differential geometry. Suppose
4 We use the notation in, e.g., [3]. This means there is a set, denoted set−Expand(B),

of subdivisions of B, and Expand(B) denotes (non-deterministically) any element
of this set. We assume set−Expand(B) is non-empty so that Expand(B) is a total
function.

Soft Subdivision Search in Motion Planning, II: Axiomatics 13

the metric space X has the property X = X1 ∪ X2 ∪ · · · ∪ Xm such that for
each Xt, we have an onto homeomorphism μt : Bt → Xt where Bt is a test cell,
and dim(μ−1

t (Xt ∩ Xs)) < d for all t �= s. We call each μt a chart and the set
{μt : t = 1, . . . ,m} is called an subdivision atlas for X.

The subdivision of X is thus reduced to subdivision in each Xt, car-
ried out vicariously, via the chart μt. More precisely, let Expandt : Bt →
2 Bt be an expansion scheme where Bt ⊆ 2Bt is a set of test cells. Call
μt(B):= {μt(γ) : γ ∈ B} (B ∈ Bt) a test cell induced by μt. Let X denote the
set of induced test cells. Finally, let X denote the disjoint union of the Xt’s (for
all t = 1, . . . , m) and let ExpandX : X → 2 X denote the induced expansion
defined by ExpandX(μt(B)) = μt(Expandt(B)). We have thus achieved subdi-
vision in X. In the following, we might say “B/α” (scaling), “c(B)” (center),
etc. But it should be understood that we mean μ(B′/α), μ(c(B′)), etc., where
B = μ(B′) for some test cell B′.

Call the intersection Xt ∩ Xs (s �= t = 1, . . . ,m) an atlas transition if
dim(Xt ∩ Xs) = d − 1. For motion planning, recall that two cells are adjacent
if they share a face of codimension 1. Thus atlas transitions yield adjacencies
between cells in Xs and in Xt. Thus we have two kinds of adjacencies: those
that arise from the subdivision of test cells, and from atlas transitions.

4. Subdivision Atlases for S2 and SO(3): We now give consider two non-
Euclidean metric spaces, S2 and SO(3). We will identify SO(3) with the unit
quaternions, q = (a, b, c, d) = a+ib+jc+kd with a2+b2+c2+d2 = 1. Then SO(3)
is a metric space with a metric d(·, ·) given by the angle d(q, q′):= cos−1(|q · q′|)
between two unit quaternions q, q′ (see [26]). Likewise, we can treat S2 as a
metric space with the great circle distance.

We are interested in the 2-sphere S2 because the configuration spaces of
several simple rigid robots living in R

3 is given by R
3 × S2: a rod (1D), a

cone or bullet (3D), a disc (2D) and a ring (1D). See Fig. 1(a). The ring is
interesting because it is the simplest rigid robot that is not simply-connected.
Despite the simplicity of their configuration spaces (being 5-DOF), it seems that
no complete exact planners have been designed for them. The reason seems to
be related to the difficulties of exact algorithms for the “Voronoi Quest” [22].
We are currently designing and implementing a resolution-exact planner for a
rod [21]. It would test the practicality of our theory. We can make the rod, ring
and disc into thick robots by taking their Minkowski sum with a 3D-ball. But
we expect that any SSS planner for thin robots will extend relatively easily to
thick analogues (similar to the situation in the plane [12]).

Note that S2 is not a subgroup, but a quotient group of SO(3) (this is clear
from the Hopf fibration of SO(3) [26]). To create a subdivision atlas for S2,
let I3 = I × I × I be the 3-cube where I = [−1, 1]. Its boundary ∂I3 can
be subdivided into 6 squares denoted S±δ where δ ∈ {x, y, z}. See Fig. 1(b).
For instance, S+z = {(x, y, 1) : x, y ∈ I} and S−z = {(x, y,−1) : x, y ∈ I}. We
obtain a subdivision chart of S2 by using 6 charts: μ±δ : S±δ → S2 where
μ±δ(q) = q/‖q‖ where ‖q‖ is the Euclidean norm. Note that μ±δ does not depend

14 C.K. Yap

S−z

Rod Cone Disc Ring

Y

Z

S+x

S−y

S+y

S+z

S−x
Model

of S2:

(a)

(b)
X

O

Fig. 1. 3D rigid robots with 5-DOF (Color figure online)

on ±δ and so there is really only one function μ(q) for all the charts. The
inverse map μ−1 : S2 → ∂I3 is also easy: μ−1(γ) = γ/‖γ‖∞ where ‖q‖∞ is the
infinity norm.

Call this construction the cubic atlas for S2. We now construct a similar
cubic atlas for SO(3) (it was mentioned in Nowakiewicz [14]).

Begin with the 4-cube I4: it has eight 3-dimensional cubes as faces. After
identifying the opposite faces, we have four faces denoted C3

w, C3
x, C3

y , C3
z (see

Fig. 2). We define the chart: μt : C3
t → SO(3) given by μt(q) = q/‖q‖ (where

t = w, x, y, z). As noted above, we must keep track of the adjacencies that arise
from our atlas. In our case, this arise from the identification of antipodal points,
q ∼ −q in S3. In our cubic model, this information is transferred to identification
of 2-dimensional faces among of C3

t .
A chart μ : Bt → Xt is good if there exists a chart constant C0 > 0 such

that for all q, q′ ∈ Bt, 1/C0 ≤ dX(μ(q),μ(q′))
‖q−q′‖ ≤ C0 where dX(·, ·) is the metric

in Xt. The subdivision atlas is good if there is an atlas constant C0 that is
common to its charts. Note that good atlases can be used to produce nice sam-
pling sequences: since our test cells are Euclidean sets, we can exploit sampling
of Euclidean sets. Alternatively, we can produce a “uniform” subdivision into
sufficiently test cells, and pick the center of each test cell as sample point. The
following is immediate:

Lemma 1. The cubic subdivision atlases for S2 and SO(3) are good.

5. Soft Predicates: We define soft predicates in the space X. Let Y ⊆ X. We
call ˜C : X → {+1, 0,−1} a soft classifier of Y if it satisfies two properties:

– (conservative) for all B ∈ X, ˜C(B) �= 0 implies ˜C(B) = CY (μ(B)).

Soft Subdivision Search in Motion Planning, II: Axiomatics 15

Z

O

Y

Z

X

W

O

Y

X

W

O

Y

Z

X O

Y

Z

W

X

(c) Cz (d) Cy

(b) Cx(a) Cw

W

O

Y

Z

X

W

Fig. 2. The Cubic Atlas for SO(3) (Color figure online)

– (convergent) if q = limi→∞ Bi then ˜C(Bi) = CY (μ(q)) for i large enough.

For resolution-exactness, we need another property: a soft classifier ˜C is effec-
tive if there is an effectivity factor σ > 1 such that if ˜C(B) = +1 then
˜C(B/σ) = +1. For instance, we see that effectivity of ˜C implies it is convergent.
Note we do not require CY (B) = −1 to imply CY (B/σ) = −1.

Given α, β ∈ X and Y ⊆ X, the exact planning problem is finding a
path from α to β in Y if they belong to the same connected component of Y ,
and NO-PATH otherwise. The resolution-exact version will require a connection
between the metric in configuration space X and the metric in physical space Rk.
For this purpose, recall the concepts of footprint and separation of Euclidean sets
(see [20,25]): Our robot R0 lives in physical space R

k (k = 2 or k = 3) amidst
an obstacle set Ω ⊆ R

k. The footprint map is Fprint : Cspace → 2R
k

where
Cspace = Cspace(R0) is the configuration space. Intuitively, Fprint(γ) ⊆ R

k

is the physical space occupied by robot R0 in configuration γ. The clearance
function, C� : Cspace → R≥0 is given by C�(γ):=Sep(Fprint(γ), Ω), where
Sep(A,B):= inf {‖a − b‖ : a ∈ A, b ∈ B} is the separation between two Euclid-
ean sets in R

k. We say γ is free if C�(γ) > 0. A motion is a continuous function
π : [0, 1] → Cspace; its clearance is inf {C�(π(t)) : t ∈ [0, 1]}. Call π a path if
it has positive clearance.

In our abstract formulation, we postulate the existence of a continuous func-
tion C� : X → R without reference to the underlying footprint or Ω. Moreover,
this is called a generalized clearance function because we now allow negative
clearance, interpreted as “penetration depth” (e.g., [8,27]). Call C� a clearance

16 C.K. Yap

function for Y if Y = {γ ∈ X : C�(γ) > 0)}. We then consider interval functions
of the form

C� : X → R.

(Recall that R is a set of intervals.) We call C� a conservative approxi-
mation of C� if C�(B) �= 0 implies C�(B) = C�(B) for all B ∈ X. We say

C� converges to C� if whenever γ = limi→∞ Bi, then C�(Bi) = C�(γ) for i
large enough. Finally, C� is called a box function for C� if it is conservative
and convergent relative to C�.

Note that C� defines a classification function ˜C : X → {+1, 0,−1} where
˜C(B) = 0 iff 0 ∈ C�(B); otherwise, ˜C(B) = sign(C�(B)) (either +1 or −1).
The following is immediate:

Lemma 2. Let C� : X → R be a clearance function for Y ⊆ X, and suppose
C� : X → R is a box function for C�.

Then the classification function ˜C : X → {+1, 0,−1} defined by C� is a soft
classifier of Y .

6. Soft Predicates for Complex Robots: An example of a robot with com-
plex geometry is the gear robot of Zhang et al. [27]. Such robots pose difficulties
for exact algorithms. We show that soft predicates for complex robots can be
decomposed. Let G0 ⊆ R

2 be the gear robot. We write it as a union G0 = ∪m
j=1Tj

of triangles Tj . The free space of G0 can be written as the intersections of the
freespaces of Tj , provided the Tj ’s are expressed in a common coordinate system.
This proviso requires a slight generalization of the soft predicate for triangles in
[8]. The next theorem shows how to obtain a soft predicate for G0 from those of
the Tj ’s:

Theorem 1 (Decomposability of Soft Predicates). Suppose Y = Y1∩· · ·∩
Ym. If ˜Ci : X → {+1, 0,−1} is a soft classifier for Yi, then the following is a
soft classifier for Y :

˜C(B):=

⎧

⎨

⎩

+1 if (∀j)[˜Cj(B) = +1]
−1 if (∃i)[˜Ci(B) = −1],
0 else.

If each ˜Cj’s has effectivity factor σ, then ˜C(B) has effectivity factor σ.

Proof. We easily check that ˜C(B) is safe. To show convergence, suppose that
Bi → p. If p ∈ Y , then p ∈ Yj for each j. That means ˜Cj(Bi) = 1 for i

large enough. I.e., ˜C(Bi) = 1 for i large enough. This proves limi≥0
˜C(Bi) =

+1 = C(p). If p ∈ X \ Y , then p ∈ X \ Yj for some Yj . This means ˜Cj(Bi) =
−1 for i large enough, and therefore ˜C(Bi) = −1 for i large enough. Again,
limi≥0

˜C(Bi) = −1 = C(p). Suppose p ∈ ∂Y . Then p ∈ ∂Yj for some j and for
all k �= j, p ∈ Yk. That implies that ˜Cj(Bi) ∈ {+1, 0} and Again, limi≥0

˜C(Bi) =
0 = C(p). This proves the softness of the predicate ˜C(B).

Soft Subdivision Search in Motion Planning, II: Axiomatics 17

Assume each ˜Cj has an effectivity factor σ > 1. Let Cj(B) be the exact
box predicate for Yj . Suppose C(B) is free. This means each Cj(B) is free. By
definition of effectivity, each ˜Cj(B/σ) is free. Hence ˜C(B/σ) is free. Q.E.D.

4 Axiomatic Properties of SSS

We prove general properties of SSS planners using basic assumptions which we
call axioms. The proofs are instructive because they reveal how these axioms
and properties of SSS are used. We introduce 5 axioms, beginning with these
four:

– (A0: Softness)
˜C is a soft classifier for Cfree = {γ ∈ X : C�(γ) > 0}.

– (A1: Bounded dyadic expansion)
The expansion scheme is dyadic, and there is a constant D0 > 2 such that
Expand(B) splits B into at most D0 subcells, each with at most D0 vertices,
with the ratio �(B)/w(B) at most D0.

– (A2: Clearance is Lipschitz)
There is a constant L0 > 0 such that for all γ, γ′ ∈ Cfree, |C�(γ)−C�(γ′)| <
L0 · dX(γ, γ′) where dX(·, ·) is the metric on X.

– (A3: Good Atlas)
The subdivision atlas has a atlas constant C0 ≥ 1.

Note that these axioms concern about the clearance C� : X → R, classification
˜C : X → R and the Expand scheme. We have no axioms about getNext
because the needed properties are embedded in the SSS framework, namely
getNext returns a MIXED-leaf with length �(B) ≥ ε if any exist. Recall that in
general, B ∈ X is induced via our charts μt, and so the metrics such as �(B)
and w(B) are induced from the Euclidean sets B′ where μt(B′) = B, i.e., �(B)
refers to �(μ−1

t (B)) = �(B′), etc. Note that (A1) does not bound the aspect
ratio r(B)/r0(B) and these may be unbounded (slivers can arise). (A2) relates
clearance to the metric on X: this is a non-trivial axiom in non-Euclidean spaces.
(A3) is necessary since subdivision of X is done via charts {μt : t = 1, . . . , m}.

Theorem 2 (Halting). Every SSS planner halts. When a path is output, it is
valid.

Proof. In any infinite path {Bi : i ≥ 0}, (A1) implies limi �(Bi) → 0. Since we do
not subdivide a box if “�(B) < ε”, halting is assured. At termination, we either
report a path or output NO-PATH. If we report a path, it meant we found a “free
channel” from B(α) to B(β). We check that SSS ensures that the channel is truly
free: the dyadic scheme (A1) ensures that test cells are computed exactly, and
thus adjacencies are computed without error. Each cell in the channel is classified
as FREE, and this truly free because (A0) ensures a conservative classifier ˜C.
Finally, output paths are valid as they are contained in free channels. Q.E.D.

18 C.K. Yap

This theorem depends only on (A0) and (A1). Although our goal in (A0)
is soft classifiers, it is a useful preliminary to consider the case where ˜C is the
exact classifier. In this case, we say our planner is exact. This preliminary step
is captured in the next result:

Theorem 3 (Exact SSS). Assuming an exact SSS planner:
(a) If there is no path, the planner outputs NO-PATH.
(b) If there is a path with clearance ≥ 2C0D0εL0, the planner outputs a path.

Proof. Part(a) is essentially the contrapositive of the above Halting theorem. For
part(b), let T be the subdivision tree at termination. The nodes of T are induced
cells of X. Each B ∈ X comes from an Euclidean test cell μ−1(B) ∈ R

d for
some chart μ. Euclidean distance ‖ · ‖2 in μ−1(B) and the metric dX(·, ·) of X
are related via the chart constant C0. Let π : [0, 1] → X be a path from α
to β with clearance 2C0D0εL0. By way of contradiction, suppose SSS outputs
NO-PATH. This implies that every mixed leaf satisfies �(B) < ε. Consider the
set A of leaves of T that intersect π[0, 1] (the range of π). If B ∈ A, there
exists t ∈ [0, 1] such that π(t) ∈ B. This implies B is either free or mixed. We
claim that B is free. If B is mixed, then �(μ−1(B)) < ε and there is a point
p′ ∈ B that is semi-free. Thus ‖p − q‖2 < D0ε for any two Euclidean points
p, q in μ−1(B). Using the chart μ, we conclude that dX(μ(p), μ(q)) < C0D0ε.
Therefore dX(π(t), p′) ≤ dX(π(t), c(B)) + dX(c(B), p′) < 2C0D0ε. By (A2),
|C�(π(t)) − C�(p′)| < 2C0D0εL0. Thus C�(p′) > C�(π(t)) − 2C0L0εL0 ≥ 0, i.e.,
p′ is free. This contradicts the assumption that p′ is semi-free; so B must be free.
Thus we obtain a channel of free cells from α to β using cells in A. The existence
of such a channel implies that our union-find data structure in SSS would surely
detect a path. Q.E.D.

Our goal is not to produce the sharpest constants but to reveal their roles in
our framework. Notice that this theorem has a gap: if the optimal clearance lies
in (0, 2C0D0εL0), the exact Planner may output either a path or NO-PATH.

7. Three Desiderata: The literature invariably assumes exactness in its analy-
sis, such as in Theorem 3. But there are three desiderata beyond such a result.
The first is to remove the exactness assumption. Second, we would like to
strength the hypothesis of Theorem 3(a) to “if there is no path with clearance
ε/K” for some input-independent K > 1. In other words, NO-PATH ought to
mean no path of “sufficient clearance”, a reasonable idea in view of the inherent
uncertainty of physical devices. Third, we may want to strengthen the conclusion
of Theorem 3(b) so that the output path has clearance ≥ ε/K.

The first desiderata calls for soft predicates. We say that the SSS planner
is effective if the soft predicate ˜C has an effectivity constant σ > 1. In appli-
cations, it is useful to assume that ˜C is isotone5 i.e., ˜C(B) �= 0 and B′ ⊆ B

implies ˜C(B′) �= 0. The proof of part(b) in the previous theorem can be extended
to show:
5 This term is from the interval literature. Though not strictly necessary, but it sim-

plifies some arguments.

Soft Subdivision Search in Motion Planning, II: Axiomatics 19

Theorem 4 (Effective SSS). Assume an SSS planner with effectivity σ > 1.
(a) If there is no path, the planner outputs NO-PATH.
(b) If there is a path with clearance ≥ C0D0ε(1 + σ)L0, the planner outputs a
path.

The indeterminacy gap is slightly widened to (0, C0D0ε(1 + σ)L0) by the soft
predicate.

The second desiderata amounts to asking for a resolution-exact planner. As
defined in the Introduction, such planners has an accuracy constant K > 1. So
we seek to narrow indeterminacy gap by raising the gap lower bound from 0 to
ε/K. The fundamental issue is to infer a lower bound on the clearance of a path
inside a free channel. This requires a new axiom:

– (A4: Translational Cells)
There is a constant K0 > 0 such that if B ∈ X is free, then its inner center
c0 = c0(B) has clearance C�(c0) ≥ K0 · r0(B). Such cells are said to be
translational.

Like (A2), axiom (A4) relates the clearance to the metric space (via the chart
μ). The “translational” terminology is based on the analogy that if X is purely
translational, then (A4) is true. But in fact, it will be true in all the common
motion planning scenarios.

Theorem 5 (Resolution-Exact SSS). Assuming (A0–A4), SSS planners are
resolution-exact.

This proof is more involved and will appear in the full paper. The third desiderata
requires that we strengthen condition (P) in the definition of resolution-exactness
as follows:

(P’) If there is a path of clearance Kε, then return a path of clearance ε/K.

See [20,25] where (P’) is used. The combination of (P) and (N) implies that
whenever a path is output, we are assured that there exists a path of clearance
ε/K. So (P’) attempts to turn this existential guarantee into a constructive
guarantee. Unfortunately, this requires additional effort as in [20,25]. We will
not attempt an axiomatic treatment to achieve (P’) here.

5 What About Exactness?

Can the SSS framework produce6 exact algorithms? The answer is yes, but
as always, only in the algebraic case. First, here is a non-solution: using an
exact SSS planner with the resolution parameter ε = 0. Using an exact SSS re-
introduces the need for algebraic computation. By setting ε = 0, indeterminacy

6 We are indebted to Steve LaValle for asking this question at the IROS 2011 Workshop
in San Francisco.

20 C.K. Yap

is removed, but at a high price: if there is no path, then SSS will not halt. Even
if there is a path, SSS may not halt; but this could be fixed by imposing a “gen-
eralized BFS” property on getNext. For these reasons, our normal formulation
of SSS requires ε > 0 and K > 1. We now present a solution within the SSS
framework using an effective soft predicate. The idea is to exploit the theory of
constructive zero bounds [24].

Proposition 3. If R0, Ω are semi-algebraic sets, and the parameters α, β are
algebraic, then there is an effectively computable number δ = δ(R0, Ω, α, β) > 0
such that: if there is a path from α to β, then there is one with clearance δ.

One way to derive such a δ is to use the general retraction theory in [15,16,23]:
there is a “retract” V ⊆ Cfree = Cfree(R0, Ω) and a retraction map Im :
Cfree → V with this property: for all α, β ∈ Cfree, we have that α, β are
path-connected in Cfree iff Im(α), Im(β) are path-connected in V . Here V is a
Voronoi diagram and we can subdivide V into semi-algebraic Voronoi cells. The
minimum clearance on V serves as δ, and this can be lower bounded using the
degree and height of the semi-algebraic sets [5]. The upshot is this:

Theorem 6. Suppose we have a resolution-exact planner with accuracy constant
K > 1. If we choose ε to be δ(R0, Ω, α, β)/K, then our SSS planner is exact: it
outputs NO-PATH iff there is no path.

6 Conclusion

In this paper, we described the SSS framework for designing resolution-exact
algorithms. We argued [25] that it shares many of the attractive properties of
the successful PRM framework. Subdivision algorithms are as old as the history
of path planning [4]. But to our knowledge, the simple properties of soft classifiers
have never been isolated, nor have concepts of resolution-limited computation
been carefully scrutinized. We believe focus on these “simple ideas” will open
up new classes of algorithms that are practical and theoretically sound. This has
implications beyond motion planning. Our work in SSS is not just abstract, as
we have validated these ideas in several non-trivial planners [12,13,20].

There are many open questions concerning SSS framework. Perhaps the
biggest challenge for SSS is the conventional wisdom that PRM can provide prac-
tical solutions for problems with high degrees-of-freedom, while resolution meth-
ods can only reach medium DOF, generally regarded as 5–8 DOF (Choset et al.
[9, p. 202]). Likewise, in Nowakiewicz [14], “[subdivision methods] are not suitable
for 6-DOF rigid body motion planning due to the large expected number of cells ...
We believe that in high-dimensional spaces it has little practical value.”

The other major challenge is a theoretical one: how to do complexity analysis
of adaptive subdivision in Motion Planning (cf. [18]). Here are some other topics:

– The current SSS framework detects NO-PATH by exhaustion. It is a challenge
to design efficient techniques (related to maintaining homology) to allow fast
detection of NO-PATH. A promising new work by Kerber and Cabello [7] shows
how to do this when Cspace = R

2.

Soft Subdivision Search in Motion Planning, II: Axiomatics 21

– Beyond kinematic spaces, subdivision in state spaces for kinodynamic plan-
ning seems quite challenging.

– Design and analysis of good adaptive search strategies, including the Voronoi
heuristic [23], or randomized or hybrid ones. E.g., efficient updates for dynamic
A-star search [1] seems open.

Acknowledgments. I am indebted to Yi-Jen Chiang, Danny Halperin, Steve LaValle,
and Vikram Sharma for many helpful discussions.

References

1. Barbehenn, M., Hutchinson, S.: Toward an exact incremental geometric robot
motion planner. In: Proceedings of Intelligent Robots and Systems 1995, vol. 3,
pp. 39–44 (1995). 1995 IEEE, RSJ International Conference, Pittsburgh. PA, USA,
pp. 5–9, August 1995

2. Basu, S., Pollack, R., Roy, M.-F.: Algorithms in Real Algebraic Geometry. Algo-
rithms and Computation in Mathematics, vol. 10, 2nd edn. Springer, Heidelberg
(2006)

3. Beyersdorff, O., Köbler, J., Messner, J.: Nondeterministic functions and the exis-
tence of optimal proof systems. Theor. Comput. Sci. 410(38–40), 3839–3855 (2009)

4. Brooks, R.A., Lozano-Perez, T.: A subdivision algorithm in configuration space
for findpath with rotation. In: Proceedings of the 8th IJCAI, San Francisco, CA,
USA, vol. 2, pp. 799–806. Morgan Kaufmann Publishers Inc. (1983)

5. Brownawell, W.D., Yap, C.K.: Lower bounds for zero-dimensional projections.
In: 2009 34th International Symposium on Symbolic and Algebraic Computation
(ISSAC 2009), pp. 79–86. KIAS, Seoul, Korea, 28–31 July 2009

6. Burr, M., Krahmer, F.: SqFreeEVAL: an (almost) optimal real-root isolation algo-
rithm. J. Symb. Comput. 47(2), 153–166 (2012)

7. Cabello, S., Kerber, M.: Semi-dynamic connectivity in the plane. In: Algorithms
and Data Structure Symposium (WADS 2015) (to appear, 2015). arXiv:1502.03690

8. Chiang, Y.-J., Yap, C.: Numerical subdivision methods in motion planning. 2011
Poster, IROS Workshop on Progress and Open Problems in Motion Planning, San
Francisco, 30 September 2011

9. Choset, H., Lynch, K.M., Hutchinson, S., Kantor, G., Burgard, W., Kavraki, L.E.,
Thrun, S.: Principles of Robot Motion: Theory, Algorithms, and Implementations.
MIT Press, Boston (2005)

10. Kavraki, L., Švestka, P., Latombe, C., Overmars, M.: Probabilistic roadmaps
for path planning in high-dimensional configuration spaces. IEEE Trans. Robot.
Autom. 12(4), 566–580 (1996)

11. LaValle, S.M.: Planning Algorithms. Cambridge University Press, Cambridge
(2006)

12. Luo, Z., Chiang, Y.-J., Lien, J.-M., Yap, C.: Resolution exact algorithms for link
robots. In: 2014 Proceedings of the 11th WAFR, Boǧaziçi University, Istanbul,
Turkey, 3–5 August 2014. (to appear in a Springer Tracts in Advanced Robotics
(STAR))

13. Luo, Z., Yap, C.: Resolution exact planner for non-crossing 2-link robot (2015,
Submitted)

http://arxiv.org/abs/1502.03690

22 C.K. Yap

14. Nowakiewicz, M.: MST-based method for 6DOF rigid body motion planning in
narrow passages. In: 2010 Proceedings of IEEE/RSJ International Conference on
Intelligent Robots and Systems, Taipei, Taiwan, pp. 5380–5385, 18–22 October
2010

15. Ó’Dúnlaing, C., Sharir, M., Yap, C.K.: Retraction: a new approach to motion-
planning. ACM Symp. Theor. Comput. 15, 207–220 (1983)

16. Ó’Dúnlaing, C., Yap, C.K.: A “retraction” method for planning the motion of a
disc. J. Algorithms 6, 104–111 (1985)

17. Rivara, M.-C.: Lepp-bisection algorithms, applications and mathematical proper-
ties. Appl. Numer. Math. 59(9), 2218–2235 (2009)

18. Sagraloff, M., Yap, C.K.: A simple but exact and efficient algorithm for complex
root isolation. In: Emiris, I.Z. (ed.) 36th International Symposium on Symbolic
and Algebraic Computation, San Jose, California, pp. 353–360, 8–11 June 2011

19. Sharma, V., Yap, C.: Near optimal tree size bounds on a simple real root isola-
tion algorithm. In: 2012 37th International Symposium on Symbolic and Algebraic
Computation (ISSAC 2012), Grenoble, France, pp. 319–326, 22–25 July 2012

20. Wang, C., Chiang, Y.-J., Yap, C.: On soft predicates in subdivision motion plan-
ning. In: 2014 Computational Geometry: Theory and Applications, Special Issue
for SoCG, Rio de Janeiro, Brazil, 17–20 June 2013

21. Wei, Z., Yap, C.: Soft subdivision planner for a rod (2015. in preparation)
22. Yap, C., Sharma, V., Lien, J.-M.: Towards exact numerical voronoi diagrams. In:

2012 9th Proceedings of the International Symposium of Voronoi Diagrams in
Science and Engineering (ISVD), Rutgers University, NJ, pp. 2–16. IEEE, 27–29
June 2012. Invited Talk

23. Yap, C.K.: Algorithmic motion planning. In: Schwartz, J., Yap, C. (eds.) Advances
in Robotics. Algorithmic and Geometric Issues, vol. 1, pp. 95–143. Lawrence
Erlbaum Associates, Hillsdale (1987)

24. Yap, C.K.: Robust geometric computation. In: Goodman, J.E., O’Rourke, J.
(eds.) Handbook of Discrete and Computational Geometry, 2nd edn, pp. 927–952.
Chapman & Hall/CRC, Boca Raton (2004)

25. Yap, C.K.: Soft subdivision search in motion planning. In: Aladren, A., et al. (eds.)
In: Proceedings of 1st Workshop on Robotics Challenge and Vision (RCV 2013),
A Computing Community Consortium (CCC) Best Paper Award, Robotics Science
and Systems Conference (RSS 2013), Berlin (2013). arXiv:1402.3213

26. Yershova, A., Jain, S., LaValle, S.M., Mitchell, J.C.: Generating uniform incremen-
tal grids on SO(3) using the Hopf fibration. IJRR 29(7), 801–812 (2010)

27. Zhang, L., Kim, Y.J., Manocha, D.: Efficient cell labeling and path non-existence
computation using C-obstacle query. Int. J. Robot. Res. 27(11–12), 1325–1349
(2008)

28. Zhu, D., Latombe, J.-C.: New heuristic algorithms for efficient hierarchical path
planning. IEEE Trans. Robot. Autom. 7, 9–20 (1991)

http://arxiv.org/abs/1402.3213

Contributed Papers

On r-Gatherings on the Line

Toshihiro Akagi and Shin-ichi Nakano(B)

Gunma University, Kiryu 376-8515, Japan
nakano@cs.gunma-u.ac.jp

Abstract. In this paper we study a recently proposed variant of the
facility location problem, called the r-gathering problem. Given an inte-
ger r, a set C of customers, a set F of facilities, and a connecting cost
co(c, f) for each pair of c ∈ C and f ∈ F , an r-gathering of customers

C to facilities F is an assignment A of C to open facilities F
′ ⊂ F such

that r or more customers are assigned to each open facility. We give an
algorithm to find an r-gathering with the minimum cost, where the cost
is maxci∈C{co(ci, A(ci))}, when all C and F are on the real line.

Keywords: Algorithm · Facility location · Gathering

1 Introduction

The facility location problem and many of its variants are studied [5,6]. In the
basic facility location problem we are given (1) a set C of customers, (2) a set
F of facilities, (3) an opening cost op(f) for each f ∈ F , and (4) a connecting
cost co(c, f) for each pair of c ∈ C and f ∈ F , then we open a subset F ′ ⊂ F
of facilities and find an assignment A from C to F ′ so that a designated cost is
minimized.

In this paper we study a recently proposed variant of the problem, called
the r-gathering problem [4]. An r-gathering of customers C to facilities F is an
assignment A of C to open facilities F

′ ⊂ F such that r or more customers are
assigned to each open facility. This means each open facility has enough number
of customers. We assume |C| ≥ r holds. Then we define the cost of (the max
version of) a gathering as maxci∈C{co(ci, A(ci))}. (We assume op(fj) = 0 for
each fj ∈ F in this paper.) The min-max version of the r-gathering problem finds
an r-gathering having the minimum cost. For the min-sum version see the brief
survey in [4].

Assume that F is a set of locations for emergency shelters, and co(c, f) is the
time needed for a person c ∈ C to reach a shelter f ∈ F . Then an r-gathering
corresponds to an evacuation assignment such that each opened shelter serves r
or more people, and the r-gathering problem finds an evacuation plan minimizing
the evacuation time span.

Armon [4] gave a simple 3-approximation algorithm for the r-gathering prob-
lem and proves that with assumption P �= NP the problem cannot be approx-
imated within a factor of less than 3 for any r ≥ 3. In this paper we give an
c© Springer International Publishing Switzerland 2015
J. Wang and C. Yap (Eds.): FAW 2015, LNCS 9130, pp. 25–32, 2015.
DOI: 10.1007/978-3-319-19647-3 3

26 T. Akagi and S. Nakano

O((|C| + |F |) log(|C| + |F |)) time algorithm to solve the r-gathering problem
when all C and F are on the real line.

The remainder of this paper is organized as follows. Section 2 gives an algo-
rithm to solve a decision version of the r-gathering problem. Section 3 contains
our main algorithm for the r-gathering problem. Sections 4 and 5 present two
more algorithms to solve two similar problems. Finally Sect. 6 is a conclusion.

2 (k,r)-Gathering on the Line

In this section we give a linear time algorithm to solve a decision version of the
r-gathering problem [3].

Given customers C = {c1, c2, · · · , c|C|} and facilities F = {f1, f2, · · · , f|F |}
on the real line (we assume they are distinct points and appear in those
order from left to right respectively) and two numbers k and r, then prob-
lem P (C,F, j, i) finds an assignment A of customers Ci = {c1, c2, · · · , ci} to
open facilities F

′
j ⊂ Fj = {f1, f2, · · · , fj} such that (1) r or more customers

are assigned to each open facility, (2) co(ci, A(ci)) ≤ k for each ci ∈ Ci and
(3) fj ∈ F

′
j . (2) means each customer is assigned to a near facility, and

(3) means the rightmost facility is forced to open. We assume that co(c, f) is the
distance between c ∈ C and f ∈ F , and for each fj ∈ F interval [fj − k, fj + k]
contains r or more customers, otherwise we can remove such fj from F since
such fj never open.

An assignment A of Ci to Fj is called monotone if, for any pair ci′ , ci of
customers with i

′
< i, A(ci′) ≤ A(ci) holds. In a monotone assignment the

interval induced by the assigned customers to a facility never intersects other
interval induced by the assigned customers to another facility. We can observe
that if P (C,F, j, i) has a solution then P (C,F, j, i) also has a monotone solution.
Also we can observe that if P (C,F, j, i) has a solution and co(ci+1, fj) ≤ k then
P (C,F, j, i+ 1) also has a solution.

If P (C,F, j, i) has a solution for some i then let s(fj) be the minimum i such
that P (C,F, j, i) has a solution. Note that (3) fj ∈ F

′
j means cs(fj) is located in

interval [fj −k, fj +k]. We define P (C,F, j) to be the problem to find such s(fj)
and a corresponding assignment. If P (C,F, j, i) has no solution for every i then
we say P (C,F, j) has no solution, otherwise we say P (C,F, j) has a solution.

Lemma 1. For any pair fj′ and fj in F with j
′
< j, s(fj′) ≤ s(fj) holds.

Proof. Assume otherwise. Then s(fj′) > s(fj) holds. Modify the assignment
corresponding to s(fj) as follows. Reassign the customers assigned to fj to fj′

then close fj . The resulting assignment is an r-gathering of Cs(fj) to Fj′ and
now s(fj′) = s(fj). A contradiction. ��

Assume that P (C,F, j) has a solution and c1 < fj − k. Then the corresponding
solution has one or more open facilities except for fj . Choose the solution of
P (C,F, j) having the minimum second rightmost open facility, say fj′ . We say
fj′ is the mate of fj and write mate(fj) = fj′ . We have the following three cases
based on the condition of the mate fj′ of fj .

On r-Gatherings on the Line 27

Case 1: P (C,F, j
′
) has a solution, fj′ + k < fj − k, the interval (fj′ + k, fj − k)

has no customer and the interval [fj − k, fj + k] has r or more customers.

Case 2: P (C,F, j
′
) has a solution, cs(f

j
′) ≥ fj − k and interval (cs(f

j
′), fj + k]

has r or more customers.

Case 3: P (C,F, j
′
) has a solution, cs(f

j
′) < fj − k and interval [fj − k, fj + k]

has r or more customers.

For each fj by checking the three conditions above for every possible mate fj′

one can design O(|F |2 + |C|) time algorithm based on a dynamic programming
approach. However we can omit the most part of the checks by the following
lemma.

Lemma 2. (a) Assume P (C,F, j) has a solution. If P (C,F, j + 1) also has a
solution then mate(fj) ≤ mate(fj+1) holds.
(b) For fj ∈ F , let fmin be the minimum fj′ such that (i)P (C,F, j

′
) has a

solution and (ii)fj′ +k ≥ fj −k, if such fmin exists. If P (C,F, j) has no solution
with the second rightmost open facility fmin, then (b1) any fj′′ satisfying fmin <
fj′′ < fj is not the mate of fj, and P (C,F, j) has no solution, and (b2) fmin ≤
mate(fj+1) holds if mate(fj+1) exists.

Proof. (a) Assume otherwise. If mate(fj+1)+ k < fj − k holds then mate(fj+1)
is also the mate of fj , a contradiction. If mate(fj+1) + k ≥ fj − k holds then
by Lemma1 mate(fj+1) is also the mate of fj , a contradiction. (b1) Immediate
from Lemma1. (b2) Assume otherwise. If mate(fj+1) + k < fj − k holds then
mate(fj+1) is also the mate of fj , a contradiction. If mate(fj+1) + k ≥ fj − k
holds then fmin is mate(fj+1) not mate(fj), a contradiction. ��

Lemma2 means after searching for the mate of fj upto some fj′ the next search
for the mate of fj+1 can start at the fj′ . Based on the lemma above we can
design algorithm find(k, r)-gathering.

In the preprocessing we compute, for each fj ∈ F , (1) the index of the first
customer in interval (fj + k, c|C|), (2) the index of the first customer in interval
[fj −k, c|C|) and (3) the index of the r-th customer in interval [fj −k, c|C|). Also
we store the index s(fj) for each fj ∈ F . Those needs O(|C| + |F |) time. After
the preprocessing the algorithm runs in O(|F |) time since j′ ≤ j always holds
the most inner part to compute s(fj) executes at most 2|F | times.

We have the following lemma.

Lemma 3. One can solve the (k, r)-gathering problem in O(|C| + |F |) time.

3 r-Gathering on the Line

In this section we give an O((|C| + |F |) log(|C| + |F |)) time algorithm to solve
the r-gathering problem when all C and F are on the real line.

28 T. Akagi and S. Nakano

Algorithm 1. find(k, r)-gathering (C,F, k)
j = 1
// One open facility Case //
while interval [fj − k, fj + k] has both c1 and cr do

set s(fj) to be the r-th customer cr
j = j + 1

end while
// Two or more open facilities Case//

j
′
= 1

while j ≤ |F | do
flag = off
while flag =off and s(fj) is not defined yet and j

′
< j do

if P (C,F, fj′) has a solution and fj′ + k < fj − k, interval (fj′ + k, fj − k) has
no customer then

set s(fj) to be the r-th customer in the interval [fj − k, fj + k]
else if P (C,F, fj′) has a solution and fj′ + k ≥ fj − k then

flag = on
if s(fj′) ≥ fj − k and interval (s(fj′), fj + k] has r or more customers then

set s(fj) to be the r-th customer in the interval (s(fj′), fj + k]
else if P (C,F, fj′) has a solution, s(fj′) < fj − k and interval [fj − k, fj + k]
has r or more customers then

set s(fj) to be the r-th customer in the interval [fj − k, fj + k]
end if

end if
j

′
= j

′
+ 1

end while
j = j + 1

end while
if some fj with defined s(fj) has c|C| within distance k then

output YES
else

output NO
end if

Our strategy is as follows. First we can observe that the minimum cost
k∗ of a solution of an r-gathering problem is some co(c, f) with c ∈ C and
f ∈ F . Since the number of distinct co(c, f) is at most |C||F |, sorting them
needs O(|C||F | log(|C||F |)) time. Then find the smallest k such that the (k, r)-
gathering problem has a solution by binary search, using the linear-time algo-
rithm in the preceding section log(|C||F |) times. Those part needs O((|C| +
|F |) log |C||F |) time. Thus the total running time is O(|C||F | log(|C||F |)).

However by using the sorted matrix searching method [7] (See the good sur-
vey in [2, Section 3.3]) we can improve the running time to O((|C|+|F |) log(|C|+
|F |)). Similar technique is also used in [8,9] for a fitting problem. Now we explain
the detail in our simplified version.

First let MC be the matrix in which each element is mi,j = ci − fj . Then
mi,j ≥ mi,j+1 and mi,j ≤ mi+1,j always holds, so the elements in the rows and

On r-Gatherings on the Line 29

columns are sorted respectively. Similarly let MF be the matrix in which each
element is m

′
i,j = fj − ci. The minimum cost k∗ of an optimal solution of an

r-gathering problem is some positive element in those two matrices. We can find
the smallest k in MC for which the (k, r)-gathering problem has a solution, as
follows.

Let n be the smallest integer which is (1) a power of 2 and (2) larger than
or equal to max{|C|, |F |}. Then we append the largest element m|C|,1 to MC as
the elements in the lowest rows and the leftmost columns so that the resulting
matrix has exactly n rows and n columns. Note that the elements in the rows
and columns are still sorted respectively. Let MC be the resulting matrix. Our
algorithm consists of stages s = 1, 2, · · · , log n, and maintains a set Ls of sub-
matrices of MC possibly containing k∗. Hypothetically first we set L0={MC}.
Assume we are now starting stage s.

For each submatrix M in Ls−1 we partite M into the four submatrices with
n/2s rows and n/2s columns and put them into Ls.

Let kmin be the median of the upper right corner elements of the submatrices
in Ls. Then for the k = kmin we solve the (k, r)-gathering problem. We have
two cases.

If the (k, r)-gathering problem has a solution then we remove from Ls each
submatrix with the upper right corner element (the smallest element) greater
than kmin. Since kmin ≥ k∗ holds each removed submatrix has no chance to
contain k∗. Also if Ls has several submatrices with the upper right corner element
equal to kmin then we remove them except one from Ls. Thus we can remove
|Ls|/2 submatrices from Ls.

Otherwise if the (k, r)-gathering problem has no solution then we remove
from Ls each submatrix with the lower left corner element (the largest element)
smaller than kmin. Since kmin < k∗ holds each removed submatrix has no chance
to contain k∗. Now we can observe that, for each “chain” of submatrices, which is
the sequence of submatrices in Ls with lower-left to upper-right diagonal on the
same line, the number of submatrices (1) having the upper right corner element
smaller than kmin (2) but remaining in Li is at most one (since the elements on
“the common diagonal line” are sorted). Thus, if |Ls|/2 > Ds, where Ds = 2s+1

is the number of chains plus one, then we can remove at least |Ls|/2 − Ds

submatrices from Ls.
Similarly let kmax be the median of the lower left corner elements of the

submatrices in Ls, and for the k = kmax we solve the (k, r)-gathering problem
and similarly remove some submatrices from Ls. This ends stage s.

Now after stage log n each matrix in Llog n has just one element, then we can
find the k∗ using a binary search with the linear-time decision algorithm.

We can prove that at the end of stage s the number of submatrices in Ls is
at most 2Ds, as follows.

First L0 has 1 submatrix and 1 ≤ 2D0 = 2 · 20+1 submatrix. By induction
assume Ls−1 has 2Ds−1 = 2 · 2s submatrices.

At stage s we first partite each submatrix in Ls−1 into four submatrices then
put them into Ls. Now the number of submatrices in Ls is 4 · 2Ds−1 = 4Ds. We
have four cases.

30 T. Akagi and S. Nakano

If the (k, r)-gathering problem has a solution for k = kmin then we can
remove at least a half of the submatrices from Ls, and so the number of the
remaining submatrices in Ls is at most 2Ds, as desired.

If the (k, r)-gathering problem has no solution for k = kmax then we can
remove at least a half of the submatices from Ls, and so the number of the
remaining submatices in Ls is at most 2Ds, as desired.

Otherwise if |Ls|/2 ≤ Ds then the number of the submatices in Ls (even
before the removal) is at most 2Ds, as desired.

Otherwise (1) after the check for k = kmin we can remove at least |Ls|/2−Ds

submatices (consisting of too small elements) from Ls, and (2) after the check
for k = kmax we can remove at least |Ls|/2 − Ds submatices (consisting of too
large elements) from Ls, so the number of the remaining submatices in Ls is at
most |Ls| − 2(|Ls|/2 − Ds) = 2Ds, as desired.

Thus at the end of stage s the number of submatrices in Ls is always at
most 2Ds.

Now we consider the running time. We implicitly treat each submatrix as
the index of the upper right element in MC and the number of lows. Except for
the calls of the linear-time decision algorithm for the (k, r)-gathering problem,
we need O(|Ls−1|) = O(Ds−1) time for each stage s = 1, 2, · · · , log n, and D0 +
D1+ · · ·+Dlog n−1 = 2+4+ · · ·+2log n < 2 ·2log n = 2n holds, so this part needs
O(n) time in total. (Here we use the linear time algorithm to find the median.)

Since each stage calls the linear-time decision algorithm twice this part needs
O(n log n) time in total.

After stage s = log n each matrix has just one element, then we can find the
k∗ among the |Llog n| ≤ 2Dlog n = 4n elements using a binary search with the
linear-time decision algorithm at most log 4n times. This part needs O(n log n)
time.

Then we similarly find the smallest k in MF for which the (k, r)-gathering
problem has a solution. Finally we output the smaller one among the two.

Thus the total running time is O((|C| + |F |) log(|C| + |F |)).

Theorem 1. One can solve the r-gathering problem in O((|C| + |F |) log(|C| +
|F |)) time when all C and F are on the real line.

4 r-Gather Clustering

In this section we give an algorithm to solve a similar problem by modifying the
algorithm in Sect. 3.

Given a set C of n points on the plane an r-gather-clustering is a parti-
tion of the points into clusters such that each cluster has at least r points. The
r-gather-clustering problem [1] finds an r-gather-clustering minimizing the max-
imum radius among the clusters, where the radius of a cluster is the minimum
radius of the disk which can cover the points in the cluster. A polynomial time
2-approximation algorithm for the problem is known [1].

When all C are on the real line, in any solution of any r-gather-clustering
problem, we can assume that the center of each disk is at the midpoint of some

On r-Gatherings on the Line 31

pair of points, and the radius of an optimal r-gather-clustering is the half of the
distance between some pair of points in C.

Given C and two numbers k and r the decision version of the r-gather-
clustering problem find an r-gather-clustering with the maximum radius k. We
can assume that in any solution of the problem the center of each disk is at c−k
for some c ∈ C. Thus, by introducing the set of all such points as F , we can solve
the decision version of the r-gather-clustering problem as the (k, r)-gathering
problem. Using the algorithm in Sect. 2 we can solve the problem in O(|C|) time.

Now we explain our algorithm to solve the r-gather-clustering problem. First
sort C in O(|C| log |C|) time. Let c1, c2, · · · , c|C| be the resulting non decreasing
sequences and let M be the matrix in which each element is mi,j = (ci − cj)/2.
Note that the optimal radius is in M and this time M has |C| rows and columns.
Now mi,j ≥ mi,j+1 and mi,j ≥ mi+1,j holds, so the elements in the rows and
columns are sorted respectively. Then as in Sect. 3 we can find the optimal radius
by the sorted matrix searching method. The algorithm calls the decision algo-
rithm O(log |C|) times and the decision algorithm runs in O(|C|) time, and in
the stages the algorithm needs O(|C|) time in total except for the calls. Finally
we needs O(|C| log |C|) time for the last binary search. Thus the total running
time is O(|C| log |C|).

Theorem 2. One can solve the r-gather-clustering problem in O(|C| log |C|)
time when all points in C are on the real line.

5 Outlier

In this section we consider a generalization of the r-gathering problem where at
most h customers are allowed to be not assigned.

An r-gathering with h-outliers of customers C to facilities F is an assignment
A of C\C ′

to open facilities F
′ ⊂ F such that r or more customers are assigned

to each open facility and |C ′ | ≤ h. The r-gathering with h-outliers problem finds
an r-gathering with h-outliers having the minimum cost.

Given customers C = {c1, c2, · · · , c|C|} and facilities F = {f1, f2, · · · , f|F |}
on the real line and three numbers k and r and h, problem P (C,F, j, i, h)
finds an r-gathering with h-outliers of Ci = {c1, c2, · · · , ci}\C ′

i to F
′
j ⊂ Fj =

{f1, f2, · · · , fj} such that (1) r or more customers are assigned to each open
facility, (2) co(ci, A(ci)) ≤ k for each ci ∈ Ci\C

′
i , (3) fj ∈ F

′
j and (4)

|C ′
i | ≤ h. For designated j and h

′
if P (C,F, j, i, h

′
) has a solution for some i

then let s(fj,h′) be the minimum i such that P (C,F, j, i, h
′
) has a solution. We

define P (C,F, j, h
′
) to be the problem to find such s(fj,h′) and a corresponding

assignment.
By a dynamic programming approach one can compute P (C,F, j, h

′
) for each

j = 1, 2, · · · , |F | and h
′
= 1, 2, · · · , h in O(|C| + h2|F |) time in total. Then one

can decide whether an r-gathering with h-outliers problem has a solution with
cost k.

32 T. Akagi and S. Nakano

Lemma 4. One can decide whether an r-gathering with h-outliers problem has
a solution with cost k in O(|C| + h2|F |) time.

The minimum cost k∗ of a solution of an r-gathering with h-outliers problem
is again some co(c, f) with c ∈ C and f ∈ F . By the sorted matrix searching
method using the O(|C| + h2|F |) time decision algorithm above one can solve
the problem with outliers in O((|C| + h2|F |) log(|C| + |F |)) time.

Theorem 3. One can solve the r-gathering with h-outliers problem in O((|C|+
h2|F |) log(|C| + |F |)) time when all C and F are on the real line.

6 Conclusion

In this paper we have presented an algorithm to solve the r-gathering problem
when all C and F are on the real line. The running time of the algorithm is
O((|C|+ |F |) log(|C|+ |F |)). We also presented two more algorithm to solve two
similar problems.

Can we design a linear time algorithm for the r-gathering problem when all
C and F are on the real line?

References

1. Aggarwal, G., Feder, T., Kenthapadi, K., Khuller, S., Panigrahy, R., Thomas, D.,
Zhu, A.: Achieving anonymity via clustering, Tranaction on Algorithms, vol. 6,
Article No.49, pp. 49:1-49:19 (2010)

2. Agarwal, P., Sharir, M.: Efficient algorithms for geometric optimization. Comput.
Surv. 30, 412–458 (1998)

3. Akagi, T., Nakano, S.: On (k, r)-gatherings on a road. In: Proceedings of Forum on
Information Technology, FIT 2013, RA-001 (2013)

4. Armon, A.: On min-max r-gatherings. Theoret. Comput. Sci. 412, 573–582 (2011)
5. Drezner, Z.: Facility Location: A Survey of Applications and Methods. Springer,

New York (1995)
6. Drezner, Z., Hamacher, H.W.: Facility Location: Applications and Theory. Springer,

Heidelberg (2004)
7. Frederickson, G., Johnson, D.: Generalized selection and ranking: sorted matrices.

SIAM J. Comput. 13, 14–30 (1984)
8. Fournier, H., Vigneron, A.: Fitting a step function to a point set. In: Halperin, D.,

Mehlhorn, K. (eds.) ESA 2008. LNCS, vol. 5193, pp. 442–453. Springer, Heidelberg
(2008)

9. Liu, J.-Y.: A randomized algorithm for weighted approximation of points by a step
function. In: Wu, W., Daescu, O. (eds.) COCOA 2010, Part I. LNCS, vol. 6508, pp.
300–308. Springer, Heidelberg (2010)

A New Algorithm for Intermediate Dataset
Storage in a Cloud-Based Dataflow

Jie Cheng1, Daming Zhu2(B), and Binhai Zhu3

1 School of Mechanical, Electrical and Information Engineering,
Shandong University, Weihai, China

2 School of Computer Science and Technology, Shandong University, Jinan, China
{chjie,dmzhu}@sdu.edu.cn

3 Department of Computer Science, Montana State University, Bozeman,
MT 59717-3880, USA
bhz@cs.montana.edu

Abstract. Running a dataflow in a cloud environment usually generates
many useful intermediate datasets. A strategy for running a dataflow is
to decide which datasets should be stored, while the rest of them are
regenerated. The intermediate dataset storage (IDS) problem asks to find
a strategy for running a dataflow, such that the total cost is minimized.
The current best algorithm for linear-structure IDS takes O(n4) time,
where “linear-structure” means that the structure of the datasets in the
dataflow is a pipeline. In this paper, we present a new algorithm for
this problem, and improve the time complexity to O(n3), where n is the
number of datasets in the pipeline.

1 Introduction

A cloud-based dataflow is a data-driven workflow deployed in a cloud comput-
ing environment. In a cloud-based dataflow, there are usually a large number of
datasets, including initial dataset, output dataset and a large volume of interme-
diate datasets generated during the execution. The intermediate datasets often
contain valuable intermediate results, thus would be frequently traced back for
re-analyzing or re-using [1]. Since the dataflow systems are executed in a cloud
computing environment, all the resources used need to be paid for. As indicated
in [2], storing all of the intermediate datasets may induce a high storage cost,
while if all the intermediate datasets are deleted and regenerated when needed,
the computation cost of the system may also be very high. Hence, an optimal
strategy is needed to store some datasets and regenerate the rest of them when
needed so as to minimize the total cost of the whole workflow system [3,4], which
is called the intermediate dataset storage (IDS) problem.

In a cloud dataflow system, when a deleted dataset needs to be regenerated,
the computation cost will involve not only itself but its direct predecessors, if
these predecessors are also deleted. Hence, the computation cost of a sequence
of deleted datasets needs to be accumulated, which leads to the IDS problem.
In [2], Yuan et al. presented the background of the IDS problem in scientific
c© Springer International Publishing Switzerland 2015
J. Wang and C. Yap (Eds.): FAW 2015, LNCS 9130, pp. 33–44, 2015.
DOI: 10.1007/978-3-319-19647-3 4

34 J. Cheng et al.

workflows and proposed an intermediate data dependency graph (IDG). Based
on IDG, they presented two algorithms as the minimum cost benchmark of the
IDS problem, a linear CTT-SP algorithm for linear workflow which takes O(n4)
time, and a general CTT-SP algorithm for parallel structure workflow which
takes O(n9) time. Besides [2], there have been some related research. Zohrevandi
and Bazzi [5] presented a branch-and-bound algorithm for the common interme-
diate dataset storage between two scientific workflows, which is related to the
IDS problem. Adams et al. [3] proposed a model balancing the computation
cost and the storage cost. The approach proposed by Han et al. [6] is to sup-
port automatic intermediate data reusing for large-scale cloud dataflow based
on Perti-nets. As far as we know, the current best exact algorithm for the IDS
problem is the one proposed by Yuan et al. in [2].

This paper focuses on the IDS problem for linear-structure cloud dataflow
systems. We present a binary tree model that is called S-C tree for the IDS
problem. In an S-C tree, a vertex represents a choice of a dataset, which could
be storage or computation, and the price of a vertex represents the generation
cost for the choice. Based on the S-C tree model, the optimal solution to the
IDS problem can be converted to searching for an optimal full path in the S-C
tree with the minimum path cost. To reduce the searching space, we propose a
group of pruning strategies, by which, more than k−1

2k of the branches will be
pruned off at each level k. Therefore, with the increasing of the searching level,
the searching space grows linearly. Using these pruning strategies, we present
an exact algorithm for the linear-structure IDS problem and prove that the
algorithm takes O(n3) time.

The rest of the paper is organized as follows. Section 2 introduces the IDS
problem and some related concepts are defined there. The S-C tree model of
the IDS problem, including the proof of some theorems, are presented in Sect. 3.
Section 4 describes the algorithm based on the em S-C tree and the corresponding
analysis. Section 5 concludes the paper.

2 The IDS Problem

In this section, we first introduce some related concepts, and then give the defi-
nition of the IDS problem.

Definition 1. A linear-structure cloud dataflow F can be expressed as F =
(DS, TS), where,

– DS = {d0, d1, · · · , dn} is a set of datasets, where n is the number of interme-
diate datasets. d0 denotes the initial dataset, and dn is the output dataset of
F . For each di, 0 < i < n, di−1 is the direct predecessor of di, and di+1 is the
direct successor of di;

– DT = {t1, t2, · · · , tn} is a set of tasks, where ti, 0 ≤ i ≤ n, is a logical
computation unit executed using di−1 as the input and outputs the dataset di.
Given a dataset di, 0 ≤ i ≤ n, ti is called the execution task of di.

Algorithm for Dataset Storage 35

Fig. 1. The exemplar graph of a linear dataflow.

For simplicity, the linear-structure cloud dataflow is simply called dataflow
throughout the rest of the paper. Since this paper focuses on datasets, a dataflow
can also be simplified as a sequence of datasets, denoted as F = {d0, d1, · · · , dn},
as shown in Fig. 1.

As mentioned in [1], there are two basic types of resources in cloud computing:
storage and computation. Normally, the service price of a cloud platform is
proportional to the size of storage resource and also to the instance-hour for
computation resource.

Given a dataflow F , we say that a dataset d is a storage dataset if d is selected
to be stored; otherwise, it is a computation dataset. Thus F can be separated
into two subsets, denoted as F = S ∪ C, where S is the set of storage datasets
and C is the set of computation datasets. We assume that the initial dataset d0
is a storage dataset.

In a dataflow F = {d0, d1, · · · , dn}, there are two ways to generate an inter-
mediate dataset di, (0 < i ≤ n), storage and computation. That is, if di ∈ S, it
is available when needed; otherwise, it is deleted and has to be regenerated by
computation. Therefore, there have two kinds of costs related to di, which are
storage cost x(di) if di ∈ S and computation cost y(di) if di ∈ C. In general,
x(di) is proportional to the size of di, and y(di) is proportional to the running
time of the execution task ti.

Definition 2. Given a dataset dj(j > 0), we say that the dataset di is the
storage-prior of dj , 0 ≤ i < j, denoted as di �→ dj, if di ∈ S and for any
i < k < j, dk ∈ C. That is, di �→ dj means that di is the nearest predecessor
storage dataset of dj, as shown in Fig. 2.

As indicated in [2], when we want to regenerate a computation dataset dj , we
have to find its direct predecessor dj+1 which may also be deleted, so we have
to further trace the nearest stored predecessor, the storage-prior dataset of dj .

36 J. Cheng et al.

Fig. 2. An exemplar graph of di �→ dj

Hence, for any intermediate dataset dj , its generation cost is defined as:

G cost(dj) =
{

x(dj), if (dj ∈ S)
∑j

k=i+1 y(dk), if (dj ∈ C) ∧ (di �→ dj)
(2-1)

Based on the above concepts, the IDS problem is defined as follows.

Input: given a dataflow F = {d0, d1, · · · , dn}, for each intermediate dataset di,
its storage cost x(di) and its computation cost y(di).
Output: the set of storage dataset S and the set of computation dataset C.
Objective: the total cost of F ,

∑n
k=1 G cost(dk), is minimized.

3 Binary Tree Model for the IDS Problem

The objective of the IDS problem is to find an optimal mapping between the
intermediate datasets and the set C or S. Since a dataset has only two choices,
we apply a binary tree as the problem model.

3.1 S-C Tree Model

Definition 3. An S-C tree of a given dataflow F = {d0, d1, · · · , dn}, denoted
as TreeF, is full binary tree with n + 1 levels, in which:

(1) The root represents the initial dataset d0.
(2) The set of nodes at the ith level in TreeF ,0 ≤ i ≤ n, denoted as N |iTreeF ,

is mapped to the dataset di.
(3) Any node τ ∈ N |iTreeF , 0 ≤ i < n, its left child left(τ) and right child

right(τ) represent that the dataset di+1 is selected to be stored and deleted
respectively.

Figure 3 shows a 5-level S-C tree. According to Definition 3, the set of
nodes in TreeF can be separated into S = {s0, s1, · · · , s2n−1} and C =
{c0, c1, · · · , c2n−1}, which are mapped respectively to the set of storage datasets
and set of computation datasets in F . We can see that set S is composed of
the root s0 and all the left-child nodes, and set C consists of all the right-child
nodes. The nodes of set S and C are also simply called S-nodes and C-nodes
respectively.

Algorithm for Dataset Storage 37

Fig. 3. An exemplar graph of 5-level S-C tree.

Definition 4. Given an S-C tree TreeF, the S-prior of a C node τ , denoted
as τ̂ , is the nearest S-ancestor of τ . We use Path�→

τ to denote the ordered set of
nodes of the path that is from τ̂ to τ .

For example, in Fig. 3, ĉ4 = s2, ĉ5 = s1. Path �→
c5 = {s1, c2, c5}, Path�→

c7 =
{s0, c1, c3, c7}. As we can see, in Path�→

τ , only the first node τ̂ is an S-node,
others are C-nodes.

Definition 5. Given a dataflow F = {d0, d1, · · · , dn} and its S-C tree TreeF,
assume that τ ∈ N |iTreeF , 0 ≤ i < n, the weight and cost of τ are defined as
follows.

w(τ) =
{

0, if τ ∈ S
y(di), if τ ∈ C

(3-1)

cost(τ) =
{

x(di), if τ ∈ S
∑

α∈Path�→
τ

w(α), if τ ∈ C
(3-2)

We assume that cost(s0) = 0.

Definition 6. Given an S-C tree T with n + 1 levels, a path P =
{pa, pa+1, pa+2, · · · , pb}, 0 ≤ a ≤ b ≤ n, is an ordered set of nodes from pa

to pb, in which pi ∈ N |iT , a ≤ i < b, and pi is the parent node of pi+1. The cost
of path P is defined as: Cost(P) =

∑b
i=a cost(pi).

Definition 7. Given an S-C tree T with n+1 levels, a k- path P k = {p0, p1, p2,
· · · , pk}, 0 ≤ k ≤ n, is a path in which the first node is the root of T . An n-path
is also called a full path. A full path Λ is called an optimal full path if and
only if for any full path Λ′, Cost(Λ) ≤ Cost(Λ′).

For example, in Fig. 3, {s0, s1, c2, c5} is a 3-path, and {s0, s1, c2, c5, c11} is a full
path.

38 J. Cheng et al.

Given a k-path P k = {p0, p1, p2, · · · , pk} and a path P =
{pk, pk+1, pk+2, . . . , pk+i}, we use link(P k, P) to denote the (k + i)-path:
{p0, p1, p2, · · · , pk, pk+1, pk+2, · · · , pk+i}. In addition, if τ is a child node of pk,
we also use link(P k, τ) to denoted the (k + 1)-path: {p0, p1, p2, . . . , pk, τ}.

Definition 8. Given an S-C tree T with n + 1 levels, let τ ∈ N |kT , 0 ≤ k ≤ n,
the sub-tree which is rooted at τ is called a k-subtree. A k-subtree δ is called
an optimal k-subtree if and only if δ contains an optimal full path from the
kth level to the nth level.

For example, an S-C tree itself is an optimal 0-subtree. Assume that Λ =
{p0, p1, p2, · · · , pn} is an optimal full path, then the sub-tree which is rooted
at pi(0 ≤ i ≤ n) is an optimal i-subtree.

Based on the S-C tree model, the IDS problem can be converted as: given a
dataflow F and its S-C tree TreeF, find an optimal full path of TreeF .

3.2 Proofs of the Theorems

For convenience, given an S-C tree T , assume that a node τ ∈ N |kT , we use
subtree(τ) to denote a k-subtree which is rooted at τ .

Definition 9. Given an S-C tree, let τ and τ ′ be the nodes at the same level.
We say that τ is equivalent to τ ′, denoted as τ ≡ τ ′, if and only if ((τ, τ ′ ∈
S) ∨ (τ, τ ′ ∈ C)) ∧ (cost(τ) = cost(τ ′)). If ((τ, τ ′ ∈ S) ∨ (τ, τ ′ ∈ C)) ∧ (cost(τ) <
cost(τ ′)), we say that τ is superior to τ ′, denoted as τ ≺ τ ′.

The equivalent and superior relations between nodes are both transitive.

Lemma 1. Given a dataflow F = {d0, d1, . . . , dn} and its S-C tree TreeF , if τ
and τ ′ are both S-nodes at the same level, then τ ≡ τ ′.

Proof. Assume that τ, τ ′ ∈ N |iTreeF , 0 < i ≤ n. Since τ and τ ′ are both S-nodes,
according to Definition 5, cost(τ) = cost(τ ′) = x(di), thus τ ≡ τ ′. ��

Definition 10. Assume that δ and δ′ are k-subtrees, τ and τ ′ are nodes belong-
ing to δ and δ′ respectively. We say that τ ′ is the corresponding node of τ
about δ and δ′, denoted as τ ↔ τ ′|(δ, δ′), if one of the following conditions is
satisfied:

(1) (δ = subtree(τ)) ∧ (δ′ = subtree(τ ′));
(2) ∃(υ ↔ υ′|(δ, δ′)) ∧ (τ = left(υ)) ∧ (τ ′ = left(υ′));
(3) ∃(υ ↔ υ′|(δ, δ′)) ∧ (τ = right(υ)) ∧ (τ ′ = right(υ′)).

Definition 11. Assume that δ and δ′ are both k-subtrees, Λ and Λ′ are full path
of δ and δ′ respectively. Let τi ∈ (N |iδ ∩ Λ) and τ ′

i ∈ (N |iδ′ ∩ Λ′). We say that Λ′

is the corresponding path of Λ about δ and δ′, denoted as Λ ↔ Λ′|(δ, δ′), if
and only if τi ↔ τ ′

i |(δ, δ′) for any 0 ≤ i ≤ k.

Algorithm for Dataset Storage 39

In Fig. 3, {s1, c2, s5, c10} ↔ {c1, c3, s7, c14}|(subtree(s1), (subtree(c1)).

Definition 12. Assume that δ and δ′ are both k-subtrees, we say that δ is
equivalent to δ′, denoted as δ ≡ δ′, if and only if for each node τ in δ and its
corresponding node τ ′ in δ′, τ ≡ τ ′. We say that δ is superior to δ′, denoted as
δ ≺ δ′, if and only if the set of nodes of δ can be separated into two subsets, A
and B, which satisfy the following conditions:

(1) A = {τ |(τ ↔ τ ′|(δ, δ′)) ∧ (τ ≡ τ ′)};
(2) B = {τ |(τ ↔ τ ′|(δ, δ′)) ∧ (τ ≺ τ ′)};
(3) B is nonempty.

That is, each node in A is equivalent to its corresponding node in δ′, and each
node in B is superior to its corresponding node in δ′. The equivalent and superior
relations between k-subtrees are both transitive.

Definition 13. Given an S-C tree T , let P k
1 = {p1,0, p1,1, . . . , p1,k} and P k

2 =
{p2,0, p2,1, . . . , p2,k} be k-paths of T, 0 < k ≤ n. We say that P k

1 is equivalent
to P k

2 , denoted as P k
1 ≡ P k

2 , if and only if p1,i ≡ p2,i for any 0 ≤ i ≤ n. We
say that P k

1 is superior to P k
2 , denoted as P k

1 ≺ P k
2 , if and only if P k

1 can be
separated into two nonempty subsets, P k

1 = A ∪ B, such that A = {p1,i|p1,i ≡
p2,i, 0 ≤ i < n} and B = {p1,i|p1,i ≺ p2,i, 0 ≤ i < n}.

The equivalent and superior relations between k-paths are also transitive.

Lemma 2. Given a workflow F = {d0, d1, . . . , dn} and its S-C tree TreeF, let
τ, τ ′ ∈ N |iTreeF , 0 < i ≤ n, if τ ≡ τ ′, then subtree(τ) ≡ subtree(τ ′).

Proof. Since τ, τ ′ ∈ N |iTreeF , and left(τ) and left(τ ′) are both S-nodes, based
on Lemma 1, we have: left(τ) ≡ left(τ ′). (a-1)

As right(τ) and right(τ ′) are both C-nodes, cost(right(τ)) =
∑

α∈Path�→
right(τ)

ω(α) =
∑

α∈Path�→
τ

ω(α)+ω(right(τ)) = cost(τ)+y(di+1), and cost(right(τ ′)) =
∑

α∈Path�→
right(τ′)

ω(α) =
∑

α∈Path�→
τ′

ω(α)+ω(right(τ ′)) = cost(τ ′)+y(di+1). Due

to τ ≡ τ ′, we have cost(τ) = cost(τ ′), so cost(right(τ)) = cost(right(τ ′)), then:
right(τ) ≡ right(τ ′). (a-2)

Summarizing (a-1) and (a-2), both left(τ) and right(τ) are respectively
equivalent to left(τ ′) and right(τ ′). By this analogy, the rest nodes of subtree(τ)
and subtree(τ ′) can be dealt with in the same manner. Hence, any node
of subtree(τ) is equivalent to its corresponding node of subtree(τ ′). That is:
subtree(τ) ≡ subtree(τ ′). ��

Corollary 1. Let τ and τ ′ be two nodes at the same level in an S-C tree T , then
subtree(left(τ)) ≡ subtree(left(τ ′)).

Proof. Assume that τ, τ ′ ∈ N |iT , then left(τ) ∈ N |i+1
T and left(τ ′) ∈ N |i+1

T .
According to Lemma 1, left(τ) ≡ left(τ ′). Based on Lemma 2, we can obtain:
subtree(left(τ)) ≡ subtree(left(τ ′)). ��

40 J. Cheng et al.

Lemma 3. Let τ and τ ′ be two nodes at the same level in an S-C tree T , if
τ, τ ′ ∈ C and τ ≺ τ ′, then subtree(τ) ≺ subtree(τ ′).

Proof. Assume that τ, τ ′ ∈ N |iT . Based on Lemma 1, we have:
left(τ) ≡ left(τ ′). (b-1)
Similar to the proof of Lemma 2, we have: cost(right(τ)) =

∑

α∈Path�→
right(τ)

ω(α) =
∑

α∈Path�→
τ

ω(α)+ω(right(τ)) = cost(τ)+y(di+1), and cost(right(τ ′)) =
∑

α∈Path�→
right(τ′)

ω(α) =
∑

α∈Path�→
τ′

ω(α)+ω(right(τ ′)) = cost(τ ′)+y(di+1). Due

to τ ≺ τ ′, we have cost(τ) < cost(τ ′), thus cost(right(τ)) < cost(right(τ ′)),
then: right(τ) ≺ right(τ ′). (b-2)

Summarizing (b-1) and (b-2), we can separate the set of nodes of subtree(τ)
into two subsets, A and B. We add the nodes of subtree(left(τ)) into subset
A, and right(τ) into subset B. By this analogy, right(τ) can be dealt with in
the same manner like τ until all the nodes are contained in A or B. Each node
in A is equivalent to its corresponding node of subtree(τ ′), and each node in
B is superior to its corresponding node of subtree(τ ′). Therefore, subtree(τ) ≺
subtree(τ ′). ��

Theorem 1. Given an S-C tree T , let P k
i = {pi,0, pi,1, pi,2, . . . , pi,k} and P k

j =
{pj,0, pj,1, pj,2, . . . , pj,k} be any two k-paths of T, i �= j. If Cost(P k

j) < Cost(P k
i),

then subtree(left(pi,k)) is not an optimal (k + 1)-subtree.

Proof. Following Corollary 1, we have subtree(left(pi,k)) ≡ subtree(left(pj,k)).
Assume that P is the optimal full path of subtree(left(pi,k)), as shown in Fig. 4,
there must exist a corresponding path P ′ in subtree(left(pj,k)) which satis-
fies P ′ ≡ P . Since Cost(P k

j) < Cost(P k
i), then the full path link(P k

j , P ′) ≺
link(P k

i , P). Thus link(P k
i , P) must not be the optimal full path of T . That

is, subtree(left(pi,k)) is not the sub-tree through which the optimal full path
passes. Hence, subtree(left(τ)) is not an optimal (k + 1)-subtree. ��

Theorem 2. Given an S-C tree of a dataflow F = {d0, d1, . . . , dn}, let Ω =
{P k

1 , P k
2 , . . . , P k

m} be a set of k-paths, where P k
i = {pi,0, pi,1, pi,2, . . . , pi,k}, 1 ≤

Fig. 4. An exemplar graph of Theorem 1.

Algorithm for Dataset Storage 41

Fig. 5. An exemplar graph of Theorem 2.

i ≤ m. Assume that Ω contains an optimal full path from the root to the kth

level, then if Cost(P k
j) = minpk∈Ω Cost(P k) and pj,k ∈ S, subtree(pj,k) must be

an optimal k-subtree.

Proof. As shown in Fig. 5, let P k
g and P k

h (g �= h �= i) be any two k-paths taken
from Ω such that pg,k ∈ S and ph,k ∈ C. According to the precondition, we have
Cost(P k

j) < Cost(P k
g) and Cost(P k

j) < Cost(P k
h) .

(1) Since pg,k, pj,k ∈ S, based on Lemmas 1 and 2, we have pg,k ≡ pj,k, thus
subtree(pj,k) ≡ subtree(pg,k). Let P be the optimal full path of subtree(pg,k),
then there must exist a corresponding path P ′ in subtree(pj,k), which satisfies
P ′ ≡ P . Since Cost(P k

j) < Cost(P k
g), we have link(P k

j , P ′) ≺ link(P k
g , P). Thus

link(P k
g , P) must not be the optimal full path of TreeF . That is, subtree(pg,k) is

not the sub-tree which the optimal full path passes through, thus subtree(pg,k)
is not an optimal k-subtree.

(2) Based on Corollary 1, we have:

subtree(left(pj,k)) ≡ subtree(left(ph,k)). (c-1)

Since Pj,k ∈ S, thus cost(right(pj,k)) = y(di+1). While due to Ph,k ∈ C,
we also have cost(right(ph,k)) =

∑

α∈Path�→
right(Ph,k)

ω(α) which is equal to
∑

α∈Path�→
Ph,k

ω(α) +ω(right(ph,k)) = cost(ph,k)+y(dk+1). That is, subtree(right

(pj,k)) ≺ subtree(right(ph,k)). As right(pj,k) and right(ph,k) are both C-nodes,
according to Lemma 3, we have:

subtree(right(pj,k)) ≺ subtree(right(ph,k)). (c-2)

Due to (c-1), (c-2) and Cost(P k
j) < Cost(P k

h), we can obtain that, assuming P is
the optimal full path of subtree(ph,k), there must exist a corresponding path P ′

in subtree(pj,k), which satisfies P ′ ≺ P , so we have link(P k
j , P ′) ≺ link(P k

h , P).
Hence, subtree(ph,k) is not the sub-tree through which the optimal full path of
treeF passes, that is, subtree(pg,k) is not an optimal k-subtree.

Summarizing (1) and (2), if Ω contains an optimal full path from the root
to the kth level, the optimal full path must pass through subtree(pj,k), thus
subtree(pj,k) must be an optimal k-subtree.

42 J. Cheng et al.

4 Algorithm for the IDS Problem Based on the S-C Tree

Based on the S-C tree model, the IDS problem is converted to searching an
optimal full path of a given dataflow S-C tree. Using Theorems 1 and 2, we can
obtain the following pruning strategies. By these strategies, the search space can
be greatly reduced.

(1) Search for the optimal full path of the given S-C tree from top to bottom by
level. At each level k, the search space is set to Ω = {P k

1 , P k
2 , . . . , P k

m}, in
which P k

i = {pi,0, pi,1, pi,2, . . . , pi,k}, 1 ≤ i ≤ m, is the k-path that has not
been pruned off.

(2) At each level k, let P k
j be the current best k-path which satisfies Cost(P k

j)
= minpk∈Ω Cost(P k), then:
(a) If pj,k ∈ C, based on Theorem 1, for any pi,k, i �= j, subtree(left(pi,k))

is not an optimal (k + 1)-subtree thus can be pruned off, so all

Fig. 6. An example of Algorithm 1.

Algorithm for Dataset Storage 43

Fig. 7. The IDS algorithm based on S-C tree.

link(P k
i , right(pi,k)), i �= j, as well as link(P k

j , left(pj,k)) and
link(P k

j , right(pj,k)) will be contained in Ω for the next round of search.
(b) If pj,k ∈ S, according to Theorem 2, subtree(pj,k) is the optimal

k-subtree, so any subtree(pi,k), i �= j, can be pruned off, so only
link(P k

j , left(pj,k)) and link(P k
j , right(pj,k)) can be contained into Ω

for the next round of search.

Figure 6 shows an example of the searching process. We can see that more than
k−1
2k of the branches are pruned off at each level of searching. Based on the

strategies above, we present the IDS algorithm in Fig. 7.
In line 8 and 15, the function tail(Ptemp) means the last node of Ptemp.

Theorem 3. The searching space Ω increases linearly with the level of the S-C
tree in Algorithm 1.

Proof. Let |Ω|k denote the size of Ω in the searching of the kth level, 0 ≤ k ≤ n.
According to Algorithm 1, we have:

(1) When k = 0, Ω = {d0}, thus |Ω|0 = 1.
(2) When k > 0, if τ ∈ S, |Ω|k+1 = 2; else τ ∈ C, then for each Ptemp ∈ Ω,Ptemp

will be replaced by link(Ptemp, right(tail(Ptemp))), and link(P, left(τ)) will

44 J. Cheng et al.

be the only additional new comer of Ω in the next round of searching, hence,
|Ω|k+1 = |Ω|k + 1.

Therefore, in the worst-case, |Ω|k+1 = |Ω|k +1, then we have |Ω|k = |Ω|k−1 +1,
|Ω|k−1 = |Ω|k−2 + 1,. . . , |Ω|1 = |Ω|0 + 1, so we can obtain that |Ω|k = k + 1.
That is, Ω increases linearly with the level of the S-C tree. ��

For a k-path P k = {p0, p1, p2, . . . , pk}, 0 ≤ k ≤ n, the calculation of Cost(P k)
takes O(k) time. Following Theorem 3, Algorithm 1 takes O(n3) time in the worst
case. Furthermore, since Ω is composed of n n-paths, thus the space complexity
of Algorithm 1 is O(n2).

5 Conclusions

In this paper, we solved the IDS problem for linear-structure dataflow by using
an S-C tree model. The running time of our algorithm is O(n3), which improves
the previous bound of O(n4). In the near future, we will study the IDS problems
for cloud dataflow with a non-linear structure, such as parallel structure and
non-structure dataflows.

Acknowledgements. This paper is supported by national natural science foundation
of China: 61472222, and natural science foundation of Shandong province: ZR2012Z002.

References

1. Deelman, E., Chervenak, A.: Data management challenges of data-intensive scien-
tific workflows. In: IEEE International Symposium on Cluster Computing and the
Grid (CCGrid 2008), pp. 687–692, Lyon, France (2008)

2. Yuan, D., Yang, Y., Liu, X., Zhang, G., Chen, J.: On-demand minimum cost bench-
marking for intermediate data storage in scientific cloud workflow systems. J. Par-
allel Distrib. Comput. 71(2), 316–332 (2011)

3. Adams, I., Long, D.D.E., Miller, E.L., Pasupathy, S., Storer, M.W.: Maximizing
efficiency by trading storage for computation. In: Workshop on Hot Topics in Cloud
Computing (HotCloud 2009), pp. 1–5, San Diego, CA (2009)

4. Yuan, D., Yang, Y., Liu, X., Zhang, G., Chen, J.: A data dependency based strategy
for intermediate data storage in scientific cloud workflow systems. Concurr. Comput.
Pract. Exp. 24(9), 956–976 (2010)

5. Zohrevandi, M., Bazzi, R.A.: The bounded data reuse problem in scientific work-
flows. In: 2013 IEEE 27th International Symposium on Parallel & Distributed
Processing, pp. 1051–1062 (2013)

6. Han, L.X., Xie, Z., Baldock, R.: Automatic data reuse for accelerating data inten-
sive applications in the Cloud. In: The 8th International Conference for Internet
Technology and Secured Transactions (ICITST-2013), pp. 596–600 (2013)

Eff icient Computation of the Characteristic
Polynomial of a Threshold Graph

Martin Fürer(B)

Department of Computer Science and Engineering, Pennsylvania State University,
University Park, State College, PA 16802, USA

furer@cse.psu.edu

http://www.cse.psu.edu/∼furer

Abstract. An efficient algorithm is presented to compute the charac-
teristic polynomial of a threshold graph. Threshold graphs were intro-
duced by Chvátal and Hammer, as well as by Henderson and Zalcstein in
1977. A threshold graph is obtained from a one vertex graph by repeat-
edly adding either an isolated vertex or a dominating vertex, which is
a vertex adjacent to all the other vertices. Threshold graphs are spe-
cial kinds of cographs, which themselves are special kinds of graphs of
clique-width 2. We obtain a running time of O(n log2 n) for computing
the characteristic polynomial, while the previously fastest algorithm ran
in quadratic time.

Keywords: Efficient algorithms · Threshold graphs · Characteristic
polynomial

1 Introduction

The characteristic polynomial of a graph G = (V,E) is defined as the charac-
teristic polynomial of its adjacency matrix A, i.e. χ(G,λ) = det(λI − A). The
characteristic polynomial is a graph invariant, i.e., it does not depend on the enu-
meration of the vertices of G. The complexity of computing the characteristic
polynomial of a matrix is the same as that of matrix multiplication [10,13] (see
[2, Chap.16]), currently O(n2.376) [4]. For special classes of graphs, we expect
to find faster algorithms for the characteristic polynomial. Indeed, for trees, a
chain of improvements [12,16] resulted in an O(n log2 n) time algorithm [7]. The
determinant and rank of the adjacency matrix of a tree can even be computed
in linear time [5]. For threshold graphs (defined below), Jacobs et al. [9] have
designed an O(n2) time algorithm to compute the characteristic polynomial.
Here, we improve the running time to O(n log2 n). As usual, we use the alge-
braic complexity measure, where every arithmetic operation counts as one step.
Throughout this paper, n = |V | is the number of vertices of G.

Threshold graphs [3,8] are defined as follows. Given n and a sequence
b = (b1, . . . , bn−1) ∈ {0, 1}n−1, the threshold graph Gb = (V,E) is defined by

M. Fürer—Research supported in part by NSF Grant CCF-1320814.

c© Springer International Publishing Switzerland 2015
J. Wang and C. Yap (Eds.): FAW 2015, LNCS 9130, pp. 45–51, 2015.
DOI: 10.1007/978-3-319-19647-3 5

46 M. Fürer

V = [n] = {1, . . . , n}, and for all i < j, {i, j} ∈ E i f f bi = 1. Thus Gb is con-
structed by an iterative process starting with the initially isolated vertex n. In
step j > 1, vertex n − j + 1 is added. At this time, vertex j is isolated if bj is 0,
and vertex j is adjacent to all other (already constructed) vertices {j +1, . . . , n}
if bj = 1. It follows immediately that Gb is isomorphic to Gb′ iff b = b′. Gb is con-
nected if b1 = 1, otherwise vertex 1 is isolated. Usually, the order of the vertices
being added is 1, 2, . . . , n instead of n, n−1, . . . , 1. We choose this unconventional
order to simplify our main algorithm.

Threshold graphs have been widely studied and have several applications
from combinatorics to computer science and psychology [11].

In the next section, we study determinants of weighted threshold graph matri-
ces, a class of matrices containing adjacency matrices of threshold graphs. In
Sect. 3, we design our efficient algorithm to compute the characteristic polyno-
mial of threshold graphs. We also look at its bit complexity in Sect. 4, and finish
with open problems.

2 The Determinant of a Weighted Threshold
Graph Matrix

We are concerned with adjacency matrices of threshold graphs, but we consider
a slightly more general class of matrices. We call them weighted threshold graph
matrices. Let Md1d2...dn

b1b2...bn−1
be the matrix with the following entries.

(

Md1d2...dn

b1b2...bn−1

)

ij
=

⎧

⎪

⎨

⎪

⎩

bi if i < j

bj if j < i

di if i = j

Thus, the weighted threshold matrix for (b1b2 . . . bn−1; d1d2 . . . dn) looks like this.

Md1d2...dn

b1b2...bn−1
=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

d1 b1 b1 . . . b1 b1
b1 d2 b2 . . . b2 b2
b1 b2 d3 . . . b3 b3
...

...
...

. . .
...

...
b1 b2 b3 . . . dn−1 bn−1

b1 b2 b3 . . . bn−1 dn

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

In order to compute the determinant of Md1d2...dn

b1b2...bn−1
, we subtract the penulti-

mate row from the last row and the penultimate column from the last column. In
other words, we do a similarity transformation with the following regular matrix

P =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 0 0 . . . 0 0
0 1 0 . . . 0 0
0 0 1 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 1 −1
0 0 0 . . . 0 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

Efficient Computation of the Characteristic Polynomial 47

i.e.,

Pij =

⎧

⎪

⎨

⎪

⎩

1 if i = j

−1 if i = n and j = n − 1
0 otherwise.

The row and column operations applied to Md1d2...dn

b1b2...bn−1
produce the similar

matrix

PT Md1d2...dn

b1b2...bn−1
P =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

d1 b1 b1 . . . b1 0
b1 d2 b2 . . . b2 0
b1 b2 d3 . . . b3 0
...

...
...

. . .
...

...
b1 b2 b3 . . . dn−1 bn−1 − dn−1

0 0 0 . . . bn−1 − dn−1 dn + dn−1 − 2bn−1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

Naturally, the determinant of P is 1, implying

det
(

PT Md1d2...dn

b1b2...bn−1
P

)

= det
(

Md1d2...dn

b1b2...bn−1

)

.

Furthermore, we observe that PT Md1d2...dn

b1b2...bn−1
P has a very nice pattern.

PT Md1d2...dn

b1b2...bn−1
P =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

M
d1d2...dn−1
b1b2...bn−2

0
0
0
...
0

bn−1 − dn−1

0 0 0 . . . 0 bn−1 − dn−1 dn + dn−1 − 2bn−1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

To further compute the determinant of PT Md1d2...dn

b1b2...bn−1
P , we use Laplacian

expansion by minors applied to the last row.

det
(

Md1d2...dn

b1b2...bn−1

)

= det
(

PT Md1d2...dn

b1b2...bn−1
P

)

= (dn + dn−1 − 2bn−1) det
(

M
d1d2...dn−1
b1b2...bn−2

)

− (bn−1 − dn−1)2 det
(

M
d1d2...dn−2
b1b2...bn−3

)

By defining the determinant of the 0 × 0 matrix Md1d2...dn

b1b2...bn−1
with n = 0 to be

1, and checking the determinants for n = 1 and n = 2 directly, we obtain the
following result.

Theorem 1. Dn = det
(

Md1d2...dn

b1b2...bn−1

)

is determined by the recurrence equation

Dn =

⎧

⎪

⎨

⎪

⎩

1 if n = 0
d1 if n = 1
(dn + dn−1 − 2bn−1)Dn−1 − (bn−1 − dn−1)2Dn−2 if n ≥ 2

��

48 M. Fürer

This has an immediate implication, as we assume every arithmetic operation
takes only 1 step.

Corollary 1. The determinant of an n×n weighted threshold graph matrix can
be computed in time O(n).

Proof. Every step of the recurrence takes a constant number of arithmetic oper-
ations. ��

For arbitrary matrices, the tasks of computing matrix products, matrix inverses,
and determinants are all equivalent [2, Chap.16], currently O(n2.376) [4]. For
weighted threshold graph matrices, they all seem to be different. We have just seen
that the determinant can be computed in linear time, which is optimal, as this time
is already needed to read the input. The same lower bound holds for computing
the characteristic polynomial, and we will show an O(n log2 n) algorithm. It is not
hard to see that the multiplication of weighted threshold graph matrices can be
done in quadratic time. This is again optimal, because the product is no longer a
threshold graph matrix, and its output requires quadratic time.

3 Computation of the Characteristic Polynomial
of a Threshold Graph

The adjacency matrix A of the n-vertex threshold graph G defined by the
sequence (b1, . . . , bn−1) is the matrix M0 0...0

b1b2...bn−1
, and the characteristic poly-

nomial of this threshold graph is

χ(G,λ) = det(λI − A) = det
(

Mλ λ...λ
−b1−b2···−bn−1

)

.

This immediately implies that any value of the characteristic polynomial can be
computed in linear time.

The characteristic polynomial itself can be computed by the recurrence equa-
tion of Theorem 1. Here all di = λ, and Dn, as the characteristic polynomial of
an n-vertex graph, obviously is a polynomial of degree n in λ. Now, the com-
putation of Dn from Dn−1 and Dn−2 according to the recurrence equation is a
multiplication of polynomials. It takes time O(n), as one factor is always of con-
stant degree. The resulting total time is quadratic. The same quadratic time is
achieved, when we compute the characteristic polynomial χ(G,λ) for n different
values of λ and interpolate to obtain the polynomial χ(G,λ).

We want to do better. Therefore, we write the recurrence equation of
Theorem 1 in matrix form.

(

Dn

Dn−1

)

=
(

dn + dn−1 − 2bn−1 −(bn−1 − dn−1)2

1 0

) (

Dn−1

Dn−2

)

Noticing that D0 = 1 and D1 = λ, and all di = λ, we obtain the following matrix
recurrence immediately.

Efficient Computation of the Characteristic Polynomial 49

Theorem 2. For

Bi =
(

2(λ − bi) −(bi − λ)2

1 0

)

for i = 1, . . . , n − 1,

we have
(

Dn

Dn−1

)

= Bn−1Bn−2 · · · B1

(

λ
1

)

��
This results in a much faster way to compute the characteristic polynomial
χ(G,λ).

Corollary 2. The characteristic polynomial χ(G,λ) of a threshold graph G with
n vertices can be computed in time O(n log2 n).

Proof. For every i, all the entries in the 2 × 2 matrix Bi are polynomials in λ of
degree at most 2. Therefore, products of any k such factors have entries which
are polynomials of degree at most 2k. To be more precise, actually the degree
bound is k, because by induction on k, one can easily see that the degree of the
i, j-entry of any such k-fold product matrix is at most

k for i = 1 and j = 1,

k + 1 for i = 1 and j = 2,

k − 1 for i = 2 and j = 1,

k for i = 2 and j = 2,

But the bound of 2k would actually be sufficient for our purposes. W.l.o.g., we
may assume that n − 1 (the number of factors) is a power of 2. Otherwise, we
could fill up with unit matrices. Now the product Bn−1Bn−2 · · · B1 is computed
in log(n − 1) rounds of pairwise multiplication to reduce the number of factors
by half each round. We use the FFT (Fast Fourier Transform) to compute the
product of two polynomials of degree n in time O(n log n) [1].

In the rth round (r = 1, . . . , log(n − 1)), we have (n − 1)2−r pairs of
matrices with entries of degree at most 2r−1 + 1, requiring O(n2−r) multiplica-
tions of polynomials of degree at most 2r−1 + 1. With FFT this can be done
in time O(n2−r)(2r−1 + 1) log(2r−1 + 1) = O(nr). Summing over all rounds
r = 1, . . . , log(n − 1), results in a running time of O(n log2 n). ��

Omitting the simplification of di = λ in Theorem 2, we see immediately, that
also the characteristic polynomial of a weighted threshold graph matrix can be
computed in the same asymptotic time of O(n log2 n).

4 Complexity in the Bit Model

By definition, the characteristic polynomial of an n-vertex graph can be viewed
as a sum of n! monomials with coefficients from {−1, 0, 1}. Thus all coefficients of

50 M. Fürer

the characteristic polynomial have absolute value at most n!, and can therefore
be represented by binary numbers of length O(n log n).

The coefficients of the characteristic polynomials of some graphs can be of
this order of magnitude. For an example, one can start with an n×n Hadamard
matrix with only 1’s in the first row. Its determinant has an absolute value of
nn/2. Adding the first row to all other rows and dividing all other rows by 2
results in a 0-1-matrix whose determinant has an absolute value of 2−n+1nn/2.
The bipartite graph G with this bipartite adjacency matrix has a determinant
with absolute value

(

2−n/2+1(n/2)n/4
)2

= 4(n/8)n/2. Thus the constant coeffi-
cient of the characteristic polynomial of G has length Ω(n log n).

With such long coefficients, the usual assumption of arithmetic operations in
constant time is actually unrealistic for large n. Therefore, the bit model might
be more useful. We can use the Turing machine time, because our algorithm is
sufficiently uniform. No Boolean circuit is known to compute such things with
asymptotically fewer operations than the number of steps of a Turing machine.

We use the fast m log m2O(log∗ m) integer multiplication algorithm [6] (where
m is the length of the factors) to compute the FFT for the polynomials. A direct
implementation, just using fast integer multiplication everywhere during a fast
polynomial multiplication, results in time

(nr)(2rr22O(log∗ r)) = n2rr32O(log∗ r)

for the rth round, where O(n2−r) pairs of polynomials of degree O(2r) are
multiplied. The coefficients of these polynomials have length O(2rr). As the
coefficients and the degrees of the polynomials increase at least geometrically,
only the last round with r = log n counts asymptotically. The resulting time
bound is n2 log3 n 2O(log∗ n). Using Schönhage’s [14] idea of encoding numerical
polynomials into integers in order to do polynomial multiplication, a speed-
up is possible. Again only the last round matters. Here a constant number of
polynomials of degree O(n) with coefficients of length O(n log n) are multiplied.
For this purpose, each polynomial is encoded into a number of length O(n2 log n),
resulting in a computation time of

n2 log2 n 2O(log∗ n).

Actually, because the lengths of coefficients are not smaller than the degree
of the polynomials, no encoding of polynomials into numbers is required for this
speed-up. In this case, one can do the polynomial multiplication in a polynomial
ring over Fermat numbers as in Schönhage and Strassen [15]. Then, during the
Fourier transforms all multiplications are just shifts. Fast integer multiplication
is only used for the multiplication of values. This is not of theoretical importance,
as it results in the same asymptotic n2 log2 n 2O(log∗ n) computation time, just
with a better constant factor.

5 Open Problems

We have improved the time to compute the characteristic polynomial of a thresh-
old graph from quadratic to almost linear (in the algebraic model). The question

Efficient Computation of the Characteristic Polynomial 51

remains whether another factor of log n can be removed. More interesting is the
question whether similarly efficient algorithms are possible for richer classes of
graphs. Of particular interest are larger classes of graphs containing the threshold
graphs, like cographs, graphs of clique-width 2, graphs of bounded clique-width,
or even perfect graphs.

References

1. Aho, A., Hopcroft, J., Ullman, J.D.: The Design and Analysis of Computer Algo-
rithms. Addison-Wesley, Reading, MA (1974)

2. Bürgisser, P., Clausen, M., Shokrollahi, M.A.: Algebraic Complexity Theory,
Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of
Mathematical Sciences], vol. 315. Springer, Berlin (1997)

3. Chvátal, V., Hammer, P.L.: Aggregation of inequalities in integer programming.
In: Studies in Integer Programming (Proceedings Workshop Bonn, 1975). Annals
of Discrete Mathematics, vol. 1, pp. 145–162. North-Holland, Amsterdam (1977)

4. Coppersmith, D., Winograd, S.: Matrix multiplication via arithmetic progressions.
J. Symb. Comput. 9(3), 251–280 (1990)

5. Fricke, G.H., Hedetniemi, S., Jacobs, D.P., Trevisan, V.: Reducing the adjacency
matrix of a tree. Electron. J. Linear Algebr. 1, 34–43 (1996)

6. Fürer, M.: Faster integer multiplication. SIAM J. Comput. 39(3), 979–1005 (2009)
7. Fürer, M.: Efficient computation of the characteristic polynomial

of a tree and related tasks. Algorithmica 68(3), 626–642 (2014).
http://dx.doi.org/10.1007/s00453-012-9688-5

8. Henderson, P.B., Zalcstein, Y.: A graph-theoretic characterization of the pv chunk
class of synchronizing primitives. SIAM J. Comput. 6(1), 88–108 (1977).
http://dx.doi.org/10.1137/0206008

9. Jacobs, D.P., Trevisan, V., Tura, F.: Computing the characteristic polynomial of
threshold graphs. J. Graph Algorithms Appl. 18(5), 709–719 (2014)

10. Keller-Gehrig, W.: Fast algorithms for the characteristic polynomial. Theor. Com-
put. Sci. 36(2,3), 309–317 (1985)

11. Mahadev, N.V.R., Peled, U.N.: Threshold Graphs and Related Topics. Annals
of Discrete Mathematics. Elsevier Science Publishers B.V. (North Holland),
Amsterdam-Lausanne-New York-Oxford-Shannon-Tokyo (1995)

12. Mohar, B.: Computing the characteristic polynomial of a tree. J. Math. Chem.
3(4), 403–406 (1989)

13. Pernet, C., Storjohann, A.: Faster algorithms for the characteristic polynomial. In:
Brown, C.W. (ed.) Proceedings of the 2007 International Symposium on Symbolic
and Algebraic Computation, University of Waterloo, Waterloo, Ontario, Canada,
29 July–1 August 2007, pp. 307–314. ACM Press, pub-ACM:adr (2007)

14. Schönhage, A.: Asymptotically fast algorithms for the numerical multiplication and
division of polynomials with complex coeficients. In: Calmet, J. (ed.) EUROCAM
1982. LNCS, vol. 144, pp. 3–15. Springer, Heidelberg (1982)

15. Schönhage, A., Strassen, V.: Schnelle Multiplikation grosser Zahlen. Computing 7,
281–292 (1971)

16. Tinhofer, G., Schreck, H.: Computing the characteristic polynomial of a tree. Com-
puting 35(2), 113–125 (1985)

http://dx.doi.org/10.1007/s00453-012-9688-5
http://dx.doi.org/10.1137/0206008

A Fast and Practical Method to Estimate
Volumes of Convex Polytopes

Cunjing Ge1,2(B) and Feifei Ma2

1 Institute of Software, Chinese Academy of Sciences, Beijing, China
2 University of Chinese Academy of Sciences, Beijing, China

{gecj,maff}@ios.ac.cn

Abstract. The volume is an important attribute of a convex body. In
general, it is quite difficult to calculate the exact volume. But in many
cases, it suffices to have an approximate value. Volume estimation meth-
ods for convex bodies have been extensively studied in theory, however,
there is still a lack of practical implementations of such methods. In
this paper, we present an efficient method which is based on the Multi-
phase Monte-Carlo algorithm to estimate volumes of convex polytopes. It
uses the coordinate directions hit-and-run method, and employs a tech-
nique of reutilizing sample points. We also introduce a new result check-
ing method for performance evaluation. The experiments show that our
method can efficiently handle instances with dozens of dimensions with
high accuracy.

1 Introduction

Volume computation is a classical problem in mathematics, arising in many
applications such as economics, computational complexity analysis, linear sys-
tems modeling, and statistics. It is also extremely difficult to solve. Dyer et al. [1]
and Khachiyan [2,3] proved respectively that exact volume computation is #P-
hard, even for explicitly described polytopes. Büeler et al. [4] listed five vol-
ume computation algorithms for convex polytopes. However, only the instances
around 10 dimensions can be solved in reasonable time with existing volume com-
putation algorithms, which is quite insufficient in many circumstances. Therefore
we turn attention to volume estimation methods.

There are many results about volume estimation algorithms of convex bodies
since the end of 1980s. A breakthrough was made by Dyer, Frieze and Kannan [5].
They designed a polynomial time randomized approximation algorithm (Multi-
phase Monte-Carlo Algorithm), which was then adopted as the framework of
volume estimation algorithms by successive works. At first, the theoretical com-
plexity of this algorithm is O∗(n23)1, but it was soon reduced to O∗(n4) by
Lovász, Simonovits et al. [6–9]. Despite the polynomial time results and reduced
complexity, there is still a lack of practical implementation. In fact, there are
1 “soft-O” notation O∗ indicates that we suppress factors of log n as well as factors

depending on other parameters like the error bound.

c© Springer International Publishing Switzerland 2015
J. Wang and C. Yap (Eds.): FAW 2015, LNCS 9130, pp. 52–65, 2015.
DOI: 10.1007/978-3-319-19647-3 6

A Fast and Practical Method to Estimate Volumes of Convex Polytopes 53

some difficulties in applying the above volume estimation algorithms. First, in
theoretical research of randomized volume algorithms, oracles are usually used to
describe the convex bodies and the above time complexity results are measured
in terms of oracle queries. However, oracles are too complex and oracle queries
are time-consuming. Second, there exists a very large hidden constant coefficient
in the theoretical complexity [8], which makes the algorithms almost infeasible
even in low dimensions. The reason leading to this problem is that the above
research works mostly focus on arbitrary dimension and theoretical complexity.
To guarantee that Markov Chains mix in high-dimensional circumstance, it is
necessary to walk a large constant number of steps before determining the next
point.

In this paper, we focus on practical and applicable method. We only consider
specific and simple objects, i.e., convex polytopes. On the other hand, the size
of problem instances is usually limited in practical circumstances. With such
limited scale, we find that it is unnecessary to sample as many points as the
algorithm in [8] indicates. We implement a volume estimation algorithm which
is based on the Multiphase Monte-Carlo method. The algorithm is augmented
with a new technique to reutilize sample points, so that the number of sample
points can be significantly reduced. We compare two hit-and-run methods: the
hypersphere directions method and the coordinate directions method, and find
that the latter method which is employed in our approximation algorithm not
only runs faster, but is also more accurate. Besides, in order to better evaluate
the performance of our tool, we also introduce a new result checking method.
Experiments show that our tool can efficiently handle instances with dozens
of dimensions. To the best of our knowledge, it is the first practical volume
estimation tool for convex polytopes.

We now outline the remainder of the paper: In Sect. 2, we propose our method
in detail. In Sect. 3, we show experimental results and compare our method with
the exact volume computation tool VINCI [10]. Finally we conclude this paper
in Sect. 4.

2 The Volume Estimation Algorithm

A convex polytope may be defined as the intersection of a finite number of half-
spaces, or as the convex hull of a finite set of points. Accordingly there are two
descriptions for a convex polytope: half-space representation (H-representation)
and vertex representation (V-representation). In this paper, we adopt the
H-representation.

An n-dimensional convex polytope P is represented as P = {Ax ≤ b}, where
A is an (m × n) matrix. aij represents the element at the i-th row and the j-th
column of A, and ai represents the i-th column vector of A. For simplicity, we
also assume that P is full-dimensional and not empty. We use vol(K) to represent
the volume of a convex body K, and B(x,R) to represent the ball with radius
R and center x.

We define ellipsoid E = E(A, a) = {x ∈ R
n|(x − a)T A−1(x − a) ≤ 1}, where

A is a symmetric positive definite matrix.

54 C. Ge and F. Ma

Like the original multiphase Monte-Carlo algorithm, our algorithm consists
of three parts: rounding, subdivision and sampling.

2.1 Rounding

The rounding procedure is to find an affine transformation T on polytope Q

such that B(0, 1) ⊆ T (Q) ⊆ B(0, r) and a constant γ = vol(Q)
vol(T (Q)) . If r > n,

T can be found by the Shallow-β-Cut Ellipsoid Method [11], where β = 1
r .

It is an iterative method that generates a series of ellipsoids {Ei(Ti, oi)} s.t.
Q ⊆ Ei, until we find an Ek such that Ek(β2Tk, ok) ⊆ Q. Then we transform
the ellipsoid Ek into B(0, r). Note that this method is numerically unstable on
even small-sized problems, such as polytopes in 20-dimensions. Therefore, we
adopt a modification of Ellipsoid Method which described in [12].

This procedure could take much time when r is close to n, e.g. r = n+1. There
is a tradeoff between rounding and sampling, since the smaller r is, the more
iterations during rounding and the fewer points have to be generated during
sampling. We set r = 2n in our implementation. Rounding can handle very
“thin” polytopes which cannot be subdivided or sampled directly. We use P to
represent the new polytope T (Q) in the sequel.

2.2 Subdivision

To avoid curse of dimensionality(the possibility of sampling inside a certain space
in target object decreases very fast while dimension increases), we subdivide P
into a sequence of bodies so that the ratio of consecutive bodies is at most a
constant, e.g. 2. Place l = �n log2 r� concentric balls {Bi} between B(0, 1) and
B(0, r), where

Bi = B(0, ri) = B(0, 2i/n), i = 0, . . . , l.

Set Ki = Bi ∩ P , then K0 = B(0, 1), Kl = P and

vol(P) = vol(B(0, 1))
l−1
∏

i=0

vol(Ki+1)
vol(Ki)

= vol(B(0, 1))
l−1
∏

i=0

αi. (1)

So we only have to estimate the ratio αi = vol(Ki+1)/vol(Ki), i = 0, . . . , l − 1.
Since Ki = Bi ∩ P ⊆ Bi+1 ∩ P = Ki+1, we get αi ≥ 1. On the other hand, {Ki}
are convex bodies, then

Ki+1 ⊆ ri+1

ri
Ki = 21/nKi,

we have

αi =
vol(Ki+1)
vol(Ki)

≤ 2.

Specially, Ki+1 = 21/nKi if and only if Ki+1 = Bi+1 i.e. Bi+1 ⊆ P . That is,
1 ≤ αi ≤ 2 and αi = 2 ⇔ Bi+1 ⊆ P .

A Fast and Practical Method to Estimate Volumes of Convex Polytopes 55

2.3 Hit-and-Run

To approximate αi, we generate step size random points in Ki+1 and count
the number of points ci in Ki. Then αi ≈ step size/ci. It is easy to generate
uniform distributions on cubes or ellipsoids but not on {Ki}. So we use a random
walk method for sampling. Hit-and-run method is a random walk which has
been proposed and studied for a long time [13–15]. The hypersphere directions
method and the coordinate directions method are two hit-and-run methods. In
the hypersphere directions method, the random direction is generated from a
uniform distribution on a hypersphere; in the coordinate directions method, it
is chosen with equal probability from the coordinate direction vectors and their
negations. Berbee et al. [14] proved the following theorems.

Theorem 1. The hypersphere directions algorithm generates a sequence of inte-
rior points whose limiting distribution is uniform.

Theorem 2. The coordinate directions algorithm generates a sequence of inte-
rior points whose limiting distribution is uniform.

Coordinate directions and their negations are special cases of directions gen-
erated on a hypersphere, hence the former theoretical research about volume
approximation algorithm with hit-and-run methods mainly focus on the hyper-
sphere directions method [8]. In this paper, we apply the coordinate directions
method to our volume approximation algorithm. It starts from a point x in
Kk+1, and generates the next point x′ in Kk+1 by two steps:

Step 1. Select a line L through x uniformly over n coordinate directions,
e1, . . . en.

Step 2. Choose a point x′ uniformly on the segment in Kk+1 of line L.

More specifically, we randomly select the dth component xd of point x and get
xd’s bound [u, v] that satisfies

x|xd=t ∈ Kk+1, ∀t ∈ [u, v] (2)
x|xd=u, x|xd=v ∈ ∂Kk+1 (3)

(“∂” denotes the boundary of a set). Then we choose x′
d ∈ [u, v] with uniform

distribution and generate the next point x′ = x|xd=x′
d

∈ Kk+1.
Our hit-and-run algorithm is described in Algorithm 1. Ri = 2i/n is the

radius of Bi. Note that Kk+1 = Bk+1 ∩P , so x′ ∈ Bk+1 and x′ ∈ P . We observe
that

x′ ∈ Bk+1 ⇔ |x′| ≤ Rk+1 ⇔ x′2
d ≤ R2

k+1 −
∑

i�=d

x2
i

x′ ∈ P ⇔ aix
′ ≤ bi ⇔ aidx

′
d ≤ bi −

∑

j �=d

aijxj = μi, ∀i

56 C. Ge and F. Ma

Algorithm 1. Hit-And-Run Sampling Algorithm
1: function Walk(x, k)
2: d ← random(n)
3: c ← |x|2 − x2

d

4: r ←
√

R2
k+1 − c

5: max ← r − xd

6: min ← −r − xd

7: for i ← 1, m do
8: boundi ← (bi − aix)/aid

9: if aid > 0 and boundi < max then
10: max ← boundi

11: else if aid < 0 and boundi > min then
12: min ← boundi

13: end if
14: end for
15: xd ← xd + random(min, max)
16: return x
17: end function

Let

u = max{−
√

R2
k+1 −

∑

i�=d

x2
i ,

μi

aid
} ∀i s.t. aid < 0

v = min{
√

R2
k+1 −

∑

i�=d

x2
i ,

μi

aid
} ∀i s.t. aid > 0

then interval [u, v] is the range of x′
d that satisfies Formulas (2) and (3), and

u = xd + min, v = xd + max in Algorithm 1.
Usually, Walk function is called millions of times, so it is important to

improve its efficiency, such as use iterators in for loop and calculation of |x|.
At the same time, we move the division operation (line 8), which is very slow
for double variables, out of Walk function because (bi − aix)/aid = bi

aid
− ai

aid
x,

i.e., divisions only occur between constants.

2.4 Reutilization of Sample Points

In the original description of the Multiphase Monte Carlo method, it is indicated
that the ratios αi are estimated in natural order, from the first ratio α0 to the
last one αl−1. The method starts sampling from the origin. At the kth phase, it
generates a certain number of random independent points in Kk+1 and counts
the number of points ck in Kk to estimate αk. However, our algorithm performs
in the opposite way: Sample points are generated from the outermost convex
body Kl to the innermost convex body K0, and ratios are estimated accordingly
in reverse order.

A Fast and Practical Method to Estimate Volumes of Convex Polytopes 57

The advantage of approximation in reverse order is that it is possible to fully
exploit the sample points generated in previous phases. Suppose we have already
generated a set of points S by random walk with almost uniform distribution
in Kk+1, and some of them also hit the convex body Kk, denoted by S ′. The
ratio αk is thus estimated with |S′|

|S| . But these sample points can reveal more
information than just the ratio αk. Since Kk is a sub-region of Kk+1, the points
in S ′ are also almost uniformly distributed in Kk. Therefore, S ′ can serve as
part of the sample points in Kk. Furthermore, for any Ki (0 ≤ i ≤ k) inside
Kk+1, the points in Kk+1 that hit Ki can serve as sample points to approximate
αi as well.

Based on this insight, our algorithm samples from outside to inside. Suppose
to estimate each ratio within a given relative error, we need as many as step size
points. At the kth phase which approximates ratio αl−k, the algorithm first
calculates the number count of the former points that are also in αl−k+1, then
generates the rest (step size − count) points by random walk.

Unlike sampling in natural order, choosing the starter for each phase in
reverse sampling is a bit complex. The whole sampling process in reverse order
also starts from the origin point. At each end of the k-th phase, we select a point
x in Kk+1 and employ x′ = 2− 1

n x as the starting point of the next phase since
2− 1

n x ∈ Kk.
It’s easy to find out that the expected number of reduced sample points with

our algorithm is
l−1
∑

i=1

(step size × 1
αi

). (4)

Since αi ≤ 2, we only have to generate less than half sample points with this
technique. Actually, results of expriments show that we can save over 70 % time
consumption on many polytopes.

2.5 Framework of the Algorithm

Now we present the framework of our volume estimation method. Algorithm 2 is
the Multiphase Monte-Carlo algorithm with the technique of reutilizing sample
points.

The function Preprocess represents the rounding procedure and it returns
the ratio of γ. In Algorithm 2, the formula �n

2 log2 |x|� returns index i that
x ∈ Ki\Ki−1. We use ti to record the number of sample points that hit Ki\Ki−1.
Furthermore, the sum count of t0, . . . , tk+1 is the number of reusable sample
points that are generated inside Kk+1. Then we only have to generate the rest
(step size − count) points inside Kk+1 in the k-th phase. Then we use 2− 1

n x as
the starting point of the next phase. Finally, according to Eq. (1) and γ = vol(Q)

vol(P) ,
we achieve the estimation of vol(Q) .

58 C. Ge and F. Ma

Algorithm 2. The Framework of Volume Estimation Algorithm
1: function EstimateVol
2: γ ← Preprocess()
3: x ← O
4: l ← �n log2 r�
5: for k ← l − 1, 0 do
6: for i ← count, step size do
7: x ← Walk(x, k)
8: if x ∈ B0 then
9: t0 ← t0 + 1

10: else if x ∈ Bk then
11: m ← �n

2
log2 |x|�

12: tm ← tm + 1
13: end if
14: end for
15: count ←∑k

i=0 ti
16: αk ← step size/count

17: x ← 2− 1
n x

18: end for
19: return γ · unit ball(n) ·∏l−1

i=0 αi

20: end function

3 Experimental Results

We implement the algorithm in C++ and the tool is named PolyVest (Polytope
Volume Estimation). In all experiments, step size is set to 1600 l for the reason
discussed in Appendix A and parameter r is set to 2n. The experiments are
performed on a workstation with 3.40 GHz Intel Core i7-2600 CPU and 8 GB
memory. Both PolyVest and VINCI use a single core.

3.1 The Performance of PolyVest

Table 1 shows the results of comparison between PolyVest and VINCI. VINCI is
a well-known package which implements the state of the art algorithms for exact
volume computation of convex polytopes. It can accept either H-representation
or V-representation as input. The test cases include: (1) “cube n”: Hypercubes
with side length 2, i.e. the volume of “cube n” is 2n. (2) “cube n(S)”: Apply 10
times random shear mappings on “cube n”. The random shear mapping can be

represented as PQP , with Q =
(

I M
0 I

)

, where the elements of matrix M are

randomly chosen and P is the products of permutation matrices {Pi} that put
rows and columns of Q in random orders. This mapping preserves the volume.
(3) “rh n m”: An n-dimentional polytope constructed by randomly choosing m
hyperplanes tangent to sphere. (4) “rh n m(S)”: Apply 10 times random shear
mappings on “rh n m”. (5) “cuboid n(S)”: Scaling “cube n” by 100 in one direc-
tion, and then apply random shear mapping on it once. We use this instance

A Fast and Practical Method to Estimate Volumes of Convex Polytopes 59

to approximate a “thin stick” which not parallel to any axis. (6) “ran n m”:
An n-dimentional polytope constructed by randomly choosing integer coefficient
from −1000 to 1000 of matrix A.

Table 1. Comparison between PolyVest and VINCI

PolyVest VINCI

Instance n m Result Time(s) Result Trlass(s) Thot(s) Tlawnd(s)

cube 10 10 20 1015.33 0.380 1024 0.004 0.044 0.008

cube 15 15 30 33560.1 1.752 32768 0.300 212.8 0.156

cube 20 20 40 1.08805e+6 4.484 1.04858e+6 — — 8.085

cube 30 30 60 1.0902e+9 23.197 — — — —

cube 40 40 80 1.02491e+12 72.933 — — — —

cube 10(S) 10 20 1027.1 0.184 1023.86 0.008 0.124 0.024

cube 15(S) 14 28 30898.2 0.784 32766.4 0.428 369.6 0.884

rh 8 25 8 25 793.26 0.132 785.989 0.864 0.160 0.016

rh 10 20 10 20 13710.0 0.240 13882.7 0.284 0.340 0.012

rh 10 25 10 25 5934.99 0.260 5729.52 5.100 1.932 0.072

rh 10 30 10 30 2063.55 0.280 2015.58 660.4a 5.772 0.144

rh 8 25(S) 8 25 782.58 0.136 785.984 1.268 0.156 0.032

rh 10 20(S) 10 20 13773.2 0.232 13883.8 0.832 0.284 0.032

rh 10 25(S) 10 25 5667.49 0.252 5729.18 11.949 1.960 0.104

rh 10 30(S) 10 30 2098.89 0.276 2015.87 1251.1a 6.356 0.248
aEnable the VINCI option to restrict memory storage, so as to avoid running out of
memory.

In Table 1, Trlass, Thot and Tlawnd represent the time consumption of
three parameters of methods in VINCI respectively. The “rlass” uses Lasserre’s
method, it needs input of H-representation. The “hot” uses a Cohen&Hikey-like
face enumeration scheme, it needs input of V-representation. The “lawnd” uses
Lawrence’s formula, it is the fatest method in VINCI and both descriptions are
needed. From “cube 20” to “cube 40”, “rlass” and “hot” cannot handle these
instances in reasonable time. We did not test instances “cube 30” and “cube 40”
by “lawnd”, because there are too many vertices in these polytopes.

Observe that the “rlass” and “hot” methods of VINCI usually take much
more time and space as the scale of the problem grows a bit, e.g. “cube n(n ≥
15)” and “rh 10 30”. With H- and V- representations, the “lawnd” method is
very fast for instances smaller than 20 dimensions. However, enumerating all
vertices of polytopes is non-trivial, as is the dual problem of constructing the
convex hull by the vertices. This process is both time-consuming and space-
consuming. As a result, “lawnd” method is slower than PolyVest for random
polytopes around 15 dimensions with only H-representation. The running times

60 C. Ge and F. Ma

Table 2. Statistical results of PolyVest

Instance Average volume v Std Dev σ 95% Confidence

interval I = [p, q]

Freq on I Error ε = q−p
v

cube 10a 1024.91 41.7534 [943.077, 1106.75] 947 15.9695%

cube 20a 1.04551e+6 49092.6 [9.49284e+5,

1.14173e+6]

942 18.4067%

cube 30 1.06671e+9 5.95310e+7 [9.50024e+8,

1.18339e+9]

96 21.8769%

cube 40 1.09328e+12 4.85772e+10 [9.98073e+11,

1.18850e+12]

95 17.4175%

cuboid 10(S)a 102258 3162.13 [96060.1, 108456] 953 12.1219%

cuboid 20(S)a 1.04892e+8 388574e+6 [9.72760e+7,

1.12508e+8]

953 14.5217%

cuboid 30(S) 1.07472e+11 4.42609e+9 [9.87968e+10,

1.16147e+11]

93 16.1440%

ran 10 30a 11.0079 0.413874 [10.1967, 11.8191] 946 14.7383%

ran 10 50a 1.48473 4.81726e-2 [1.39031, 1.57915] 952 12.7186%

ran 15 30 290.575 12.8392 [265.410, 315.740] 92 17.3208%

ran 15 50 3.30084 0.145495 [3.01567, 3.58601] 96 17.2787%

ran 20 50 1.25062 6.60574e-2 [1.12115, 1.38010] 94 20.7053%

ran 20 100 8.79715e-3 3.144633e-4 [8.18080e-3,

9.41350e-3]

96 14.0125%

ran 30 60 195.295 10.37041 [174.969, 215.621] 97 20.8157%

ran 30 100 2.21532e-5 1.13182e-6 [1.99348e-5,

2.43715e-5]

98 20.0276%

ran 40 100 3.02636e-5 1.76093e-6 [2.68121e-5,

3.3715e-5]

96 22.8091%

aEstimated 1000 times with POLYVEST.

of PolyVest appear to be more ‘stable’. In addition, PolyVest only has to store
some constant matrices and variable vectors for sampling.

Since PolyVest is a volume estimation method instead of an exact volume
computation one like VINCI, we did more tests on PolyVest to see how accurate
it is. We estimated 100 times with PolyVest for each instance in Table 2 and
listed the statistical results. From Table 2, we observe that the frequency on I
is approximately 950 which means Pr(p ≤ vol(P) ≤ q) ≈ 0.95. Additionally,
values of ε (ratio of confidence interval’s range to average volume v) are smaller
than or around 20 %.

3.2 Result Checking

For arbitrary convex polytopes with more than 10 dimensions, there is no easy
way to evaluate the accuracy of PolyVest since the exact volumes cannot be
computed with tools like VINCI in reasonable time. However, we find that a
simple property of geometric body is very helpful for verifying the results.

Given an arbitrary geometric body P , an obvious relation is that if P is
divided into two parts P1 and P2, then we have vol(P) = vol(P1) + vol(P2).

A Fast and Practical Method to Estimate Volumes of Convex Polytopes 61

For a random convex polytope, we randomly generate a hyperplane to cut the
polytope, and test if the results of PolyVest satisfy this relation.

Table 3 shows the results of such tests on random polytopes in different
dimensions. Each polytope is tested 100 times. Values in column “Freq.” are the
times that (vol(P1) + vol(P2)) falls in 95 % confidence interval of vol(P), and

these values are all greater than 95. The error |Sum−vol(P)|
vol(P)

is quite small. There-

fore, the outputs of PolyVest satisfy the relation vol(P) = vol(P1) + vol(P2).
The test results further confirm the reliability of PolyVest.

Table 3. Result checking

n vol(P) 95% Confidence interval vol(P1) vol(P2) Sum Error Freq

10 916.257 [847.229, 985.285] 498.394 414.676 913.069 0.348% 98

20 107.976 [97.4049, 118.548] 50.4808 57.3418 107.823 0.142% 99

30 261424 [228471, 294376] 40332.7 218637 258969 0.939% 96

40 5.08e+11 [4.58e+11, 5.57e+11] 9.44e+10 4.15e+11 5.09e+11 0.234% 98

3.3 The Performance of Two Hit-and-Run Method

In Table 4, t1 and t2 represent the time consumption of the coordinate directions
and the hypersphere directions method when each method is executed 10 million
times. Observe that the coordinate directions method is faster than the other
one. The reason is that the hypersphere directions method has to do more vector
multiplications to find intercestion points and m × n more divisions during each
walk step.

Table 4. Random walk by 10 million steps

n m time t1(s) time t2(s)

10 20 6.104 13.761

20 40 10.701 24.502

30 60 17.541 40.455

40 80 27.494 61.484

In addition, we also compare the two hit-and-run methods on accuracy. The
results in Table 5 show that the relative errors and standard deviations of the
coordinate directions method are smaller.

62 C. Ge and F. Ma

Table 5. Comparison about accuracy between two methods

Simplified Original

Instance Exact Vol v Volume v Err
|v−v|

v Std Dev σ Volume v′ Err
|v−v|

v Std Dev σ′

cube 10 1024 1024.91 0.089% 41.7534 1028.31 0.421% 62.6198

cube 14 16384 16382.3 0.010% 3.020 16324.6 0.363% 1145.76

cube 20 1.04858e+6 1.04551e+6 0.293% 49092.6 1.04426e+6 0.412% 81699.9

rh 8 25 785.989 786.240 0.032% 23.5826 791.594 0.713% 50.5415

rh 10 20 13882.7 13876.3 0.046% 473.224 13994.4 0.805% 963.197

rh 10 25 5729.52 5736.83 0.128% 193.715 5765.18 0.622% 368.887

rh 10 30 2015.58 2013.08 0.124% 62.1032 2041.60 1.291% 124.204

3.4 The Advantage of Reutilization of Sample Points

In Table 6, we demonstrate the effectiveness of reutilization technique. Values of
n1 are the number of sample points without this technique. Since our method
is a randomized algorithm, the number of sample points with this technique is
not a constant. So we list average values in column n2. With this technique, the
requirement of sample points is significantly reduced.

Table 6. Reutilize Sample Points

Instance n1 n2 n2/n1

cube 10 2016000 535105.41 26.5 %

cube 15 5856000 1721280.3 29.4 %

cube 20 12249600 3789370.7 30.9 %

rh 8 25 1040000 181091.13 17.4 %

rh 10 30 2016000 304211.03 15.1 %

cross 7 809600 78428.755 9.69 %

fm 6 5856000 955656.79 16.3 %

4 Related Works

To our knowledge, there are two implementations of volume estimation methods
in literature. Liu et al. [16] developed a tool to estimate volume of convex body
with a direct Monte-Carlo method. Suffered from the curse of dimensionality,
it can hardly solve problems as the dimension reaches 5. The recent work [17]
is an implementation of the O∗(n4) volume algorithm in [9]. The algorithm is
targeted for convex bodies, and only the computational results for instances
within 10 dimensions are reported. The authors also report that they could not
experiment with other convex bodies than cubes, since the oracle describing the
convex bodies took too long to run.

A Fast and Practical Method to Estimate Volumes of Convex Polytopes 63

5 Conclusion

In this paper, we propose an efficient volume estimation algorithm for convex
polytopes which is based on Multiphase Monte Carlo algorithm. With simplified
hit-and-run method and the technique of reutilizing sample points, we consider-
ably improve the existing algorithm for volume estimation. Our tool, PolyVest,
can efficiently handle instances with dozens of dimensions with high accuracy,
while the exact volume computation algorithms often fail on instances with over
10 dimensions. In fact, the complexity of our method (excluding rounding pro-
cedure) is O∗(mn3) and it is measured in terms of basic operations instead of
oracle queries. Therefore, our method requires much less computational overhead
than the theoretical algorithms.

Appendix

A About the Number of Sample Points

From Formula (1),

vol(P)
vol(B(0, 1))

=
l−1
∏

i=0

αi =
l−1
∏

i=0

step size

ci
=

step sizel

∏l−1
i=0 ci

,

which shows that to obtain confidence interval of vol(P), we only have to focus
on

∏l−1
i=0 ci. For a fixed P , {αi} are fixed numbers. Let c =

∏l
i=1 ci and D(l, P)

denote the distribution of c. With statistical results of substantial expriments on
concentric balls, we observe that, when step size is sufficiently large, the distri-
bution of ci is unbiased and its standard deviation is smaller than twice of the
standard deviation of binomial distribution in dimensions below 80. Though such
observation sometimes not holds when we sample on convex bodies other than
balls, we still use this to approximate the distribution of ci. Consider random
variables Xi following binomial distribution B(step size, 1/αi), we have

E(c) = E(c1) . . . E(cl) = E(X1) . . . E(Xl) = step sizel
l

∏

i=1

1
αi

,

D(c) = E((c1 . . . cl)2) − E(c)2 =
l

∏

i=1

(D(ci) + E(ci)2) − E(c)2

=
l

∏

i=1

(4D(Xi) + E(Xi)2) − E(c)2

=
l

∏

i=1

step size2

α2
i

(1 +
4αi

step size
(1 − 1

αi
)) − E(c)2

= E(c)2(β − 1),

64 C. Ge and F. Ma

where β =
∏l

i=1(1 + 4αi

step size − 4
step size).

Suppose {ξ1, . . . , ξt} is a sequence of i.i.d. random variables following D(l, P).
Notice D(c), the variance of D(l, P), is finite because β − 1 → 0 as t → ∞.
According to central limit theorem, we have

∑t
i=1 ξi − tE(c)√

tD(c)
d→ N(0, 1).

So we obtain the approximation of 95% confidence interval of c, [E(c) −
σ
√

D(c), E(c) + σ
√

D(c)], where σ = 1.96. And

Pr(
vol(B(0, 1))step sizel

E(c) + σ
√

D(c)
≤ vol(P) ≤ vol(B(0, 1))step sizel

E(c) − σ
√

D(c)
) ≈ 0.95.

Let ε ∈ [0, 1] denote the ratio of confidence interval’s range to exact value of
vol(P), that is

vol(B(0, 1))step sizel

E(c) + σ
√

D(c)
− vol(B(0, 1))step sizel

E(c) − σ
√

D(c)
≤ vol(P) · ε (5)

⇐⇒ 1
E(c) − σ

√

D(c)
− 1

E(c) + σ
√

D(c)
≤ ε

E(c)
(6)

⇐⇒ 1
1 − σ

√
β − 1

− 1
1 + σ

√
β − 1

≤ ε (7)

⇐⇒ 4σ2(β − 1) ≤ ε2(1 + σ2 − σ2β)2 (8)

⇐⇒ ε2σ2β2 − 2ε2(1 + σ2)β − 4β + (
1
σ

+ σ)2 + 4 ≥ 0. (9)

Solve inequality (9), we get β1(ε, σ), β2(ε, σ) that β ≤ β1 and β ≥ β2 (ignore
β ≥ β2 because 1 − σ

√
β2 − 1 < 0). β ≤ (1 + 4

step size)l, since 1 ≤ αi ≤ 2.

(1 +
4

step size
)l ≤ β1 ⇐⇒ step size ≥ 4

β
1/l
1 − 1

, (10)

(10) is a sufficient condition of β ≤ β1. Furthermore, 4/(lβ1/l
1 − l) is nearly a

constant as ε and σ are fixed. For example, 4/(lβ1/l
1 − l) ≈ 1569.2 ≤ 1600 when

ε = 0.2, σ = 1.96. So step size = 1600l keeps the range of 95% confidence
interval of vol(P) less than 20% of the exact value of vol(P).

References

1. Dyer, M., Frieze, A.: On the complexity of computing the volume of a polyhedron.
SIAM J. Comput. 17(5), 967–974 (1988)

2. Khachiyan, L.G.: On the complexity of computing the volume of a polytope. Izves-
tia Akad. Nauk SSSR Tekhn. Kibernet 3, 216–217 (1988)

A Fast and Practical Method to Estimate Volumes of Convex Polytopes 65

3. Khachiyan, L.G.: The problem of computing the volume of polytopes is NP-hard.
Uspekhi Mat. Nauk. 44, 179–180 (1989). In Russian; translation in. Russian Math.
Surv. 44(3), 199–200

4. Büeler, B., Enge, A., Fukuda, K.: Exact volume computation for polytopes: a
practical study. In: Kalai, G., Ziegler, G.M. (eds.) Polytopes—Combinatorics and
Computation, pp. 131–154. Birkhäuser Verlag, Birkhäuser Basel (2000)

5. Dyer, M., Frieze, A., Kannan, R.: A random polynomial time algorithm for approx-
imating the volume of convex bodies. In: 21st Annual ACM Symposium on Theory
of Computing, pp. 375–381 (1989)

6. Lovász, L., Simonovits M.: Mixing rate of Markov chains, an isoperimetric inequal-
ity, and computing a the volume. In: 31st Annual Symposium on Foundations of
Computer Science, Vol. I, II, pp. 346–354 (1990)

7. Kannan, R., Lovász, L., Simonovits, M.: Random walks and an O∗(n5) volume
algorithm for convex bodies. Random Struct. Algorithms 11(1), 1–50 (1997)

8. Lovász, L.: Hit-and-Run mixes fast. Math. Prog. 86(3), 443–461 (1999)
9. Lovász, L., Vempala, S.: Simulated annealing in convex bodies and an O∗(n4)

volume algorithm. J. Comput. Syst. Sci. 72(2), 392–417 (2006)
10. http://www.math.u-bordeaux1.fr/aenge/?category=software&page=vinci
11. Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combinatorial

Optimization. Springer, Heidelberg (1993)
12. Goldfarb, D., Todd, M.J.: Modifications and implementation of the ellipsoid algo-

rithm for linear programming. Math. Program. 23(1), 1–19 (1982)
13. Smith, R.L.: Efficient Monte-Carlo procedures for generating points uniformly dis-

tributed over bounded regions. Oper. Res. 32, 1296–1308 (1984)
14. Berbee, H.C.P., Boender, C.G.E., Ran, A.R., Scheffer, C.L., Smith, R.L., Telgen, J.:

Hit-and-run algorithms for the identification of nonredundant linear inequalities.
Math. Program. 37(2), 184–207 (1987)

15. Belisle, C.J.P., Romeijn, H.E., Smith, R.L.: Hit-and-run algorithms for generating
multivariate distributions. Math. Oper. Res. 18(2), 255–266 (1993)

16. Liu, S., Zhang, J., Zhu, B.: Volume computation using a direct Monte Carlo
method. In: Lin, G. (ed.) COCOON 2007. LNCS, vol. 4598, pp. 198–209. Springer,
Heidelberg (2007)

17. Lovász, L., Deák, I.: Computational results of an O∗(n4) volume algorithm. Eur.
J. Oper. Res. 216, 152–161 (2012)

http://www.math.u-bordeaux1.fr/aenge/?category=software&page=vinci

Social Models and Algorithms for Optimization
of Contact Immunity of Oral Polio Vaccine

Chengwei Guo, Chenglong Ma(B), and Shengyu Zhang

Department of Computer Science and Engineering,
The Chinese University of Hong Kong, Shatin, Hong Kong S.A.R., China

cwguo9@gmail.com, {clma,syzhang}@cse.cuhk.edu.hk

Abstract. Oral polio vaccine (OPV) can produce contact immunity and
help protect more individuals than the vaccinated from polio. To better
capture the utilization of OPV’s contact immunity, we model the com-
munity as a social network, and formulate the task of maximizing the
contact immunity effect as an optimization problem on graphs, which is
to find a sequence of vertices to be “vaccinated” to maximize the total
number of “infected” vertices. Furthermore, we consider the restriction
imported by immune deficient individuals, and study related problems.
We present polynomial-time algorithms for these problems on trees, and
show the intractability of problems on general graphs.

Keywords: Epidemic model · Social network · Graph theory · Para-
meterized complexity

1 Introduction

Polio, a common name for poliomyelitis, is an acute, viral, and highly infectious
disease, transmitted by person-to-person spread mainly through the faecal-oral
route or by a common vehicle, such as contaminated water or food, and mul-
tiplies in the intestine [2]. Individuals infected by polio can exhibit a range of
symptoms if the virus enters the blood circulation [5]. When poliovirus enters
the central nervous system, it can infect and destroy motor neurons, leading to
muscle weakness and acute flaccid paralysis. Polio mainly affects children under
5 years of age, which is the reason that polio was called infantile paralysis. The
paralysis caused by polio is usually in legs and irreversible, which makes many
polio survivors disabled for life [9]. In fact, before the use of vaccine, polio was
the most common cause of permanent disability.

This paper studies epidemics of polio, which started to appear in the late
19th century and became one of the most dreaded childhood diseases in the
20th century. Like most diseases caused by virus infection, there was hardly any
cure for polio. In 1949, Jonas Salk made an effective polio vaccine [7] and the
Global Polio Eradication Initiative was launched in 1988, since when polio cases
have decreased by over 99 %. In this initial victory of the battle against polio,
polio vaccine plays a crucial role. There are 2 safe and effective vaccines for
c© Springer International Publishing Switzerland 2015
J. Wang and C. Yap (Eds.): FAW 2015, LNCS 9130, pp. 66–77, 2015.
DOI: 10.1007/978-3-319-19647-3 7

Social Models and Algorithms for Optimization of Contact Immunity 67

polio, the inactivated polio vaccine (IPV) which is injected and the oral polio
vaccine (OPV) which is given by mouth. IPV consists of inactivated poliovirus,
while OPV consists of live, attenuated poliovirus. Therefore IPV carries no risk
of vaccine-associated polio paralysis, but induces very low levels of immunity in
the intestine; OPV also produces a local immune response in the intestine and
can limit the replication of the wild poliovirus inside the intestine [1], but the
live attenuated virus in OPV can cause paralysis, in extremely rare cases [8].
When a person immunized with IPV is infected with wild poliovirus, the virus
can still multiply inside the intestines and be shed in the faeces, risking con-
tinued circulation, which does not happen in the case of OPV. There are more
advantages of OPV over IPV in terms of expenses and length of immunity [6].

In addition, there is yet another fact that makes OPV even more important
in combating polio. For several weeks after vaccination of OPV, the attenuated
virus replicates in the intestine, and is excreted in the faeces. Then the virus can
be transmitted to others in close contact, making them immuned. This means
that immunization with OPV can result in the immunization of people who have
not been directly vaccinated, especially in areas where hygiene and sanitation
are poor [4]. We call this phenomenon contact immunity.

Although human benefit from vaccines made form attenuated virus, for peo-
ple with congenital or acquired immune deficiency, the attenuated virus in OPV
can cause severe complications [3]. Immune deficient people are more common in
recent years, as the Acquired Immune Deficiency Syndrome (AIDS) spreads, and
application of immunosuppressor increases, in organ transplantations or cure for
some autoimmune diseases. Therefore, when vaccinate OPV to a community, it
is necessary to avoid vaccinating immune deficient individuals.

In this paper, we study how to take advantage of contact immunity, so
that limited OPV can be applied to a community containing immune deficient
patients, to give as much protection to the population as possible, while not
infecting immune deficient individuals. By modeling the community as a social
network, we formulate the task into an optimization problem on graphs, and
propose efficient algorithms.

2 Preliminaries

2.1 Definitions and Notations

Graphs. Unless otherwise mentioned, a graph G in this paper is a simple, finite,
and undirected graph with vertex set V (G) and edge set E(G). We usually
use n to denote |V (G)| and m to denote |E(G)|. A graph is connected if for
any two vertices of the graph there exists a path connecting them. If a graph
is disconnected, we refer to each maximal connected induced subgraph as a
connected component of the graph.

The r-ball of v for the center v ∈ V and the radius r ∈ N, denoted by B(v, r),
is defined as B(v, r) = {x | d(v, x) ≤ r, x ∈ V }, and B(v, 0) = {v}. When u ∈
B(v, r), we also say that u is covered by B(v, r). When B(v1, r1)∩B(v2, r2) �= ∅,
we say that the 2 balls are joint.

68 C. Guo et al.

Social Network. A social network is a social structure made up of a set of
social actors, such as individuals, and a set of the dyadic ties between these
actors. A social network can be modeled as a social graph G = (V,E), where V
is a finite set of vertices, and E ⊆ V × V is the set of edges connecting pairs of
vertices. A vertex in G represents an individual in the social network, while an
edge connecting u and v represents the relationship between individuals u and v.
In this paper, we use the terms social network and social graph interchangably,
and corresponding elements of social network and social graph interchangably
for convenience and simplicity.

Parameterized Complexity. A paramerized problem Q is a subset of Σ∗ × N

for some finite alphabet Σ. The second component is called the parameter. The
problem Q is fixed-parameter tractable (FPT) if it admits an algorithm deciding
whether (I, k) ∈ Q in time f(k) · |I|O(1), where |I| is the size of I and f is a
computable function depending only on k.

To prove the intractability of a parameterized problem Q′, we usually present
an FPT reduction from a known W[t]-hard problem Q to Q′. An FPT reduction
from a problem Q to a problem Q′ is a function that maps (I, k) to (I ′, k′)
such that (a) (I, k) ∈ Q ⇔ (I ′, k′) ∈ Q′, (b) the function is computable in time
g(k) · (|I| + k)O(1) for some function g, and (c) k′ ≤ h(k) for some function h.

2.2 Models

In this section, we introduce the epidemic model of OPV’s contact immunity.
We model the social network of a community as a social graph G = (V,E). In

the context of contagion spreading, that two individuals are related means that
virus can be transmitted directly from one to the other in daily-life contact. We
model the relationship as an undirected edge e = uv, since the contact between
u and v is basically undirected and symmetric.

There are some properties of OPV, or attenuated poliovirus, when it devel-
ops contact immunity. When an individual v is vaccinated with OPV, v gets
immunity against polio, and gains infectivity at the same time. Because of the
attenuated poliovirus spreaded by v, all individuals that are neighbors of v in
the social graph get infected with high probability, and therefore get immuned.
Note that OPV’s are usually vaccinated multiple times to ensure immunity, and
the vaccine used on an already vaccinated individual is called a booster vaccine.
Booster vaccination leads to longer and stronger infectiousness, since the virus
inhabits in intestine for longer time and reproduces more. Also, like the cases of
most infectious viruses, the farther v is from infectious individuals, in the sense
of either space or social network, the less possible he or she gets infected.

To model the spreading of attenuated poliovirus in a better way, we try to
retain its properties, then reduce and simplify the real situation. There are 3
states of vertices in G. The susceptible are those who are susceptible to polio,
whose set is denoted by P ; the infected are those who get infected by attenuated
poliovirus, whose set is denoted by I; and among the infected, the infectious are
those who are active in spreading the attenuated virus, whose set is denote by

Social Models and Algorithms for Optimization of Contact Immunity 69

F , so F ⊆ I. Infectious individuals will infect their neighbors. When an individ-
ual turns infected, he or her will not be susceptible again; when an individual
becomes infectious, he or her will stay infectious, in sufficiently long time.

We assume that, before the vaccination, all individuals in the social network
are susceptible to polio, i.e., P = V , since we can just remove from the social net-
work those individuals who are already immune to polio, because they scarcely
involve in the process of attenuated poliovirus spreading. Suppose we vaccinate
people one by one, and there’s enough time for contact immunity to take effect.
Suppose there are k doses of OPV, denote the sequence of k vaccinations by
Sk = (s1, s2, . . . , sk), where si ∈ V for 1 ≤ i ≤ k. Note that the same individuals
can appear in S for multiple times.

When s1 is vaccinated, s1 becomes infected and infectious, and the neighbor
set of s1, N(s1), become infected because of s1. The induced subgraph of the
closed neighbor set of s1, N [s1], is a connected component, which we call an
infected component, denoted by IC(v), where v is any vertex in this component.
The corresponding sets are updated once the status of vertices changes. In this
case, vertices in N [s1] are removed from P and contained in I, and s1 is con-
tained in F . When si, 1 < i ≤ k is vaccinated, 2 different situations may occur.
If si ∈ I, meaning that this is a booster vaccination. We simplify the effect of
booster vaccination, such that it makes all vertices in IC(si)−F infectious, and
∪v∈IC(si)N(v) − IC(si) infected, then IC(si) is updated to be ∪v∈IC(si)N [v].
If si /∈ I, then si becomes infectious, N [si] become infected, and IC(si) is gen-
erated to be N [si]. Infected components grow indepenently and don’t interfere
each other. When all vacinations finish, all individuals in I get infected by atten-
uated poliovirus, and therefore immuned to polio in some level, while infectious
individuals in F get strengthened immunity because of booster vaccines.

There are some variants of the model. Sometimes some individuals need the
immunity to polio more than others. For example, children under 5 years old,
or people living nearby water polluted by virus are more susceptible. In these
cases, a demand index (DI) is introduced, DI(v) quantifies how pressing v needs
the immunity. v’s demand is met if and only if v is in F after vaccinations, and
the benefit of a vaccination is defined as the sum of DI(v)’s where v is newly
added to F after the vaccination.

In other cases, some individuals must get strengthened immunity, while some
individuals should avoid vaccination, like immune deficient individuals. We define
the set of individuals who must get strengthened immunity as target set, denoted
by S, and define the set of individuals who must not get vaccinated or indirectly
strengthened as restriction set, denoted by R. It should be ensured that S ⊆ F
and R ∩ F = ∅ after vaccinations.

As in many papers that study models of propagation in social network, it’s a
very common method to simplify the complicated social graph, which is usually
a general graph, into a tree. In this paper, we study problems both on general
graphs and on trees.

With these models, we want to optimize the effect of contact immunity of
OPV on the community, with limited doses of OPV, by making a plan of vacci-
nations. We propose problems as follows.

70 C. Guo et al.

2.3 Problems

Five parameterized problems are studied in this paper, where the number k of
vaccinations is considered as the parameter.

Problem 1 (Maximum Contact Immunity (M-CI)). For an undirected graph
G = (V,E), and k ∈ Z

+, find a sequence of k vaccinations Sk on G to
maximize |I|.

Problem 2 (Maximum Benefit of Contact Immunity (MB-CI)). For a ver-
tex weighted graph G = (V,E;ω), where ω : V → R

+ ∪ {0}, and k ∈ Z
+,

find a sequence of k vaccinations Sk on G to maximize the sum of benefit of
vaccinations.

Problem 3 (Specific Targeting Contact Immunity (ST-CI)). For an undi-
rected graph G = (V,E), a set of targets S ⊆ V , and k ∈ Z

+, find a sequence of
k vaccinations Sk on G, such that S ⊆ F .

Problem 4 (Maximum Benefit of Restricted Contact Immunity (MB-
RCI)). For a vertex weighted graph G = (V,E;ω), where ω : V → R

+ ∪ {0}, a
set of restricted vertices R ⊆ V , and k ∈ Z

+, find a sequence of k vaccinations
Sk on G to maximize the sum of benefit of vaccinations, and R ∩ F = ∅.

Problem 5 (Specific Targeting Restricted Contact Immunity (ST-
RCI)). For an undirected graph G = (V,E), a set of restricted vertices R ⊆ V ,
a set of targets S ⊆ V , and k ∈ Z

+, find a sequence of k vaccinations Sk on G,
such that S ⊆ F , and R ∩ F = ∅.

2.4 Overview

Our results for above problems are listed in Table 1.

Table 1. Results of computational complexities

M-CI MB-CI ST-CI MB-RCI ST-RCI

Tree P P P P P

General graph Unknown Unknown Unknown W[2]-hard W[2]-hard

3 Polynomial-Time Algorithms

For a sequence of k vaccinations in a graph G, let C be the set of vaccinees of k
vaccinations. The effect of these k vaccinations can be considered as a collection
of |C| balls: for each ball B(v, r), the center v ∈ C and the radius r equals
the number of vaccinations on v or IC(v). Moreover, for any collection of balls
where every pair of balls has even depth of intersection, we can infer a sequence
of vaccinations producing those balls. Thus, we have the following lemma.

Social Models and Algorithms for Optimization of Contact Immunity 71

Lemma 1. A collection of balls is equivalent to a sequence of vaccinations.

To find the optimum solutions of problems with no restriction set, say M-CI,
MB-CI and ST-CI, we have the following lemma.

Lemma 2. There is an optimum solution for M-CI (MB-CI, ST-CI) having
the property that no mergence of infected components happens, i.e., all balls in
this solution are disjoint.

Proof. Suppose that in a optimum solution of M-CI (MB-CI, ST-CI), there exist
two balls, B(v1, r1) and B(v2, r2), covering a vertex u, so u ∈ B(v1, r1)∩B(v2, r2).
Therefore d(v1, u) ≤ r1 and d(v2, u) ≤ r2. By connecting the shortest path
between v1 and u with the shortest path between u and v2, we have a path P
between v1 and v2, whose length is at most r1 + r2. We can find a vertex w on
P satisfying that d(v1, w) ≤ r2 and d(v2, w) ≤ r1. Since B(v1, r1) ∪ B(v2, r2) ⊆
B(w, r1+r2), all vertices covered by B(v1, r1) or B(v2, r2) can also be covered by
a single ball B(w, r1 + r2). Therefore we can replace these two joint balls by the
new ball, which also yields an optimum solution. By repeating this procedure,
we can obtain an optimum solution without any joint balls. ��

The above lemma implies that our algorithm for M-CI can be simplified into
finding a collection of disjoint balls, the sum of whose radiuses is equal to k, to
cover a maximum number of vertices in G. We now present a polynomial-time
algorithm for M-CI on trees.

Theorem 1. M-CI and MB-CI can be solved in O(k2n2) time when input graph
is a tree.

Proof. Given an instance I = (G, k), where G is a tree. We make G into a rooted
tree by arbitrarily choosing a vertex r as the root.

For every v ∈ V (G), we denote by Tr(v) the set of vertices in the subtree
rooted by v, and define Cl(v) = {x | d(v, x) = l, x ∈ V (G) ∩ Tr(v)}, for l ≥ 0.
Therefore B(v, l) ∩ Tr(v) =

∑l
i=0 Ci(v).

For any vertex v ∈ V (G) and any non-negative integers l and t, we define
the following notations.

T0(v, t) := maximum number of vertices covered by any ball in the subprob-
lem on Tr(v) with the parameter t, in the case that v is not covered by any
ball;

T1(v, l, t) := maximum number of vertices covered by any ball in the subprob-
lem on Tr(v) with the parameter t, in the case that v is covered, and any vertices
outside the subtree whose distance from v is at most l can also be covered by
these balls;

M(v, t) := max{T0(v, t), T1(v, 0, t)};
N(v, u, l, t) := maxk0+k1+...+kp=t{T1(u, l + 1, k0) − |B(u, l − 1) ∩ Tr(u)| +

∑p
j=1 M(wj , kj)}, where u ∈ C1(v), k0 ≥ l + 1, and {w1, . . . , wp} =

Cl+1(v)\Cl(u).

72 C. Guo et al.

We use dynamic programming to compute {T0(v, t), T1(v, l, t)}(v,l,t), where
v ∈ V (G), t = 0, 1, . . . , k, l = 0, 1, . . . , t:

T0(v, t) = max
k1+...+kd=t

{v1,...,vd}=C1(v)

d
∑

i=1

M(vi, ki) (1)

T1(v, l, t) = |B(v, l) ∩ Tr(v)| (2)

+ max

⎧

⎨

⎩

max
k1+...+kd=t−l

{v1,...,vd}=Cl+1(v)

d
∑

i=1

M(vi, ki), max
i=1,...,d

{v1,...,vd}=C1(v)

N(v, vi, l, t)

⎫

⎬

⎭

In Eq. 1, we distribute all t vaccinations among subtrees rooted by v’s children
{v1, . . . , vd} = C1(v), since v is not covered. The number M(vi, ki) denotes the
maximum number of vertices covered in Tr(vi) after ki vaccinations satisfying
that the vertex v is not covered by any balls whose centers are in Tr(vi). However,
if we enumerate all possible allcations of t vaccinations to d subtrees such that
k1 + . . . + kd = t, there will be O(td) combinations, making the running time
of the algorithm superpolynomial. To reduce the time of computing T0(v, t), we
need another dynamic programming to compute the sequence

P (i, j) = max
k1+...+ki=j

i
∑

l=1

M(vl, kl), 1 ≤ i ≤ d, 0 ≤ j ≤ t,

according to the fact that

P (i, j) = max
a+b=j

{P (i − 1, a) + M(vi, b)},

supposing P (0, j) = P (i, 0) = 0. Therefore we get T0(v, t) = P (d, t), and the
time for computing T0(v, t) is O(d · t2). Similar methods are used multiple times
in this paper when we allocate a sum of vaccinations to subtrees and get the
maximum sum of some functions on subtrees.

In Eq. 2, it is easy to see that any vertex u ∈ Tr(v) with d(u, v) ≤ l must be
covered, whose set is B(v, l) ∩ Tr(v). There are two cases when v is covered by
a ball centered in Tr(v): (i) vertex v is vaccinated for l times, (ii) there exists a
child vi ∈ C1(v) such that there is a ball centered in Tr(vi) that covers v and all
vertices with distances ≤ l to v. The number N(v, vi, l, t) denotes the maximum
number of vertices in Tr(v)\B(v, l) that can be covered, with other vaccinations
allocated properly to subtrees other than Tr(vi).

Finally, we use max{T0(r, k),maxk
l=0 T1(r, l, k)} to denote the maximum num-

ber of vertices covered, i.e., the maximum number of people infected by the
attenuated poliovirus. In order to get the sequence of vaccinations, we attach
a sequence to every T0, T1,M,N, P to keep track of the current sequence of
vaccinations and maintain sequences during the dynamic programming.

The running time of the algorithm can be calculated as follows:

Social Models and Algorithms for Optimization of Contact Immunity 73

For fixed v, the time for computing {T0(v, t)}(t=0,...,k) is O(k2 · |C1(v)|) =
O(k2 · d(v));

For fixed v and l, the computing time of {T1(v, l, t)}(t=0,...,k) is O(n + (k −
l)2) · |Nl+1(v)| + |N1(v)| · k2 · |Nl+1(v)| = O(n + k2 · |N1(v)| · |Nl+1(v)|);

Thus, for fixed v, the computing time of {T1(v, l, t)}(l=0,...,t,t=0,...,k) is
O(

∑k
l=0 (n + k2 · |N1(v)| · |Nl+1(v)|)) = O(kn + k2n · |N(v)1|) = O(k2n · d(v)).

Consequently, the total running time is O(k2n2). ��

Note that we can take a simple reduction from ST-CI to MB-CI (or from ST-
RCI to MB-RCI) by assigning weight 1 to vertices in target set S and weight
0 to other vertices. Moreover, we can easily reduce MB-CI to MB-RCI (or ST-
CI to ST-RCI) by setting the restriction set R to be an empty set. All these
reductions take polynomial time and work whenever input graph is a tree or a
general graph. We skip the details here. Thus, we have the following lemma.

Lemma 3. ST-CI ≤p MB-CI, ST-RCI ≤p MB-RCI, MB-CI ≤p MB-RCI, and
ST-CI ≤p ST-RCI.

By Theorem 1 and Lemma 3, ST-CI on trees is also solvable in polynomial
time.

Furthermore, Lemma 2 is not available for problems with restriction set,
since we cannot easily replace two joint balls with one single ball when the new
single ball may cover vertices in the restriction set. Therefore, the optimum
solution of ST-RCI and MB-RCI allows joint balls. Although there are more
difficulties introduced, we can also design dynamic programming algorithms to
solve ST-RCI and MB-RCI on trees in polynomial time. By applying a dynamic
programming for MB-RCI on trees, we have the following theorem.

Theorem 2. MB-RCI and ST-RCI can be solved in O(kn5) time when input
graph is a tree.

Proof. Given an instance I = (G, k), where G is a tree. We arbitrarily choose
a vertex r as the root, and the graph G becomes a rooted tree. Denote the
distance between v and the nearest restricted vertex in G by r(v), for each
vertex v ∈ V (G). r(v) = 0 if v is a restrected vertex. Then the radius of a ball
whose center is v should be at most r(v).

For every v ∈ V (G), a, b ∈ Z, a ≥ 0, b ≤ a, consider the subtree rooted by v,
we define the function S(v, a, b), which can be computed in linear time:

If b ≥ 0, S(v, a, b) is defined as the sum of weights of vertices u in subtree,
such that b < d(v, u) ≤ a;

otherwise, S(v, a, b) is defined as (sum of weights of vertices u in subtree,
such that 0 ≤ d(v, u) ≤ a) + (sum of weights of vertices w outside subtree, such
that d(v, w) ≤ min{a, |b| − 1}).

For every v ∈ V (G), 0 ≤ t ≤ k,−n ≤ l, h ≤ t, we define T (v, t, l, h) := the
maximum benefit of subproblem on subtree rooted by v with the parameter t,
such that:

74 C. Guo et al.

If l < 0, the vertex v is not covered by any ball in the subtree, and the
distance between v and the nearest vertex which is covered by some ball in the
subtree is exactly |l|;

If l ≥ 0, the vertex v is covered by some ball in the subtree, and the ball
spreads outside the subtree by length l;

If h < 0, the vertex v is not covered by any ball outside subtree, and the
distance between v and the nearest vertex which is covered by some ball outside
the subtree is exact |h|;

If h ≥ 0, the vertex v is covered by some ball outside the subtree, and the
ball spreads inside subtree by length h.

Now we use dynamic programming to compute {T (v, t, l, h)}(v,t,l,h) where v ∈
V (G), t ∈ [0, k], l, h ∈ [−n, t]. Assume that the set of children of v is {v1, . . . , vd}.

(1) l > r(v)

T (v, t, l, h) = 0

(2) l ≤ 0

T (v, t, l, h) = max
k1+...+kd=t

d
∑

i=1

T (vi, ki, l + 1, h − 1)

(3) 0 < l ≤ r(v)

T (v, t, l, h) = max{
S(v, l, h) + max

l1,...,ld≤l,
1≤j≤d

max
k1,...,kd≥0
Σkj=t−l

Σd
j=1T (vj , kj , lj ,max{l, h} − 1),

max
i=1,...,d
li=l+1

max
l1,...,ld≤l+1,

1≤j≤d

max
k1,...,kd≥0,ki≥li

Σkj=t

Σd
j=1T (vj , kj , lj ,max{l, h} − 1)

}

maxk
l=−n{T (r, k, l,−n)} is the maximum sum of benefit of vaccinations. And the

corresponding sequence of vaccinations can be got from dynamic programming
similar to the algorithm for M-CI on trees. The running time of this algorithm
is O(kn5).

By Lemma 3, ST-RCI on trees is also solvable in polynomial time. ��

4 Intractability

To give a complete picture of complexity of these problems, we show the
intractability of ST-RCI and MB-RCI on general graphs. It is still open whether
M-CI, MB-CI, and ST-CI are NP-hard when inputs are general graphs.

Theorem 3. ST-RCI and MB-RCI on general graphs are NP-hard and W[2]-
hard.

Social Models and Algorithms for Optimization of Contact Immunity 75

. . .

. . .

. . .

r

u

x1 x2 x3 xn

y1 y2 y3 yn

r1 r2 r3 rn

S

R

Fig. 1. Construction of ST-RCI instance from k-Dominating Set instance.

Proof. We prove it by constructing a polynomial reduction from k-Dominating

Set to ST-RCI. Given an instance I = (G, k) of Dominating Set where G =
(V,E) and V = {v1, . . . , vn}, we construct an instance I ′ = (G′, S,R, k + 1) of
ST-RCI where G′ = (V ′, E′) as following (Fig. 1):

V ′ := {r} ∪ {u} ∪ {x1, . . . , xn} ∪ {y1, . . . , yn} ∪ {r1, . . . , rn};
E′ := {(r, u)}∪ {(u, xi) | 1 ≤ i ≤ n}∪ {(xi, yj) | (vi, vj) ∈ E}∪ {(xi, yi) | 1 ≤

i ≤ n} ∪ {(yi, ri) | 1 ≤ i ≤ n};
S := {u} ∪ {y1, . . . , yn};
R := {r} ∪ {r1, . . . , rn}.
Due to the restriction set R, there must be only one vaccination on each

vertex of {u} ∪ {yi, . . . , yn}.
Suppose that G has a k-dominating set {vii , . . . , vik}. It is easy to see that

in graph G′, the vertices {xi1 , . . . , xik} dominate all vertices of {y1, . . . , yn}. We
apply k vaccinations on these vertices {xi1 , . . . , xik} one by one. After these
vaccinations, the vertices {xi1 , . . . , xik} ∪ {u} ∪ {y1, . . . , yn} are merged into
one infected component. In last step we perform a vaccination on this infected
component. The above k + 1 vaccinations form a solution of I ′.

On the other side, suppose that I ′ has a (k + 1)-size solution. Since vertex
u is in targeting set, we may assume that the l-th vaccination is originated
from u, where 1 ≤ l ≤ k + 1. We also assume that the first l − 1 vaccinations
are originated from vertices {xi1 , . . . , xip} ∪ {yj1 , . . . , yjq}, where p + q = l − 1.
Let {ya1 , . . . , yas

} be a subset of vertices in {y1, . . . , yn} that are dominated by
{xi1 , . . . , xip}. Then after the first l − 1 steps, the vertices {xi1 , . . . , xip} ∪ {u} ∪
{yk1 , . . . , yks} are merged into one infected component, and the l-th vaccination
is performed on this infected component. Let {yb1 , . . . , ybt} = {y1, . . . , yn} −
({yj1 , . . . , yjq} ∪ {ya1 , . . . , yas

}) be the set of remaining specific vertices in G′

after l vaccinations, where t + q + s = n. Note that in the next (k + 1 − l)
steps we can only perform vaccinations on vertices in {yb1 , . . . , ybt}, since other
components become restricted, implying that t ≤ k + 1 − l. It is clear that
vertices in {xi1 , . . . , xip}∪{xj1 , . . . , xjq}∪{xb1 , . . . , xbt} dominate all vertices in
{ya1 , . . . , yas

} ∪ {yj1 , . . . , yjq} ∪ {yb1 , . . . , ybt} = {y1, . . . , yn}, and the total size

76 C. Guo et al.

is p + q + t = l − 1 + t ≤ k. Thus, the original graph G has a dominating set of
size at most k.

We have completed the proof of NP-hardness. Note that the above reduc-
tion is indeed an FPT reduction, and k-Dominating Set is W[2]-hard in the
literature. Therefore, ST-RCI on general graphs is W[2]-hard. and thus is very
unlikely to be FPT.

By Lemma 3, MB-RCI on general graphs is also NP-hard and W[2]-hard. ��

5 Conclusion

In this paper, we have overviewed the history of people fighting polio and intro-
duced oral polio vaccines (OPV). The contact immunity is an important prop-
erty of OPV that is very important in helping eliminate polio thoroughly. And
we have modeled the contact immunity of OPV into models on social graphs,
and proposed 5 problems, including Maximum Contact Immunity, Maximum

Benefit of Contact Immunity, Specific Targeting Contact Immunity,
Maximum Benefit of Restricted Contact Immunity, and Specific Tar-

geting Restricted Contact Immunity. We have studied these problems
both on general graphs and on trees.

We have designed polynomial-time algorithms based on dynamic program-
ming for all 5 problems on trees, and have proved the intractability for
Maximum Benefit of Restricted Contact Immunity and Specific Tar-

geting Restricted Contact Immunity on general graphs. With these
algorithms, we can possibly help improving the effect of OPV in certain cir-
cumstances, especially when the supply of vaccines is limited, or the community
contains a proportion of immune deficient individuals.

However, we still have some future work to do. For problems Maximum

Contact Immunity, Maximum Benefit of Contact Immunity, and Spe-

cific Targeting Contact Immunity on general graphs, we haven’t found
polynomial-time algorithms, neither have we proved their intractabilities.

Furthermore, there may be variant models. For example, we can introduce
IPV into the model. As IPV contains no live virus, it is basically safe for even
immune deficient people. Moreover, when applying POV to an epidemic area
of polio, the normal poliovirus and attenuated poliovirus may compete when
transmitting in the social network. Such variant models can also induce problems
that have practical significance.

References

1. Pediatrics Committee on Infectious Diseases: Poliomyelitis prevention: recommen-
dations for use of inactivated poliovirus vaccine and live oral poliovirus vaccine.
99, 300–305 (1997)

2. Cohen, J.I.: Enteroviruses and reoviruses. In: Isselbacher, K.J., Braunwald, E.,
Wilson, J.D., Martin, J.B., Fauci, A.S., Kasper, D.L. (eds.) Harrison’s Principles
of Internal Medicine. 16th edn., vol. 2, p. 1144. McGraw-Hill Professional (2004)

Social Models and Algorithms for Optimization of Contact Immunity 77

3. Kroger, A.T., Sumaya, C.V., Pickering, L.K., Atkinson, W.L.: General recommen-
dations on immunization: recommendations of the Advisory Committee on Immu-
nizations Practices (ACIP). Morb. Mortal. Wkly Rep. 60, 1–60 (2011)

4. Plotkin, S.A., Orenstein, W., Offit, P.A.: Poliovirus vaccine-inactivated and
poliovirus vaccine-live. In: Vaccines. 6th edn., pp. 573–645. Elsevier Saunders,
Philadelphia (2012)

5. Ray, C.G., Ryan, K.J.: Enteroviruses. In: Sherris Medical Microbiology: An Intro-
duction to Infectious Diseases. 4th edn., pp. 535–537. McGraw-Hill Medica, New
York (2003)

6. Robertson, S.: Module 6: Poliomyelitis. In: The Immunological Basis for Immu-
nization Series. World Health Organization, Geneva (1993)

7. Rosen, F.S.: Isolation of poliovirus-John Enders and the Nobel Prize. N. Engl. J.
Med. 351, 1481–1483 (2004)

8. Shimizu, H., Thorley, B., Paladin, F.J., Brussen, K.A., Stambos, V., Yuen, L.,
Utama, A., Tano, Y., Arita, M., Yoshida, H., Yoneyama, T., Benegas, A., Roesel,
S., Pallansch, M., Kew, O., Miyamura, T.: Circulation of type 1 vaccine-derived
poliovirus in the Philippines in 2001. J. Virol. 78, 13512–13521 (2004)

9. World Health Organization, Fact Sheet No.114: Poliomyelitis. In: WHO Fact Sheets
(2014)

The Directed Dominating Set Problem:
Generalized Leaf Removal and Belief

Propagation

Yusupjan Habibulla, Jin-Hua Zhao, and Hai-Jun Zhou(B)

State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics,
Chinese Academy of Sciences, Beijing 100190, China

zhouhj@itp.ac.cn

Abstract. A minimum dominating set for a digraph (directed graph) is
a smallest set of vertices such that each vertex either belongs to this set or
has at least one parent vertex in this set. We solve this hard combinatorial
optimization problem approximately by a local algorithm of generalized
leaf removal and by a message-passing algorithm of belief propagation.
These algorithms can construct near-optimal dominating sets or even
exact minimum dominating sets for random digraphs and also for real-
world digraph instances. We further develop a core percolation theory
and a replica-symmetric spin glass theory for this problem. Our algorith-
mic and theoretical results may facilitate applications of dominating sets
to various network problems involving directed interactions.

Keywords: Directed graph · Dominating vertices · Graph observation ·
Core percolation · Message passing

1 Introduction

The construction of a minimum dominating set (MDS) for a general digraph
(directed graph) [1,2] is a fundamental nondeterministic polynomial-hard (NP-
hard) combinatorial optimization problem [3]. A digraph D = {V,A} is formed
by a set V ≡ {1, 2, .., N} of N vertices and a set A ≡ {(i, j) : i, j ∈ V } of M arcs
(directed edges), each arc (i, j) pointing from a parent vertex (predecessor) i to
a child vertex (successor) j. The arc density α is defined simply as α ≡ M/N .
Each vertex i of digraph D brings a constraint requiring that either i belongs to
a vertex set Γ or at least one of its predecessors belongs to Γ . A dominating set
Γ is therefore a vertex set which satisfies all the N vertex constraints, and the
dominating set problem can be regarded as a special case of the more general
hitting set problem [4,5].

A dominating set containing the smallest number of vertices is a MDS, which
might not necessarily be unique for a digraph D. As a MDS is a smallest set of
vertices which has directed edges to all the other vertices of a given digraph, it is
conceptually and practically important for analyzing, monitoring, and control-
ling many directed interaction processes in complex networked systems, such as
c© Springer International Publishing Switzerland 2015
J. Wang and C. Yap (Eds.): FAW 2015, LNCS 9130, pp. 78–88, 2015.
DOI: 10.1007/978-3-319-19647-3 8

The Directed Dominating Set Problem: Generalized Leaf Removal 79

infectious disease spreading [6], genetic regulation [7,8], chemical reaction and
metabolic regulation [9], and power generation and transportation [10]. Previous
heuristic algorithms on the directed MDS problem all came from the computer
science/applied mathematics communities [2] and they are based on vertices’
local properties such as in- and out-degrees [6,11,12]. In the present work we
study the directed MDS problem through statistical mechanical approaches.

In the next section we introduce a generalized leaf-removal (GLR) process
to simplify an input digraph D. If GLR reduces the original digraph D into an
empty one, it then succeeds in constructing an exact MDS. If a core is left behind,
we implement a hybrid algorithm combining GLR with an impact-based greedy
process to search for near-optimal dominating sets (see Fig. 3 and Table 1). We
also study the GLR-induced core percolation by a mean field theory (see Fig. 2).
In Sect. 3 we introduce a spin glass model for the directed MDS problem and
obtain a belief-propagation decimation (BPD) algorithm based on the replica-
symmetric mean field theory. By comparing with ensemble-averaged theoretical
results, we demonstrate that the message-passing BPD algorithm has excellent
performance on random digraphs and real-world network instances, and it out-
performs the local hybrid algorithm (Fig. 3 and Table 1).

This paper is a continuation of our earlier effort [13] which studied the undi-
rected MDS problem. Since each undirected edge between two vertices i and j
can be treated as two opposite-direction arcs (i, j) and (j, i), the methods of this
paper are more general and they are applicable to graphs with both directed
and undirected edges. The algorithmic and theoretical results presented here
and in [13] may promote the application of dominating sets to various network
problems involving directed and undirected interactions.

In the remainder of this paper, we denote by ∂i+ the set of predecessors of
a vertex i, and refer to the size of this set as the in-degree of i; similarly ∂i−

denotes the set of successors of vertex i and its size defines the out-degree of this
vertex. With respective to a dominating set Γ , if vertex i belongs to this set, we
say i is occupied, otherwise it is unoccupied (empty). If vertex i belongs to the
dominating set Γ or at least one of its predecessors belongs to Γ , then we say i
is observed, otherwise it is unobserved.

2 Generalized Leaf Removal and the Hybrid Algorithm

The leaf-removal process was initially applied in the vertex-cover problem [14].
It causes a core percolation phase transition in random undirected or directed
graphs [15]. Here we consider a generalized leaf-removal process for the directed
MDS problem. This GLR process iteratively deletes vertices and arcs from an
input digraph D starting from all the N vertices being unoccupied (and unob-
served) and the dominating set Γ being empty. The microscopic rules of digraph
simplification are as follows:

Rule 1: If an unobserved vertex i has no predecessor in the current digraph
D, it is added to set Γ and become occupied (see Fig. 1A). All the previously
unobserved successors of i then become observed.

80 Y. Habibulla et al.

CA B

k l

m
j

i

Fig. 1. The generalized leaf-removal process. White circles represent unobserved ver-
tices, black circles are occupied vertices, and blue (gray) circles are observed but unoc-
cupied vertices. Pink (light gray) arrows represent deleted arcs, while black arrows are
arcs that are still present in the digraph. (A) vertex i has no predecessor, so it is occu-
pied. (B) vertex j has only one predecessor k and no successor, so vertex k is occupied.
(C) vertex l has only a single unobserved successor m, so the arc (l, m) is deleted (color
figure online).

Rule 2: If an unobserved vertex j has only a single unoccupied predecessor (say
vertex k) and no unobserved successor in the current digraph D, vertex k is
added to set Γ and become occupied (Fig. 1B). All the previously unobserved
successors of k (including j) then become observed.

Rule 3: If an unoccupied but observed vertex l has only a single unobserved
successor (say m) in the current digraph D, occupying l is not better than
occupying m, therefore the arc (l,m) is deleted from D (Fig. 1C). We emphasize
that vertex m is still unobserved after this arc deletion. (Rule 3 is specific to the
dominating set problem and it is absent in the conventional leaf-removal process
[14,15].)

The above-mentioned microscopic rules only involve the local structure of
the digraph, they are simple to implement. Following the same line of reasoning
in [13], we can prove that if all the vertices are observed after the GLR process,
the constructed vertex set Γ must be a MDS for the original digraph D. If some
vertices remain to be unobserved after the GLR process, this set of remaining
vertices is unique and is independent of the particular order of the GLR process.

2.1 Core Percolation Transition

We apply GLR on a set of random Erdös-Rényi (ER) digraphs and random reg-
ular (RR) digraphs (see Fig. 2) and also on a set of real-world directed networks
(see Table 1). To generate an ER digraph of size N and arc density α, we first
select αN different pairs of vertices totally at random from the set of N(N −1)/2
possible pairs, and then create an arc of random direction between each selected

The Directed Dominating Set Problem: Generalized Leaf Removal 81

0.0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 5

w
,

n c
or

e

α

ER

w ncore

0.0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 5
α

RR

w
ncore

Fig. 2.GLR-induced core percolation transition in Erdös-Rényi (left panel) and regular
random (right panel) digraphs. w is the fraction of occupied vertices, ncore is the
fraction of remaining unobserved vertices. Cross symbols are results obtained on a
single digraph with N = 106 vertices and M = αN arcs, lines (left panel) and plus
symbols connected by lines (right panel) are mean-field theoretical results for N = ∞.

vertex pair. Similarly, to generate a RR digraph, we first generate an undirected
RR graph with every vertex having the same integer number (= 2α) of edges
[13], and then randomly specify a direction for each undirected edge.

If the arc density α of an ER digraph is less than 1.852 and that of a RR
digraph is less than 2.0, a MDS can be constructed by applying GLR alone.
However, if α > 1.852 for an ER digraph and α ≥ 2.0 for a RR digraph,
GLR only constructs a partial dominating set for the digraph, and a fraction
ncore of vertices remain to be unobserved after the termination of GLR. For
ER digraphs ncore increases continuously from zero as α exceeds 1.852. The
sub-digraph induced by all these unobserved vertices and all their predecessor
vertices is referred to as the core of digraph D.

We develop a percolation theory to quantitatively understand the GLR
dynamics on random digraphs. For theoretical simplicity we consider a GLR
process carried out in discrete time steps t = 0, 1, In each time step t, first
Rule 1 is applied to all the eligible vertices, then Rule 2 is applied to all the
eligible vertices, then Rule 3 is applied to all the eligible arcs, and finally all
the newly occupied vertices and their attached arcs are all deleted from digraph
D. The fraction w of occupied vertices during the whole GLR process and the
fraction ncore of remaining unobserved vertices are quantitatively predicted by
this mean-field theory (see the Appendix for technical details). These theoretical
predictions are in complete agreement with simulation results on single digraph
instances (Fig. 2). We believe that when there is no core (ncore = 0), the MDS
relative size w as predicted by our theory is the exact ensemble-averaged result
for finite-connectivity random digraphs.

2.2 The Hybrid Algorithm

The GLR process can not construct a MDS for the whole digraph D if it con-
tains a core. For such a difficult case we combine GLR with a simple greedy

82 Y. Habibulla et al.

Table 1. Constructing dominating sets for several real-world network instances con-
taining N vertices and M = αN arcs. For each graph, we list the number of unobserved
vertices after the GLR process (Core), the size of the dominating set obtained by a
single running of the greedy algorithm (Greedy), the hybrid algorithm (Hybrid), and
the BPD algorithm at fixed re-weighting parameter x = 8.0 (BPD). Epinions1 [16]
and WikiVote [17,18] are two social networks, Email [19] and WikiTalk [17,18] are two
communication networks, HepPh and HepTh [20] are two research citation networks,
Google and Stanford [21] are two webpage connection networks, and Gnutella31 [22] is
a peer-to-peer network.

Network N M α Core Greedy Hybrid BPD

Epinions1 75879 405740 5.347 348 37172 37128 37127

WikiVote 7115 100762 14.162 7 4786 4784 4784

Email 265214 364481 1.374 0 203980 203980 203980

WikiTalk 2394385 4659565 1.946 72 63617 63614 63614

HepPh 34546 420877 12.183 982 9628 9518 9512

HepTh 27770 352285 12.686 1900 7302 7213 7203

Google 875713 4322051 4.935 98473 315585 314201 313986

Stanford 281903 1992636 7.069 68947 90403 89388 89466

Gnutella31 62586 147892 2.363 26 12939 12784 12784

process to construct a dominating set that is not necessarily a MDS. We define
the impact of an unoccupied vertex as the number of newly observed vertices
caused by occupying this vertex [2,6,12]. For example, an unobserved vertex
with three unobserved successors has impact 4, while an observed vertex with
three unobserved successors has impact 3. Our hybrid algorithm has two modes,
the default mode and the greedy mode. In the default mode, the digraph is
iteratively simplified by occupying vertices according to the microscopic rules of
GLR. If there are still unobserved vertices after this process, the algorithm first
switches to the greedy mode, in which the digraph is simplified by occupying
a vertex randomly chosen from the subset of highest-impact vertices, and then
switches back to the default mode.

The hybrid algorithm can be regarded as an extension of the pure greedy algo-
rithm which always works in the greedy mode. The simulation results obtained
by the hybrid algorithm and the pure greedy algorithm are shown in Fig. 3 for
random digraphs and in Table 1 for real-world network instances. The hybrid
algorithm improves over the greedy algorithm considerably on random digraph
instances when the arc density α ≤ 10. But when the relative size ncore of the
core in the digraph is close to 1, the hybrid algorithm only slightly outperforms
the pure greedy algorithm.

3 Spin Glass Model and Belief-Propagation

We now introduce a spin glass model for the directed MDS problem and solve it
by the replica-symmetric mean field theory, which is based on the Bethe-Peierls

The Directed Dominating Set Problem: Generalized Leaf Removal 83

0.1

0.2

0.3

0.4

0.5

2 4 6 8 10

w

α

ER

RS
BPD
Hybrid
Greedy

0.1

0.2

0.3

0.4

0.5

2 4 6 8 10
α

RR

RS
BPD
Hybrid
Greedy

Fig. 3. Relative sizes w of dominating sets for Erdös-Rényi (left panel) and random reg-
ular (right panel) digraphs. We compare the mean sizes of 96 dominating sets obtained
by the Greedy, the Hybrid, and the BPD algorithm on 96 digraph instances of size
N = 105 and arc density α (fluctuations to the mean are of order 10−4 and are not
shown). The MDS relative sizes predicted by the replica-symmetric theory are also
shown. The re-weighting parameter is fixed to x = 10.0 for ER digraphs and to x = 8.0
for RR digraphs. The vertical dashed lines mark the core-percolation transition point
α ≈ 1.852 for ER digraphs and α = 2.0 for RR digraphs.

approximation [23,24] but can also be derived without any physical assumptions
through partition function expansion [25,26]. We define a partition function Z(x)
for a given input digraph D as follows:

Z(x) =
∑

c

∏

i∈V

[

e−xci
(

1 − (1 − ci)
∏

j∈∂i+

(1 − cj)
)

]

. (1)

The summation in this expression is over all the microscopic configurations c ≡
{c1, c2, ..., cN} of the N vertices, with ci ∈ {0, 1} being the state of vertex i
(ci = 0, empty; ci = 1, occupied). A configuration c has zero contribution
to Z(x) if it does not satisfy all the vertex constraints; if it does satisfy all
these constraints and therefore is equivalent to a dominating set, it contributes
a statistical weight e−xW (c), with W (c) ≡

∑

i∈V ci being the total number of
occupied vertices. When the positive re-weighting parameter x is sufficiently
large, Z(x) will be overwhelmingly contributed by the MDS configurations.

We define on each arc (i, j) of digraph D a distribution function q
ci,cj
i→j , which

is the probability of vertex i being in state ci and vertex j being in state cj if
all the other attached arcs of j are deleted and the constraint of j is relaxed,
and another distribution function q

cj ,ci
j←i , which is the probability of i being in

state ci and j being in state cj if all the other attached arcs of i are deleted
and the constraint of i is relaxed. Assuming all the neighboring vertices of any
vertex i are mutually independent of each other when the constraint of vertex i is
relaxed (the Bethe-Peierls approximation), then when this constraint is present,
the marginal probability qci

i of vertex i being in state ci is estimated by

qci
i =

1
zi

e−xci
[

∏

j∈∂i+

∑

cj

q
cj ,ci
j→i − δci

0

∏

j∈∂i+

q0,0
j→i

]

∏

k∈∂i−

∑

ck

qck,ci
k←i , (2)

84 Y. Habibulla et al.

where zi is a normalization constant, and δn
m is the Kronecker symbol with

δn
m = 1 if m = n and δn

m = 0 if otherwise. Under the same approximation we
can derive the following Belief-Propagation (BP) equations on each arc (i, j):

q
ci,cj
i→j =

1
zi→j

e−xci
[

∏

k∈∂i+

∑

ck

qck,ci
k→i − δci

0

∏

k∈∂i+

q0,0
k→i

]

∏

l∈∂i−\j

∑

cl

qcl,ci
l←i , (3a)

q
cj ,ci
j←i =

1
zj←i

e−xcj
[

∏

k∈∂j+\i

∑

ck

q
ck,cj
k→j − δ

cj+ci
0

∏

k∈∂j+\i

q0,0
k→j

]

∏

l∈∂j−

∑

cl

q
cl,cj
l←j ,

(3b)

where zi→j and zj←i are also normalization constants, and ∂j+\i is the vertex
set obtained after removing i from ∂j+. We can easily verify that qci,0

i→j = qci,1
i→j

for ci = 0 or 1, and that q1,0
j←i = q1,1

j←i.
We let Eqs. (2) and (3) guide our construction of a near-optimal dominating

set Γ through a belief propagation decimation algorithm. This BPD algorithm is
implemented in the same way as the BPD algorithm for undirected graphs [13],
therefore its implementing details are omitted here (the source code is available
upon request). Roughly speaking, at each iteration step of BPD we first iterate
Eq. (3) for several rounds, then we estimate the occupation probabilities for
all the unoccupied vertices using Eq. (2), and then we occupy those vertices
whose estimated occupation probabilities are the highest. Such a BPD process
is repeated on the input digraph until all the vertices are observed. The results
of this message-passing algorithm are shown in Fig. 3 for random digraphs and
in Table 1 for real-world networks.

If we can find a fixed point for the set of BP equations at a given value of the
re-weighting parameter x, we can then compute the mean fraction w of occupied
vertices as w = (1/N)

∑

i∈V q1i . The total free energy F = −(1/x) ln Z(x) can
be evaluated as the total vertex contributions subtracting the total arc contri-
butions:

F = −
∑

i∈V

1
x

ln
[

∑

ci

e−xci
[

∏

j∈∂i+

∑

cj

q
cj ,ci
j→i − δci

0

∏

j∈∂i+

q0,0
j→i

]

∏

k∈∂i−

∑

ck

qck,ci
k←i

]

+
∑

(i,j)∈A

1
x

ln
[

∑

ci,cj

q
ci,cj
i→j q

cj ,ci
j←i

]

. (4)

The entropy density s of the system is then estimated through s = x(w −F/N).
For a given ensemble of random digraphs, the ensemble-averaged occupation

fraction w and entropy density s at each fixed value of x can also be obtained from
Eqs. (2), (3) and (4) through population dynamics simulation [13]. Both w and
s decrease with x, and s may change to be negative as x exceeds certain critical
value. The value of w at this critical point of x is then taken as the ensemble-
averaged MDS relative size w0 (very likely it is only a lower bound to w0). For
example, at arc density α = 5 the entropy density of ER digraphs decreases to
zero at x ≈ 9.9, at which point w ≈ 0.195. These ensemble-averaged results for

The Directed Dominating Set Problem: Generalized Leaf Removal 85

random ER and RR digraphs are also shown in Fig. 3. We notice that the BPD
results and the replica-symmetric mean field results almost superimpose with
each other, suggesting that dominating sets obtained by the BPD algorithm are
extremely close to be optimal.

4 Conclusion

In this paper we studied the directed dominating set problem by a core perco-
lation theory and a replica-symmetric mean field theory, and proposed a gen-
eralized leaf-removal local algorithm and a BPD message-passing algorithm to
construct near-optimal dominating sets for single digraph instances. We expect
these theoretical and algorithmic results to be useful for many future practical
applications.

The spin glass model (1) was treated in this paper only at the replica-
symmetric mean field level. It should be interesting to extend the theoretical
investigations to the level of replica-symmetry-breaking [27] for a more complete
understanding of this spin glass system. The replica-symmetry-breaking mean
field theory can also lead to other message-passing algorithms that perform even
better than the BPD algorithm [23] (the review paper [28] offers a demonstration
of this point for the minimum vertex-cover problem).

Acknowledgments. This research is partially supported by the National Basic
Research Program of China (grant number 2013CB932804) and by the National
Natural Science Foundations of China (grant numbers 11121403 and 11225526).
HJZ conceived research, JHZ and YH performed research, HJZ and JHZ wrote the
paper. Correspondence should be addressed to HJZ (zhouhj@itp.ac.cn) or to JHZ
(zhaojh@itp.ac.cn).

Appendix: Mean Field Equations for the GLR Process

The mean field theory for the directed GLR process is a simple extension of
the same theory presented in [13] for undirected graphs. Therefore here we only
list the main equations of this theory but do not give the derivation details.
We denote by P (k+, k−) the probability that a randomly chosen vertex of a
digraph has in-degree k+ and out-degree k−. Similarly, the in- and out-degree
joint probabilities of the predecessor vertex i and successor vertex j of a randomly
chosen arc (i, j) of the digraph are denoted as Q+(k+, k−) and Q−(k+, k−),
respectively. We assume that there is no structural correlation in the digraph,
therefore

Q+(k+, k−) =
k−P (k+, k−)

α
, Q−(k+, k−) =

k+P (k+, k−)
α

, (5)

where α ≡
∑

k+, k− k+P (k+, k−) =
∑

k+, k− k−P (k+, k−) is the arc density.
Consider a randomly chosen arc (i, j) from vertex i to vertex j, suppose ver-

tex i is always unobserved, then we denote by αt the probability that vertex

86 Y. Habibulla et al.

j becomes an unobserved leaf vertex (i.e., it has no unobserved successor and
has only a single predecessor) at the t-th GLR evolution step, and by γ[0,t] the
probability that j has been observed at the end of the t-th GLR step. Similarly,
suppose the successor vertex j of a randomly chosen arc (i, j) is always unob-
served, we denote by β[0,t] the probability that the predecessor vertex i has been
occupied at the end of the t-th GLR step, and by ηt the probability that at the
end of the t-th GLR step vertex i becomes observed but unoccupied and having
no other unoccupied successors except vertex j. These four set of probabilities
are related by the following set of iterative equations:

αt = δ0t Q−(1, 0) +
∑

k+, k−

Q−(k+, k−)
[

δ1t

[

(η0)k+−1(γ[0,0])k− − δ1k+
δ0k−

]

+

(1 − δ0t − δ1t)
[

(

t−1
∑

t′=0

ηt′
)k+−1(γ[0,t−1])k− −

(

t−2
∑

t′=0

ηt′
)k+−1(γ[0,t−2])k−

]

]

,

(6a)

β[0,t] = 1 −
∑

k+, k−

Q+(k+, k−)
[

δ0t (1 − δ0k+
)(1 − α0)k−−1+

(1 − δ0t)
[

1 −
(

t−1
∑

t′=0

ηt′
)k+

]

(1 −
t

∑

t′=0

αt′)k−−1

]

, (6b)

γ[0,t] = 1 −
∑

k+, k−

Q−(k+, k−)(1 − β[0,t])k+−1
(

1 −
t

∑

t′=0

αt′
)k−

, (6c)

ηt = δ0t
∑

k+, k−

Q+(k+, k−)
(

1 − (1 − β[0,0])k+
)

(γ[0,0])k−−1+

(1 − δ0t)
∑

k+, k−

Q+(k+, k−)
[

(

1 − (1 − β[0,t])k+
)

(γ[0,t])k−−1

−
(

1 − (1 − β[0,t−1])k+
)

(γ[0,t−1])k−−1
]

. (6d)

Let us define αcum ≡
∑+∞

t≥0 αt, βcum ≡ β[0,∞], γcum ≡ γ[0,∞] and ηcum ≡
∑∞

t≥0 ηt as the cumulative probabilities over the whole GLR process. From
Eq. (6) we can verify that these four cumulative probabilities satisfy the fol-
lowing self-consistent equations:

αcum =
∑

k+, k−

Q−(k+, k−)(ηcum)k+−1(γcum)k− , (7a)

βcum = 1 −
∑

k+, k−

Q+(k+, k−)
[

1 − (ηcum)k+
]

(1 − αcum)k−−1 , (7b)

γcum = 1 −
∑

k+, k−

Q−(k+, k−)(1 − βcum)k+−1(1 − αcum)k− , (7c)

ηcum =
∑

k+, k−

Q+(k+, k−)
[

1 − (1 − βcum)k+
]

(γcum)k−−1 . (7d)

The Directed Dominating Set Problem: Generalized Leaf Removal 87

The fraction ncore of vertices that remain to be unobserved at the end of the
GLR process is

ncore =
∑

k+, k−

P (k+, k−)
[

(1 − βcum)k+ − (ηcum)k+
]

(1 − αcum)k−

−
∑

k+, k−

P (k+, k−)k+(1 − βcum − ηcum)(ηcum)k+−1(γcum)k− . (8)

The fraction w of vertices that are occupied during the whole GLR process
is evaluated through

w = 1 −
∑

k+, k−

P (k+, k−)
[

1 − (ηcum)k+
]

(1 − αcum)k−

−P (1, 0)η0 −
∑

t≥1

∑

k+, k−

P (k+, k−)k+ηt

(

t−1
∑

t′=0

ηt′
)k+−1(

t−1
∑

t′=0

γt′
)k−

−
∑

t≥1

∑

k+, k−

P (k+, k−)k−αt

(

t−1
∑

t′=0

γt′
)k−−1

[

1 −
(

1 −
t−1
∑

t′=0

βt′
)k+

]

. (9)

References

1. Fu, Y.: Dominating set and converse dominating set of a directed graph. Amer.
Math. Monthly 75, 861–863 (1968)

2. Haynes, T.W., Hedetniemi, S.T., Slater, P.J.: Fundamentals of Domination in
Graphs. Marcel Dekker, New York (1998)

3. Garey, M., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. Freeman, San Francisco (1979)

4. Mézard, M., Tarzia, M.: Statistical mechanics of the hitting set problem. Phys.
Rev. E 76, 041124 (2007)

5. Gutin, G., Jones, M., Yeo, A.: Kernels for below-upper-bound parameterizations
of the hitting set and directed dominating set problems. Theor. Comput. Sci. 412,
5744–5751 (2011)

6. Takaguchi, T., Hasegawa, T., Yoshida, Y.: Suppressing epidemics on networks by
exploiting observer nodes. Phys. Rev. E 90, 012807 (2014)

7. Wuchty, S.: Controllability in protein interaction networks. Proc. Natl. Acad. Sci.
USA 111, 7156–7160 (2014)

8. Wang, H., Zheng, H., Browne, F., Wang, C.: Minimum dominating sets in cell cycle
specific protein interaction networks. In: Proceedings of International Conference
on Bioinformatics and Biomedicine (BIBM 2014), pp. 25–30. IEEE (2014)

9. Liu, Y.Y., Slotine, J.J., Barabási, A.L.: Observability of complex systems. Proc.
Natl. Acad. Sci. USA 110, 2460–2465 (2013)

10. Yang, Y., Wang, J., Motter, A.E.: Network observability transitions. Phys. Rev.
Lett. 109, 258701 (2012)

11. Pang, C., Zhang, R., Zhang, Q., Wang, J.: Dominating sets in directed graphs.
Infor. Sci. 180, 3647–3652 (2010)

12. Molnár Jr., F., Sreenivasan, S., Szymanski, B.K., Korniss, K.: Minimum dominat-
ing sets in scale-free network ensembles. Sci. Rep. 3, 1736 (2013)

88 Y. Habibulla et al.

13. Zhao, J.H., Habibulla, Y., Zhou, H.J.: Statistical mechanics of the minimum dom-
inating set problem. J. Stat, Phys. (2015). doi:10.1007/s10955-015-1220-2

14. Bauer, M., Golinelli, O.: Core percolation in random graphs: a critical phenomena
analysis. Eur. Phys. J. B 24, 339–352 (2001)

15. Liu, Y.Y., Csóka, E., Zhou, H.J., Pósfai, M.: Core percolation on complex networks.
Phys. Rev. Lett. 109, 205703 (2012)

16. Richardson, M., Agrawal, R., Domingos, P.: Trust management for the semantic
web. In: Fensel, D., Sycara, K., Mylopoulos, J. (eds.) ISWC 2003. LNCS, vol. 2870,
pp. 351–368. Springer, Heidelberg (2003)

17. Leskovec, J., Huttenlocher, D., Kleinberg, J.: Signed networks in social media. In:
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems,
pp. 1361–1370. ACM, New York (2010)

18. Leskovec, J., Huttenlocher, D., Kleinberg, J.: Predicting positive and negative links
in online social networks. In: Proceedings of the 19th International Conference on
World Wide Web, pp. 641–650. ACM, New York (2010)

19. Leskovec, J., Kleinberg, J., Faloutsos, C.: Graph evolution: densification and
shrinking diameters. ACM Trans. Knowl. Disc. Data 1, 2 (2007)

20. Leskovec, J., Kleinberg, J., Faloutsos, C.: Graphs over time: densification laws,
shrinking diameters and possible explanations. In: Proceedings of the Eleventh
ACM SIGKDD International Conference on Knowledge Discovery in Data Mining,
pp. 177–187. ACM, New York (2005)

21. Leskovec, J., Lang, K.J., Dasgupta, A., Mahoney, M.W.: Community structure in
large networks: natural cluster sizes and the absence of large well-defined clusters.
Internet Math. 6, 29–123 (2009)

22. Ripeanu, M., Foster, I., Iamnitchi, A.: Mapping the gnutella network: properties of
large-scale peer-to-peer systems and implications for system design. IEEE Internet
Comput. 6, 50–57 (2002)

23. Mézard, M., Montanari, A.: Information, Physics, and Computation. Oxford Uni-
versity Press, New York (2009)

24. Kschischang, F.R., Frey, B.J., Loeliger, H.A.: Factor graphs and the sum-product
algorithm. IEEE Trans. Inf. Theory 47, 498–519 (2001)

25. Xiao, J.Q., Zhou, H.J.: Partition function loop series for a general graphical model:
free-energy corrections and message-passing equations. J. Phys. A: Math. Theor.
44, 425001 (2011)

26. Zhou, H.J., Wang, C.: Region graph partition function expansion and approximate
free energy landscapes: theory and some numerical results. J. Stat. Phys. 148, 513–
547 (2012)

27. Mézard, M., Parisi, G.: The bethe lattice spin glass revisited. Eur. Phys. J. B 20,
217–233 (2001)

28. Zhao, J.H., Zhou, H.J.: Statistical physics of hard combinatorial optimization:
vertex cover problem. Chin. Phys. B 23, 078901 (2014)

http://dx.doi.org/10.1007/s10955-015-1220-2

A Linear Time Algorithm for Ordered Partition

Yijie Han(B)

School of Computing and Engineering,
University of Missouri at Kansas City,

Kansas City, MO 64110, USA
hanyij@umkc.edu

Abstract. We present a deterministic linear time and space algorithm
for ordered partition of a set T of n integers into n1/2 sets T0 ≤ T1 ≤
· · · ≤ Tn1/2−1, where |Ti| = θ(n1/2) and Ti ≤ Ti+1 means that max Ti ≤
min Ti+1.

Keywords: Algorithms · Sorting · Integer sorting · Linear time algo-
rithm · Ordered partition · Hashing · Perfect hash functions

1 Introduction

For a set T of n input integers we seek to partition them into n1/2 sets
T0, T1, ..., Tn1/2 − 1 such that |Ti| = θ(n1/2), Ti ≤ Ti+1, 0 ≤ i < n1/2 − 1.
Where Ti ≤ Ti+1 means max Ti ≤ min Ti+1. We call this ordered partition. We
show that we can do this in deterministic optimal time, i.e. in O(n) time.

This result, when applied iteratively for O(log log n) iterations, partitions the
n integers into O(n3/4) sets because every set is further partitioned into O(n1/4)
sets, into O(n7/8) sets, and so on, eventually partitions n integers into n ordered
sets, i.e., having them sorted. The time for these iterations is O(n log log n)
and the space complexity is linear, i.e. O(n). This complexity result for integer
sorting was known [6] and is the current best result for deterministic integer
sorting. However, ordered partition itself is an interesting topic for study and
the result for ordered partition can be applicable in the design of algorithms for
other problems. As an example in [7] our ordered partition algorithm is extended
for obtaining an improved randomized integer sorting algorithm.

The problem of ordered partition was noticed in [11] and the linear time
complexity was conceived there. However, the deterministic linear time ordered
partition algorithm presented here has a nice structure and the mechanism for
the design of our algorithm is particularly worth noting. In particular the con-
version of the randomized signature sorting to the deterministic version shown
in Sect. 3.2 and the mechanism shown there were not explained clearly in [11].
Besides, our ordered partition algorithm is an optimal algorithm and it has been
extended to obtain a better randomized algorithm [7] for integer sorting. There-
fore we present them here for the sake of encouraging future research toward an
optimal algorithm for integer sorting.
c© Springer International Publishing Switzerland 2015
J. Wang and C. Yap (Eds.): FAW 2015, LNCS 9130, pp. 89–103, 2015.
DOI: 10.1007/978-3-319-19647-3 9

90 Y. Han

2 Overview

Integers are sorted into their destination partition by moving them toward their
destination partition. One way of moving integers is to use the ranks computed
for them to move them, say a rank r is obtained for an integer i then move i to
position r. We will call such moving as moving by indexing. Note that because
our algorithm is a linear time algorithm such move by indexing can happen only
a constant number of times for each integer. Since a constant number of moving
by indexing is not sufficient through our algorithm we need to use the packed
moving by indexing, i.e. we pack a integers into a word with each integer having
the rank of log n/(2a) bits (and thus the total number of bits for all ranks of
packed integers in a word is log n/2) and move these integers to the destination
specified by these log n/2 bits in one step.

Here we packed a integers into a word in order to move them by indexing. In
order to have a integers packed in a word we need to reduce the input integers
to smaller valued integers. This can be done in the randomized setting by using
the signature sorting [1] which basically says:

Lemma 1 [1]: In the randomized setting, sorting of n p log n bits integers can
be done with 2 passes of sorting n p1/2 log n bits integers.

However, because our algorithm is a deterministic algorithm we converted
Lemma 1 to Lemma 2.

Lemma 2: Ordered partition of n p log n bits integers into n1/2 partitions can
be done with 2 passes of ordered partition of n p1/2 log n bits integers into n1/2

partitions.

Lemma 2 is basically proved in Sect. 3.2 as Lemma 2′ and it is a deterministic
algorithm. This is one of our main contributions.

By Lemma 2 we can assume that the integers we are dealing with has
p log n bits while each word has p3 log n bits and thus we can pack more than
p integers into a word.

We do ordered partition of n integers into n1/2 partitions by a constant
number of passes of ordered partition of n integers into n1/8 partitions, i.e.
ordered partition of n integers into n1/8 partitions, into n1/8+(1/8)(7/8) partitions,
..., into n1/2 partitions.

We do ordered partition of n integers in set T into n1/8 partitions via ordered
partition of n integers in T by n1/8 integers s0 ≤ s1 ≤ · · · ≤ sn1/8−1 in S, i.e.
partition T into |S| + 1 sets T0, T1, ..., T|S| such that T0 ≤ s0 ≤ T1 ≤ · · · ≤
s|S|−1 ≤ T|S|. We call this as ordered partition of T by S.

The ordered partition is done by arbitrary partition T into n1/2 sets
T (i)’s, 0 ≤ i < n1/2, with |T (i)| = n1/2 and pick arbitrary n1/16 integers
s0, s1, ..., sn1/16−1 in T to form set S. Then use step i to do ordered partition
of T (i) by S, i = 0, 1, ..., n1/2 − 1. After step i − 1 we have ordered partitioned
∪i−2
j=0T (j) by S into T0 ≤ s0 ≤ T1 ≤ s1 ≤ · · · ≤ sn1/16−1 ≤ Tn1/16 and we main-

tain that |Tj | ≤ 2n15/16 for all j. If after step i 2n15/16 < |Tj | ≤ 2n15/16 + n1/2

then we use selection [4] in O(|Tj |) time to select the median m of Tj and

A Linear Time Algorithm for Ordered Partition 91

(ordered) partition Tj into two sets. We add m to S. The next time a partition
has to be ordered partitioned into two sets is after adding additional n15/16+n1/2

integers (from n15/16 integers to 2n15/16+n1/2 integers). Thus the overall time of
ordered partitioning of one set (partition) to two sets (partitions) is linear. This
idea is shown in [2]. Thus after finishing we have partitioned T into O(n1/16)
sets with each set of size ≤ 2n15/16. We can then do selections for these sets to
have them become n1/16 ordered partitioned sets with each set of size n15/16.
The time is linear.

Thus we now left with the problem of ordered partition of T with |T | = n by
S with |S| = n1/8. This is a complicated part of our algorithm. We achieve this
using the techniques of deterministic perfect hashing, packed moving by indexing
or sorting, progressive enlarge the size of hashed integers for packed moving and
the determination of progress when hashed value matches, etc. The basic idea is
outline in the next two paragraphs.

Let s0 ≤ s1 ≤ · · · ≤ sn1/8−1 be the integers in S. As will be
shown in Sect. 4 that we can compare all integers in T with si, s2i, s3i, ...,
s�n1/8/i�i in O(n log(n1/8/i)/ log n) time because integers can be hashed to
O(log(n1/8/i)) bits (this is a perfect hash for si, s2i, s3i, ..., s�n1/8/i�i but not
perfect for the integers in T , but the hash value for every integer has
O(log(n1/8/i)) bits) and we can pack O(log n/ log(n1/8/i))) integers into one
word (note that we can pack more integers into one word but the number of
hashed bits will exceed log n/2 which cannot be handled by our algorithm).
Because of this packing we left with O(n log(n1/8/i)/ log n) words and we can
sort them using bucket sorting (by treating the hashed bits together as one
integer in each word) in O(n log(n1/8/i)/ log n) time. This sorting will let us
compare all integers in T with si, s2i, s3i, ..., s�n1/8/i�i. As noted in Sect. 4 if an
integer t in T is equal to sai for some a (we call match) then we made progress
(we say advanced). Otherwise t is not equal to any sai (we call unmatch) and
then we will compare these unmatched t’s with sj , s2j , s3j , ..., s�n1/8/j�j , where
n1/8/j = (n1/8/i)2 (i.e. we double the number of bits for hashed value for every
integer). We keep doing this when unmatch happens till i (or j) becomes 1 where
we have compared t with all integers in S and none of them is equal to t.

If for every integer t in T we did the last paragraph then if t does not match
any integer in S we will lose our work because we will not know which partition
t will fall into. To prevent this to happen when we compare t to integers in S we
really do is to compare the most significant log n bits of t to the most significant
log n bits of integers in S. And thus if the most significant log n bits of t does not
match the most significant log n bits of any integer in S we can then throw away all
bits of t except the most significant log n bits. We can then bucket sort t (because
there are only log n bits for t left) into its destination partition. The complication
of this scheme such as when the most significant log n bits match is handled in
Sect. 4 where we used the concept of current segment for every integer. Initially
the most significant log n bits of an integer is the current segment of the integer.
When the current segment matches we then throw away the current segment and
use the next log n bits as the current segment. The details is shown in Sect. 4.

92 Y. Han

3 Preparation

3.1 Perfect Hash Function

We will use a perfect hash function H that can hash a set S of integers in
{0, 1, ...,m − 1} to integers in {0, 1, ..., |S|2 − 1}. A perfect hash function is a
hash function that has no collisions for the input set. Such a hash function for
S can be found in O(|S|2 log m) time [13]. In [8] we improved this and made the
time independent of the number of bits in integers (log m):

Lemma 3 [8]: A perfect hash function that hashes a set S of integers in
{0, 1, ...,m − 1} to integers in {0, 1, ..., |S|2 − 1} can be found in O(|S|4 log |S|)
time. Thereafter every batch of |S| integers can be hashed to {0, 1, ..., |S|2 − 1}
in O(|S|) time and space.

We note that the hash function used in this paper was first devised in [5] where
it is showed that such a hash function can be found with a randomized algorithm
in constant time. Raman [13] showed how to use derandomization to obtain a
deterministic version of the hash function in O(n2 log m) time for a set of n
integers in {0, 1, ...,m − 1}.

The hash function given in [5,13] for hashing integers in {0, 1, ..., 2k − 1} to
{0, 1, ..., 2l − 1} is

ha(x) = (ax mod 2k) div 2k−l

with different values of a different hash functions are defined. Raman [13] showed
how to obtain the value of a such that the hash function becomes a deterministic
perfect hash function. Note that the computation of hash values for multiple
integers packed in a word can be done in constant time.

3.2 Converting Ordered Partition with Integers of p logn
Bits to that with Integers of p1/3 logn Bits

Besides ordered partition, we now introduce the problem of ordered partition of
set T of n integers by a set S of |S| < n integers. Let s0 ≤ s1 ≤ · · · ≤ s|S|−1

be the |S| integers in S that are already sorted. Ordered partition T by S is to
ordered partition T into |S| + 1 sets T0 ≤ T1 ≤ · · · ≤ T|S| such that T0 ≤ s0 ≤
T1 ≤ · · · ≤ s|S|−1 ≤ T|S|, where Ti ≤ si means max Ti ≤ si and si ≤ Ti+1 means
si ≤ min Ti+1.

In our application in the following sections, |S| = n1/8. Thus sorting set S
takes at most O(|S| log |S|) = O(n) time. That is the reason we can consider the
sorting of S as free as it will not dominate the time complexity of our algorithm.

We use a perfect hash function H for set S. Although there are many perfect
hash functions given in many papers, we use the hash function in [5,13] because
it has the property of hashing multiple integers packed in one word in constant
time. Notice that H hashes S into {0, 1, ..., |S|2 − 1} instead of {0, 1, ..., c|S|− 1}
for any constant c.

We shall use H to hash integers in T . Although H is perfect for S it is not
perfect for T as T has n integers. We cannot afford to compute a perfect hash

A Linear Time Algorithm for Ordered Partition 93

function for T as it requires nonlinear time. The property we will use is that for
any two integers in S if their hash values are different then these two integers
are different. For any integer t ∈ T if the hash value of t is different than the
hash value of an integer s in S then t �= s.

We will count the bits in an integer from the low order bits to the high order
bits starting at the least significant bit as the 0-th bit.

For sorting integers in {0, 1, ...,m − 1} we assume that the word size (the
number of bits in a word) is log m+log n. log n bits are needed here for indexing
into n input numbers. When m = nk for a constant k n integers can be sorted
in linear time using radix sort. Let p = log m/ log n and therefore we have
p log n bits for each integer.

As will be shown, we can do ordered partition of T by S, where |T | = n and
|S| ≤ n, (here integers in T ∪ S are taken from {0, 1, ...,m − 1}, i.e. each integer
has p log n bits) in constant number of passes with each pass being an ordered
partition of set T ′

i by S′
i, i = 1, 2, 3, ..., c, where T ′

i has n integers each having
p1/3 log n bits and S′

i has |S| integers each having p1/3 log n bits, c is a constant.
This is done as follows. We view each integer of p log n bits in T (S)

as composed of p1/3/2 segments with each segment containing consecutive
2p2/3 log n bits. We use a perfect hash function H which hashes each segment
of an integer in S into 2 log |S| bits and thus each integer in S is hashed to
p1/3 log n bits. Note that the hash function provided in [5,13] can hash all seg-
ments contained in a word in constant time (It requires [5,13] that for each seg-
ment g of 2p2/3 log n bits another 2p2/3 log n bits g1 has to be reserved and two
segments of bits g1g is used for the hashing of segment g. This can be achieved
by separating even indexed segments into a word and odd indexed segments into
another word).

We then use H to hash (segments of) integers in T and thus each integer in
T is also hashed to p1/3 log n bits. Note here H is not perfect with respect to the
(segments of) integers in T and thus different (segments) of integers in T may
be hashed to the same hash value.

We use T ′
1 (S′

1) to denote this hashed set, i.e. each integer in T ′
1 (S′

1) has only
p1/3 log n bits. Now assume that integers in S′

1 are sorted. If integer s (t) in S
(T) is hashed to integer s′ (t′) in S′

1 (T ′
1) then we use H(s) = s′ (H(t) = t′) to

denote this. If s is in S then we also have that s = H−1(s′). Note that if t is an
integer in T and s is an integer in S, then if H(t) = H(s) t may not be equal to
s as H is not perfect for T ∪ S. But if H(t) �= H(s) then t �= s and this is the
property we will make use of. We will also use H(S) (H(T)) to denote the set
of integers hashed from S (T).

In the first pass we do ordered partition of T ′
1 by S′

1. Assume that this is done.
Let t′ be an integer in T ′

1 and s′
i ≤ t′ ≤ s′

i+1, s′
i and s′

i+1 be the two integers in
S′
1 with ranks i and i + 1. If t′ = s′

i then we compare t and H−1(s′
i). Otherwise

let the most significant bit that s′
i (s′

i+1) and t′ differs be the di-th (di+1-th) bit
and consider the case that di < di+1 (the situation that di > di+1 can be treated
similarly) in which we will compare t and H−1(s′

i). Note that the situation
di = di+1 cannot happen. Let di-th bit of s′

i be in the g-th segment of s′
i (each

segment of s′
i has ≤ 2 log n bits and is obtained by hashing the corresponding

94 Y. Han

1

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

1

1

1

1

a

a

Fig. 1.

segment of 2p2/3 log n bits in H−1(s′
i). Note here s′

i is not necessarily hashed
from si because the rank order of si’s are not kept in s′

i’s after hashing, si need
not be H−1(s′

i), i.e. s′
i is ranked i-th in S′

1 but H−1(s′
i) may not be ranked i-th

in S). This says that in the more significant segments than the g-th segment
both t′ and s′

i are equal. Note that for every s′
j in S′

1 let the most significant bit
that t′ and s′

j differs be in the g′-th segment then g′ ≥ g because s′
i ≤ t′ ≤ s′

i+1.
If we look at the trie (binary tree built following the bits in the integers) for

S we see that the most significant segment that t and H−1(s′
i) differs is the u-th

segment with u ≥ g. Note here that u may be not equal to g because H is not
perfect for T ∪S. For all other sk’s if the most significant segment t and sk differ
is the u1-th segment then u1 ≥ u (u1-th segment is at least as significant as u-th
segment) and this comes from the property that H is perfect for S. Thus the
further ordered partition for t by S can be restricted to the u-th segment of t
with respect to the u-th segment of sk’s such that the most significant segment
that sk and t differ is the u-th segment.

Example 1: Figure 1. shows a trie for U (representing S) of 4 integers: u0 =
001001000, u1 = 001001011, u2 = 011101101, u3 = 011111110. Let set V
(representing T) contain integers v0 = 000100111, v1 = 010110011, v2 =
011011101, v3 = 010101011, v4 = 011110101, v5 = 011111111, v6 = 001001010,
v7 = 011101011, v8 = 011010100, v9 = 011101111. Let every 3 bits form a seg-
ment so that each integer has 3 segments. We will do ordered partition of V by U .
Let wk = min3

i=0{w | the most significant segment that H(vk) differs with H(ui)
is the w-th segment }. Let the ui that achieves the wk value be uvk

.
Say that w0 = 0 and uv0 is u0. Note that although the most significant

segment that u0 and v0 differ is the 2nd segment, the most significant segment
that H(u0) and H(v0) differ can be the 0th segment because H is not perfect on
T ∪ S. Now compare u0 and v0 we find that the most significant segment they
differ is the 2nd segment. This says that v0 “branches out” of the trie for U at

A Linear Time Algorithm for Ordered Partition 95

the 2nd segment. Although the ordered partition for v0 can be determined from
the trie of U , this is not always the case for every integer in V . For example, say
w3 = 1 and uv3 is u0, then comparing u0 and v3 determines that v3 branches
out of u0 at point a in Fig. 1, but we do not know the point where v3 branches
out of the trie for U . Because the 2nd segment of v3 is different than the 2nd
segment of any ui’s and thus the second segment of H(v3) can be equal to (or
not equal to) any of that of H(ui). The further ordered partition of v0 and v3
by U can be restricted to the 2nd segment.

In the trie for S we will say the g-th segment si,g of si ∈ S is nonempty
if there is an t ∈ T such that the most significant segment that t and si
differ is in the g-th segment. If this happens then we will take the prefix
si,prefix = si,p1/3/2−1si,p1/3/2−2...si,g+1, i.e. all segments more significant than
the g-th segment of si. Because there are n integers in T and thus there are at
most n nonempty segments. Thus we have at most n such si,prefix prefix val-
ues. We will arbitrarily replace each such prefix value with a distinct number in
{0, 1, ..., n − 1}. Say si,prefix is replaced by R(si,prefix) ∈ {0, 1, ..., n − 1} we then
append the g-th segment of t to R(si,prefix) to form t(1) of log n+2p2/3 log n bits,
where 2p2/3 log n bits come from the g-th segment of t and the other log n bits
come from R(si,prefix). si is also transformed to si(1) by appending the g-th seg-
ment of si to R(si,prefix). When all the n integers in T and s integers in S are thus
transformed to form the sets T (1) and S(1) we left with the problem of ordered
partition of T (1) by S(1) and here integers have only log n + 2p2/3 log n bits.

Example 2: Follows Example 1 and Fig. 1. Because of v0, v1, v3, the 2nd seg-
ment of u0, u1, u2, u3 are not empty. These segments are 001 and 011. The
si,prefix is ε. We may take R(si,prefix) = 000 for these two segments (case 0).
Because of v2, v4, v8, the 1st segments of u2, u3 are not empty. These segments
are 101 and 111. The si,prefix is 011 (the 2nd segment of u2 and u3). We may
take R(si,prefix) = 001 for them (case 1). Because of v5, the 0th segment of
u3 is not empty. This segment is 110. The si,prefix is 011111. We may take
R(si,prefix) = 010 for it (case 2). Because of v6, the 0th segments of u0 and u1

are not empty. These segments are 000 and 011. The si,prefix is 001001. We may
take R(si,prefix) = 011 for these segments (case 3). Because of v7 and v9, the 0th
segment of u2 is not empty. This segment is 101. The si,prefix is 0111101. We
may take R(si,prefix) = 100 (case 4).

Thus V ′ contains 000000 (from v0), 000010 (from v1), 000010 (from v3),
001011 (from v2), 001110 (from v4), 001010(from v8), 010111 (from v5), 011010
(from v6), 100011 (from v7), 100111 (from v9).

U ′ contains 000001, 000011 (from case 0), 001101, 001111 (from case 1),
010110 (from case 2), 011000, 011011 (from case 3), 100101 (from case 4).

Thus after one pass of ordered partitioning of a set of n p1/3 log n bit integers
(T ′

1) by a set of |S| p1/3 log n bit integers (S′
1), the original problem of ordered

partitioning of T by S is transformed to the problem of ordered partitioning of
T (1) by S(1).

96 Y. Han

If we iterate this process by executing one more pass of ordered partitioning
of a set of n p1/3 log n bit integers (call it T ′

2) by a set of |S| p1/3 log n bit integers
(call it S′

2) then the ordered partition of T (1) by S(1) will be transformed to the
problem of ordered partitioning of T (2) by S(2) where integers in T (2) and S(2)
have 2 log n+4p1/3 log n bits. This basically demonstrates the idea of converting
the ordered partition of p log n bit integers to constant passes of the ordered
partition of p1/3 log n bit integers. This idea is not completely new. It can be
traced back to [1] where it was named (randomized) signature sorting and used
for randomized integer sorting. Here we converted it for deterministic ordered
partition.

The principle explained in this subsection give us the follow lemma.

Lemma 2′: Ordered partition of set T by set S with integers of p log n bits can
be converted to ordered partition of set T ′

i by S′
i with integers of p1/c1 log n bits,

i = 1, 2, ..., c2, where c1 and c2 = O(c1) are constants.

3.3 Nonconservative Integer Sorting

An integer sorting algorithm sorting integers in {0, 1, ...,m − 1} is a noncon-
servative algorithm [12] if the word size (the number of bits in a word) is
p(log m + log n), where p is the nonconservative advantage.

Lemma 4 [9,10]: n integers can be sorted in linear time with a nonconservative
sorting algorithm with nonconservative advantage log n.

4 Ordered Partition of T by S

Now let us consider the problem of the ordered partition of T by S =
{s0, s1, ..., s|S|−1} where si ≤ si+1 and each integer in T or S has p log n bits
and the word size is p3 log n bits. We here consider the case that |T | = n and
|S| = n1/8. In Sect. 2 it is explained why we pick the size of S to be n1/8.

First consider the case where p ≥ log n. Here we have p2 > log n nonconser-
vative advantage and therefore we can simply sort T ∪ S using Lemma 4. Thus
we assume that p < log n.

Because |S| = n1/8 when we finish ordered partition T will be partitioned
into T0 ≤ T1 ≤ · · · ≤ Tn1/8 with T0 ≤ s0 ≤ T1 ≤ · · · ≤ s|S|−1 ≤ T|S|. Let us have
a virtual view of the ordered partitioning of T by S. We can view as each integer
t in T using (1/8) log n binary search steps to find the si such si ≤ t ≤ si+1 (i.e.
in which set Ti it belongs to). The reason it takes (1/8) log n binary search steps
is because we do a binary search on n1/8 ordered numbers in S.

As we are partitioning integers in T by integers in S we say that an integer t
in T is advanced k steps if t is in the status of having performed k log n/p binary
search steps. Notice the difference when we use word “step” and the phrase
“binary search step”. Thus each integer needs to advance p/8 steps to finish in
a set Ti.

A Linear Time Algorithm for Ordered Partition 97

Let v(k) = n1/8/2k logn/p and let S(k) = {sv(k), s2v(k), s3v(k), ...},
k = 1, ..., p/8. Thus |S(k)| = 2k logn/p. Also let S[k, i] = {siv(k), siv(k)+1,
siv(k)+2, ..., s(i+1)v(k)−1}. If integer t in T is advanced k steps, then we know
the i such that min S[k, i] ≤ t ≤ max S[k, i]. We will say that t falls into S[k, i].
Let F (S[k, i]) be the set of integers that fall into S[k, i]. When integers in T
fall into different S[k, i]’s we will continue ordered partition for an F (S[k, i])
by S[k, i] at a time. That is, the original ordered partition of T by S becomes
multiple ordered partition problems.

Initially we pack p integers into a word. Because each word has size
p3 log n bits we have p nonconservative advantage after we packed p integers into
a word (i.e. we used p2 log n bits by packing and now (word size)/(p2 log n) =
p3 log n/(p2 log n) = p).

The basic thoughts of our algorithm is as follows: As will be seen that advance
n integers by a steps will result in time complexity O(na/p) because when we
try to advance a steps we will compare integers in T to integers in S(a) and
not to integers in S (the time O(na/p) will be understood when we explain our
algorithm). However, it is not that we can directly advance p/8 steps and get
O(n) time. There is a problem here. If we form one segment for each integer
in T (as we did form p1/3/2 segments in the previous section) then if the hash
value of an integer t in T does not match the hash value of any integer in S(a)
then we lose our work because it does not provide any information as to which
set Ti t will belong to. If we make multiple segments for each integer t in T then
after hashing and comparing t to si’s we can eliminate all segments except one
for t as we did in the previous section. However, it will be understood that using
multiple segments will increase the number of bits for the hashed value and this
will result in a nonlinear time algorithm for us (the exact details of this will be
understood when our algorithm is explained and understood). What we will do
is to compare the most significant log n bits of the integers in T and in S. If the
most significant log n bits of t ∈ T is not equal to the most significant log n bits
of any integer in S (we call this case as unmatch) then we win because we need
to keep only the most significant log nbits of t and throw away the remaining
bits of t as in the trie for S t branches out within the most significant log n bits.
However, if the value of the most significant log n bits of t is equal to the value of
the most significant log n bits of an integer in S (we call this case as match) then
we can only eliminate the most significant log n bits of t. As t has p log n bits it
will take O(p) steps to eliminate all bits of t and this will result in a nonlinear
time algorithm.

What we do is take the most significant log n bits of every integer and call
it the current segment of the integer. The current segment of a ∈ T ∪ S is
denoted by c(a). We first advance 1 step for the current segments of T with
respect to the current segments of S in time O(n/p). If within this step we find
a match for c(t) for t ∈ T then we eliminate log n bits of t and make the next
log n bits as the current segment. Note that for p log n bits this will result in
O(n) time as removing log n bits takes O(n/p) time. If we find unmatch for c(t)
then we advance 2 steps with time O(2n/p). If we then find a match for c(t) we

98 Y. Han

then eliminate log n bits and make the next log n bits as the current segment. If
unmatch we then advance 4 steps in time O(4n/p). We keep doing this then if in
the 1st, 2nd, ..., (a − 1)-th passes we find unmatch for c(t) and in a-th pass we
first find a match for c(t) then c(t) matched the c(s) for an s ∈ S(2a−1) and did
not match the c(s) for any s ∈ S(2j) with j < a− 1. Examining the structure of
S(2a−1) and S(2a−2) will tell us that c(t) has advanced 2a−2 steps (and therefore
t advanced 2a−2 steps) because we can tell the two integers sk1 and sk2 with
ranks k and k + 1 in S(2a−2) such that sk1 ≤ t ≤ sk2 because c(t) matches c(si)
for an si in S(2a−1) while S(2a−2) ⊂ S(2a−1). The time we spent computing the
1st, 2nd, ..., a-th passes is O(n2a/p). Thus we advance 2a−2 steps by spending
time O(n2a/p). Because we can advance only p/8 steps thus the time is linear.
If for all passes from pass 1 to pass log(p/8) we do not find a match for c(t) then
we keep the most significant log n bits of t and remove other bits of t and the
time we spent for all these passes is O(n).

The way for us to find whether c(t) matches any c(si) is that we first find
whether H(c(t)) matches any of H(c(si)) (here we are comparing H(c(t)) to
all H(c(si))’s). If not then unmatch, if H(c(t)) = H(c(si)) then we compare
c(t) and c(si) (here we are comparing c(t) to a single c(si)) to find out whether
c(t) = c(si). Here we need to do this comparison because H is not perfect for the
current segment of T ∪S. The reason we first compare H(c(t)) and all H(c(si))’s
(we actually sort them) is because hashed values contain less number of bits and
therefore can be compared more efficiently.

In our algorithm we need to prepend log n more significant bits (their value
is equal to 0 for the first pass) to the log n bits (the current segment) for every
integer we have mentioned above. This is because, say, for c(t) we find unmatch
for the first a−1 passes and find a match in the a-th pass (c(t) = c(si)), we then
need to remove the most significant log n bits from t. As we did in the previous
section we need to take the si,prefix and replace it by a distinct integer R(si,prefix)
in {0, 1, ..., n−1} and then transform t by removing the segments of t that are not
less significant than the current segment of t and replace it with R(si,prefix). This
is significant as we go down the road as we can repeatedly removing log n bits
(should be 2 log n bits after prepending R(si,prefix)) from t. The R(si,prefix) value
essentially tells on which part of the trie for S we are currently doing ordered
partitioning for t. Note that we will do ordered partitioning for all integers fall
into an S[k, i] at a time. The prepending of log n bits is to tell apart of the
different si,prefix values for integers fall into the same S[k, i].

If we have advanced t ∈ T k steps, then we know the i such that min S[k, i] ≤
t ≤ max S[k, i] and we need to continue to do ordered partition for t by
S[k, i]. However, different integers may advance at different speed. If integer
t is advanced k steps we will use A(t) = k to denote about this. Let T (k) be
the set of integers in T that have advanced k steps. T (k) = ∪iF (S[k, i]), where
F (S[k, i]) are the integers in T that fall into S[k, i].

Consider the case where F (S[m,m1]) is selected for advancement. We will
try to advance integers in F (S[m,m1]) for 1 step. Let T ′ = F (S[m,m1]).

A Linear Time Algorithm for Ordered Partition 99

Advance for One Step (T ′)
U = T ′; U ′ = φ;
while |U | ≥ n1/2 do
begin

1. Try to advance integers in U for 1 step by comparing them with S[m,m1] ∩
S(m + 1).

2. Let Umatch be the set of matched integers and Uunmatch be the set of
unmatched integers.

3. Let U ′
match be the subset of Umatch such that the current segment is the least

significant segment (i.e. t ∈ U ′
match is equal to some si in S). Integers in

U ′
match are done.

4. U = Umatch − U ′
match; U ′ = U ′ ∪ Uunmatch;

5. For t ∈ U if c(t) matches c(si) remove the c(t) from t and make the next
log n bits as the current segment for t. Prepend R(si,prefix) to c(t).

end
/* Now |U | < n1/2. */
Use brute force to sort integers in U ;
T ′ = U ′;

The technique to have Advance for One Step done in O(n/p) time is the
same as that used in Steps 3.1. and 3.2. in algorithm Partition (set k = 1 there)
shown later and therefore we do not repeat them here.

After we have done algorithm Advance for One Step we know that integers
in T ′ will advance at least 1 step later. We then try to advance integers in T ′

for 2j steps, j = 1, 2, 3, As we do this matched integers will be distributed
to T (m+2j−1)’s. The number of unmatched integers in T ′ will decrease. When
|T ′| < n1/2 we will use brute force to sort all integers in T ′. Thus for integers
remain in F (S[m,m1]) they will be sorted by brute force at most once. There
are no more than |S|2 ≤ n1/4 S[k, i]’s. Thus the total number of integers sorted
by brute force is no more than n1/2 · n1/4 = O(n3/4). The reason we use brute
force to sort them is that the (approximate) ratio of |T | versus |S| as n to n1/8

may not hold any longer.
Now our algorithm is shown as follows.

Partition(T , S)
/* Partition T by S, where integers are in {0, 1, ..., 2p log n − 1} and word size is
p3 log n bits. */

Initialization: Let current segment of each integer in T or S be the most
significant log n bits of the integer.

For a ∈ T ∪ S let c(a) be its current segment. Label all integers as undone.
T (0) = T , T (i) = φ for i �= 0. /* T (i) is the set of integers in T that has advanced
i steps. */

1. for(m = 0;m < p/8;m = m + 1) do Steps 2–4.

100 Y. Han

2. For all S[m, j]’s such that there are less than n1/2 integers in F (S[m, j]) sort
these integers and mark these integers done (advanced p/8 steps). For every
m1 such that there are at least n1/2 integers in F (S[m,m1]), let T (m) =
T (m) − F (S[m,m1]) and T ′ = F (S[m,m1]) and let S′ = S[m,m1], do steps 3
through 4. If T (m) is empty do next iteration of Step 1.

3. Call Advance for One Step (T ′); k = 2.
4. Let S′(k) = S′ ∩ S(m + k). /* |S′(k)| = 2k logn/p. */.

4.1 Use a hash function H to hash the current segment of each integer in
S′(k) into 2k log n/p bits. H must be a perfect hash function for the
current segments of S′(k). Since |S′(k)| = 2k logn/p such a hash function
can be found [5,13]. The current segment of each integer in T ′ is also
hashed by this hash function into 2k log n/p bits (here note that there
might be collisions as H is not perfect for the current segments of T ′).
Pack every p/(8k) integers in T ′ into a word to form a set T ′′ of words.
We also form a set S′′ of n1/4 words for S′(k). The i-th word Wi in
S′′ has p/(8k) integers si0 , si1 , ..., sip/(8k)−1 in S′(k) packed in it. Here
si0 , si1 , ..., sip/(8k)−1 must satisfy H(si0)H(si1)...H(sip/(8k)−1) = i (here
H(si0)H(si1)...H(sip/(8k)−1) is (the value of) the concatenation of the
bits in H(sij)’s). Note that because we hash m integers in M to m
integers in M ′ = {0, 1, ...,m2} there are some integers a′ ∈ M ′ such that
no integer a in M is hashed to a′. Thus for some i and j we find that sij
does not exist in S′(k). If this happens we leave the spot for si,j in Wi

blank, i.e. in this spot no integer in S′(k) is packed into Wi. Note that
hashing for integers in T ′ happens after packing them into words (due
to time consideration) and hashing for integers in S′(k) happens before
packing as we have to satisfy H(si0)H(si1)...H(sip/(8k)−1) = i.

4.2. Since each word of T ′′ has p/(8k) integers in T ′ packed in it it has
only a total of log n/4 hashed bits because each integer has hashed to
2k log n/p bits. The n1/4 words in S′′ for packed integers in S′(k) also
have log n/4 hashed bits in each of them. We treat these log n/4 bits
as one INTEGER and sort T ′′ and S′′ together using the INTEGER of
them as the sorting key. This sorting can be done by bucket sort (because
INTEGER is the sorting key) in linear time in terms of the number
of words or in O(|T ′|k/p) time (because we packed p/(8k) integers in
one word). This sorting will bring all words with same INTEGER key
together. Because S′′ has word with INTEGER keys with any value
in {0, 1, ..., n1/4} any word w in T ′′ can find w1 in S′′ with the same
INTEGER key value and thus w will be sorted together with w1. Thus
now each c(ti) with ti ∈ T ′ can find that either there is no c(sj) with
sj ∈ S′(k) such that H(c(ti)) = H(c(sj)) (in this case c(ti) �= c(sj)
for any sj ∈ S′(k)) or there is an sj such that H(c(ti)) = H(c(sj)). If
H(c(ti)) = H(c(sj)) then we compare c(ti) with c(sj) (we need to do
this comparison because H is not perfect for T ′ ∪ S′(k)). If they are
equal (match) then if the current segment is not the least significant
segment then we eliminate the current segment of ti (in this case we
find all segments that are not less significant than the current segment

A Linear Time Algorithm for Ordered Partition 101

of ti are equal to the corresponding segments of sj) and mark the next
log n bits as its current segment. Also eliminate the current segment of sj
and use the next log n bits of sj as its current segment (the idea here is
similar to the mechanism in the previous section where we eliminates the
preceding segments of ti and sj because they are equal). If the current
segment before removing is the least significant segment then ti = sj
and we are done with ti. Let D be the set of integers ti in T ′ such that
c(ti) = c(sj) for some sj ∈ S′(k). Advance all integers in D k/2 steps
(because they matched in S′(k) and did not match in S′(k/2)) and let
T ′ = T ′ − D, T (m+k/2) = T (m+k/2) ∪ D. For integers in D we can also
determine the S[m + k/2, l] on which ti falls into. For integers in D
remove the current segment of these integers. For integers in D that has
been distributed into F (S[m + k/2, l])’s we have to prepend R(sj,prefix)
to c(ti). T ′ is now the set of unmatched integers.

Note here we have to separate integers in D from integers not in D. For
integers in D we have to further advance them later according to which
S[m + k/2, l] they fall into. This is done by labeling integers not in D
with 0 and integers fall into S[m + k/2, l] with l + 1. The labels form an
integer LABEL (just as we formed INTEGER before) for integers packed
in a word. We then use bucket sort to sort all words using LABEL as
the key. This will bring all words with the same LABEL value together.
For every p words with the same LABEL value we do a transpose (i.e.
move the i-th integer (LABEL) in these words into a new word). This
transposition would take O(p log p) time for p words if we do it directly.
However we can first pack log p words into one word (because word size
is p3 log n) and then do the transposition. This will bring the time for
transposition to O(p) for p words. This will have integers separated.

4.3. If |T ′| < n1/2 then use brute force to sort all integers in T ′ and mark
them as done (advanced to step p/8). Goto Step 2.

4.4. If m + k = p/8 then mark all integers in T ′ as done (advanced to step
p/8) keep the current segment of them and remove all other segments of
them. Let E(m,m1) = T ′. Goto Step 2.

4.5. If p/8 < m + 2k let k = p/8 − m else let k = 2k and goto Step 4.
5. We have to sort integers (of 2 log n bits) in every nonempty set E(m,m1).

Here each integer in E(m,m1) has its current segment differ from the current
segment of any s ∈ S[m,m1]. We mix them together and sort them by radix
sort. Then we go from the smallest integer to the largest integer one by one
and separate them by their index (m,m1). This will have every set E(m,m1)
sorted. This case corresponds to unmatch for all passes and we end up with
2 log n bits for each of these integers.

5 Ordered Partition

We have explained in Sect. 2 how the ordered partition is done using the results
in Sects. 3 and 4 (i.e. how ordered partition is done by ordered partition of T by
S). Therefore we have our main theorem:

102 Y. Han

Main Theorem: Ordered partition of a set T of n integers into n1/2 sets T0 ≤
T1 ≤ · · · ≤ Tn1/2−1, where |Ti| = θ(n1/2) and Ti ≤ Ti+1 means that max Ti ≤
min Ti+1, can be computed in linear time and space.

6 Randomization and Nonconservativeness

Although our ordered partition algorithm is deterministic and conservative (i.e.
use word of size log m + log n for integers in {0, 1, ...,m − 1}), it may be used
in the randomized setting or the nonconservative setting. Here we consider the
situation under these settings.

In randomized setting n integers with word size Ω(log2 n log log n) can
be sorted in linear time [3] and thus ordered partition is not needed. Han
and Thorup have presented a randomized integer sorting algorithm with time
O(n(log log n)1/2) [11] and it represents a tradeoff between ordered partition and
sorting.

In [7] the schemes in this paper is extended and combined with other ideas
to obtain a randomized linear time algorithm for sorting integers with word size
Ω(log2 n), i.e. integers larger than 2log

2 n, thus improve the results in [3].

7 Conclusion

We hope that our ordered partition algorithm will help in the search for a linear
time algorithm for integer sorting. We tend to believe that integers can be sorted
in linear time, as least in the randomized setting. There are still obstacles to
overcome before we can achieve this goal.

Acknowledgement. Reviewers have given us very helpful comments and suggestions
which helped us improve the presentation of this paper significantly. We very much
appreciate their careful reviewing work.

References

1. Andersson, A., Hagerup, T., Nilsson, S., Raman, R.: Sorting in linear time? J.
Comput. Syst. Sci. 57, 74–93 (1998)

2. Andersson, A.: Faster deterministic sorting and searching in linear space. In: Pro-
ceedings of 1996 IEEE Symposium of Foundations of Computer Science FOCS
1996, pp. 135–141 (1996)

3. Belazzougui, D., Brodal, G.S., Nielsen, J.S.: Expected linear time sorting for word
size Ω(log2 n loglogn). In: Ravi, R., Gørtz, I.L. (eds.) SWAT 2014. LNCS, vol.
8503, pp. 26–37. Springer, Heidelberg (2014)

4. Blum, M., Floyd, R.W., Pratt, V.R., Rivest, R.L., Tarjan, R.E.: Time bounds for
selection. J. Comput. Syst. Sci. 7(4), 448–461 (1972)

5. Dietzfelbinger, M., Hagerup, T., Katajainen, J., Penttonen, M.: A reliable random-
ized algorithm for the closest-pair problem. J. Algorithms 25, 19–51 (1997)

A Linear Time Algorithm for Ordered Partition 103

6. Han, Y.: Deterministic sorting in O(n log log n) time and linear space. J. Algorithms
50, 96–105 (2004)

7. Han, Y.: Optimal randomized integer sorting for integers of word size Ω(log2 n).
Manuscript

8. Han, Y.: Construct a perfect hash function in time independent of the size of
integers. To appear in FCS 2015

9. Han, Y., Shen, X.: Conservative algorithms for parallel and sequential integer sort-
ing. In: Li, M., Du, D.-Z. (eds.) COCOON 1995. LNCS, vol. 959, pp. 324–333.
Springer, Heidelberg (1995)

10. Han, Y., Shen, X.: Parallel integer sorting is more efficient than parallel comparison
sorting on exclusive write PRAMs. SIAM J. Comput. 31(6), 1852–1878 (2002)

11. Han, Y., Thorup, M.: Integer sorting in O(n
√

log log n) expected time and linear
space, In: Proceedings of the 43rd IEEE Symposium on Foundations of Computer
Science (FOCS 2002), pp. 135–144 (2002)

12. Kirkpatrick, D., Reisch, S.: Upper bounds for sorting integers on random access
machines. Theor. Comput. Sci. 28, 263–276 (1984)

13. Raman, R.: Priority queues: small, monotone and trans-dichotomous. In: Dı́az, J.
(ed.) ESA 1996. LNCS, vol. 1136, pp. 121–137. Springer, Heidelberg (1996)

Machine Scheduling with a Maintenance Interval
and Job Delivery Coordination

Jueliang Hu1, Taibo Luo2,3, Xiaotong Su1, Jianming Dong1, Weitian Tong3,
Randy Goebel3, Yinfeng Xu2,4, and Guohui Lin1,3(B)

1 Department of Mathematics, Zhejiang Sci-Tech University,
Hangzhou 310018, Zhejiang, China

2 Business School, Sichuan University, Chengdu 610065, Sichuan, China
3 Department of Computing Science, University of Alberta,

Edmonton, AB T6G 2E8, Canada
guohui@ualberta.ca

4 State Key Lab for Manufacturing Systems Engineering,
Xi’an 710049, Shaanxi, China

Abstract. We investigate a scheduling problem with job delivery coor-
dination in which the machine has a maintenance time interval. The
goal is to minimize the makespan. In the problem, each job needs to
be processed on the machine non-preemptively for a certain time, and
then transported to a distribution center; transportation is by one vehi-
cle with a limited physical capacity, and it takes constant time to deliver
a shipment to the distribution center and return back to the machine.
We present a 2-approximation algorithm for the problem, and show that
the performance ratio is tight.

Keywords: Scheduling · Machine maintenance · Job delivery · Bin-
packing · Approximation algorithm · Worst-case performance analysis

1 Introduction

We consider a scheduling problem that arises from supply chain management
research at the operational level, with the goal to show that decision makers at
different stages of a supply chain can make coordinated decisions at the detailed
scheduling level, and achieve substantial efficiencies. This problem integrates
production and delivery whereby the jobs are first processed in a manufacturing
center, and then delivered to a distribution center. We use a machine to model the
manufacturing center, which has a preventive maintenance time interval when
it is unavailable for processing any jobs. Job delivery is performed by a single
vehicle with a limited physical load capacity, between the manufacturing center
and the distribution center. The goal is to minimize the makespan. A special
case of this problem was first considered by Wang and Cheng [9], in which the
jobs have uniform size.

J. Hu and T. Luo—Co-first authors.

c© Springer International Publishing Switzerland 2015
J. Wang and C. Yap (Eds.): FAW 2015, LNCS 9130, pp. 104–114, 2015.
DOI: 10.1007/978-3-319-19647-3 10

Machine Scheduling with a Maintenance Interval 105

Our target scheduling problem is formally described as follows. We are given
a set of jobs J = {J1, J2, . . . , Jn}, each of which needs to be processed in a
manufacturing center (the machine) and then delivered to a distribution center
(the customer). Each job Ji requires a non-preemptive processing time of pi in the
manufacturing center; when transported by the only vehicle to the distribution
center, it occupies a fraction si of physical space on the vehicle. The vehicle
has a normalized space capacity of 1, is initially at the manufacturing center,
and needs to return to the manufacturing center after all jobs are delivered. It
takes the vehicle T units of time to deliver a shipment and return back to the
manufacturing center. The manufacturing center, modeled as a single machine,
has a known maintenance time interval [s, t], where 0 ≤ s ≤ t, during which no
jobs can be processed. The problem objective is to minimize the makespan, that
is, the time the vehicle returning to the manufacturing center after all jobs are
delivered.

Using the notation of Lee et al. [7] and following Wang and Cheng [9], the
problem under study is denoted as (1, h(1) | non-pmtn,D, si | Cmax). In this
three-field notation, the first field denotes the machine environment, the second
denotes the job characteristics, and the last denotes the performance measure to
be optimized. In our case, “1” says that there is only a single machine to process
the jobs and “h(1)” indicates that there is a hole (i.e. a maintenance interval)
in the machine, “non-pmtn” states that each job needs a continuous processing
or, if interrupted by the unavailable machine maintenance interval, it has to
restart the processing after the machine becomes available,1 “D” indicates the
delivery requirement that jobs must be delivered to the distribution center after
the processing is completed in the manufacturing center, “si” is the normalized
physical size of job Ji on the single vehicle, and lastly, “Cmax” denotes the
makespan, which is the time the vehicle returning to the manufacturing center
after all jobs are delivered.

For the special case where all jobs have the same size, that is si = 1
K for some

positive integer K, Wang and Cheng showed that (1, h(1) | non-pmtn,D, si =
1
K | Cmax) is NP-hard, and presented a 3

2 -approximation algorithm based on the
shortest processing time (SPT) rule [9]. Essentially, the SPT rule sorts the jobs
into a non-decreasing order of the processing time and the machine processes the
jobs in this order. The intuition is to let the machine finish processing as many
jobs as possible at any given time point, to optimally supply the transportation
vehicle.

While the SPT rule alone works well in this special uniform-size case, it can
be very bad in the general case where the jobs have different sizes. Indeed, for
another extremely special case where all jobs have zero processing time, the
problem (1, h(1) | non-pmtn,D, si | Cmax) reduces to minimizing the number
of shipments, or the classic bin-packing problem, which is NP-hard and APX-
complete [2].

In this paper, we show that the next-fit (NF) algorithm [5] designed for
the bin-packing problem can be employed for packing the jobs into a favorable
1 In the literature, non-resumable (specified as “nr-a”) has been used.

106 J. Hu et al.

number of batches, where each batch is a shipment to be delivered by the sin-
gle vehicle. This is followed by applying the SPT rule to sequence the batches
with delivery coordination. We show that this algorithm has a worst-case per-
formance guarantee of 2, and this ratio is tight. In the next section, we present
the performance analysis in detail. We conclude the paper in the last section.

2 The Algorithm D-NF-SPT

In our target scheduling problem (1, h(1) | non-pmtn,D, si | Cmax) we assume
the non-trivial case where

∑n
i=1 pi > s ≥ minn

i=1 pi, i.e. the machine mainte-
nance interval does affect the schedule, since otherwise the problem reduces to
the problem (1 | D, si | Cmax), which has been extensively investigated in the
literature [1,4,6,8,10], and it admits a (best possible) 1.5-approximation algo-
rithm [8]. In the 1.5-approximation algorithm, when the total size of the jobs is
greater than 1 but less than or equal to 2, the jobs are packed by the NF algo-
rithm; otherwise, the jobs are packed by the modified first-fit decreasing (MFFD)
algorithm [3]. The resultant batches are then processed and delivered in the SPT
order.

Recall that there are n jobs, and each job Ji, for i = 1, 2, . . . , n, needs to be
processed non-preemptively for pi units of time on the machine, and then trans-
ported to the distribution center by a single vehicle. The machine has a known
maintenance time interval [s, t], during which no jobs can be processed. The job
Ji has a physical size si ∈ (0, 1], representing its fractional space requirement
on the vehicle during the transportation. A shipment (i.e., a batch, used inter-
changeably) can contain multiple jobs, as long as the total size of the jobs in
the shipment is no greater than 1. The vehicle takes constant time T to deliver
a shipment to the distribution center and return back to the machine. For ease
of presentation, we use Δ = t − s to denote the length of the machine mainte-
nance. As mentioned in the introduction, we have the following lemma due to
the hardness results of the bin-packing problem.

Lemma 1. The problem (1, h(1) | non-pmtn,D, si | Cmax) is NP-hard and
APX-hard. ��

Let π denote a feasible schedule, in which the jobs are transported in k shipments
denoted as B1, B2, . . . , Bk in order. We extend the notation to use p(Bj) (s(Bj),
respectively) to denote the total processing time (size, respectively) of the jobs of
Bj , for every j. Note that in general the jobs of Bj are not necessarily processed
before all the jobs of Bj+1 on the machine. Let α denote the smallest batch
index such that

∑α
j=1 p(Bj) > s. Clearly, 1 ≤ α ≤ k. We can assume, without

loss of generality, that for every j < α the jobs of Bj are processed before all
the jobs of Bj+1 on the machine, and furthermore they are processed on the
machine consecutively in an arbitrary order. We use δ to denote the length of
the machine idling period due to the pending maintenance. It follows that the
machine finishes processing all the jobs at time

∑k
j=1 p(Bj) + Δ + δ. On the

Machine Scheduling with a Maintenance Interval 107

other hand, the total transportation time for this schedule is kT . We assume
that the vehicle does not idle if there are shipments ready to be transported.

Our algorithm D-NF-SPT can be described as follows (see Fig. 1). First (the
D-step), all jobs are sorted into a non-increasing order of the ratio si

pi
, which we

also call the density. Next (the NF-step), in this order, the jobs are formed into
shipments (batches) by their physical sizes using the next-fit (NF) bin-packing
algorithm. The NF algorithm assigns the job at the head of the order to the last
(largest indexed) shipment if the job fits in, or else to a newly created shipment
for the job. This way, every shipment contains a number of consecutive jobs. The
achieved batch sequence is denoted as 〈B′

1, B
′
2, . . . , B

′
k〉. The processing times

of the shipments are then calculated, and the shipments are sorted into a non-
decreasing order of the processing time (the SPT-step). The final batch sequence
is denoted as 〈B1, B2, . . . , Bk〉. According to this shipment order, a maximum
number of batches are processed before time s; the other batches are processed
starting time t (when the maintenance ends). For each shipment, its jobs are
processed consecutively on the machine in an arbitrary order; and a shipment is
transported to the distribution center after all its jobs are finished and the vehicle
is available. We denote the achieved schedule as π, that is π = 〈B1, B2, . . . , Bk〉
with p(B1) ≤ p(B2) ≤ . . . ≤ p(Bk). Let Bα denote the first shipment processed
after time t;

δ = s −
α−1
∑

j=1

p(Bj) (1)

denotes the length of the machine idle time before the maintenance (see Fig. 2
for the configuration of π).

Algorithm D-NF-SPT:

Step 1. (The D-step) Sort the jobs into a non-increasing order of the ratio si/pi;

Step 2. (The NF-step) Pack the jobs by size into a sequence of batches using

the algorithm NF:

2.1. Place the current job into the last batch if it fits in;

2.2. Or else create a new batch for the current job;

2.3. The achieved batch sequence is denoted as B1, B2, . . . , Bk ;

Step 3. (The SPT-step) Sort the job batches into a non-decreasing order of the

processing time:

3.1. The achieved batch sequence is denoted as B1, B2, . . . , Bk ;

Step 4. Process the jobs in this batch order and deliver a finished batch as early

as possible:

4.1. Let α denote the smallest batch index such that α
j=1 p(Bj) > s;

4.2. Batches B1, B2, . . . , Bα−1 are processed before time s;

4.3. Batches Bα, Bα+1, . . . , Bk are processed starting time t.

sequence is denoted

Fig. 1. A high-level description of the algorithm D-NF-SPT.

108 J. Hu et al.

B1 B2
. . . Bα−1

Maintanance

Bα Bα+1
. . .

δ
s

Δ
t

Fig. 2. A visual configuration of the schedule π produced by the D-NF-SPT algorithm.

We next prove some structural properties for the schedule π, and estimate
its makespan denoted as Cmax. For ease of presentation, the finish processing
time of the batch Bj on the machine is denoted as Cj , and let Dj denote the
time at which the vehicle delivers the batch Bj to the distribution center and
returns back to the machine. Clearly, Dj − Cj ≥ T , for every j.

Lemma 2. For the schedule π produced by the algorithm D-NF-SPT for the
problem (1, h(1) | non-pmtn,D, si | Cmax), the makespan is

Cmax =

⎧

⎨

⎩

∑α
j=1 p(Bj) + Δ + δ + (k − α + 1)T, if Cα > Dα−1, Ck < Dk−1;

p(B1) + kT, if Cα ≤ Dα−1, Ck < Dk−1;
∑k

j=1 p(Bj) + Δ + δ + T, if Ck ≥ Dk−1.

Proof. Recall that the machine processes the jobs of B1∪B2∪ . . .∪Bα−1 contin-
uously before time s, and processes the jobs of Bα ∪Bα+1∪ . . .∪Bk continuously
after time t. Thus for the last job batch Bk, Ck =

∑k
j=1 p(Bj) + Δ + δ.

If the batch Bk has finished the processing while the vehicle is not ready for
transporting it, i.e. Ck < Dk−1, we conclude that the vehicle does not idle during
the time interval [Cα, Ck], where Cα =

∑α
j=1 p(Bj) + Δ + δ. This can be proven

by a simple contradiction, as otherwise there would be a batch Bj for some j > α,
such that Cj > Dj−1. Then clearly p(Bj) = Cj − Cj−1 > Dj−1 − Cj−1 ≥ T . It
follows that all the succeeding batches have a processing time greater than T .
This indicates that for every successive batch, including Bk, the vehicle has to
idle for a while before delivering it.

Using the same argument, if the vehicle idles inside the time interval [C1, Cα]
(note that the vehicle has to wait for the first batch B1 to finish), then there
must be Cα > Dα−1 and thus the vehicle must have delivered all the batches
B1, B2, . . . , Bα−1 at time Cα. In this case, the makespan is Cmax =

∑α
j=1 p(Bj)+

Δ + δ + (k − α + 1)T . If the vehicle does not idle before time Cα, that is,
∑α

j=2 p(Bj) + Δ + δ ≤ (α − 1)T , then the makespan is Cmax = p(B1) + kT .
If the job batch Bk has finished the processing and the vehicle is ready for

transporting it, i.e. Ck ≥ Dk−1, then the makespan is the finishing time of
the batch Bk plus one shipment delivery time of the vehicle, which is Cmax =
∑k

j=1 p(Bj) + Δ + δ + T . ��

From the proof of Lemma 2, we have the following corollary.

Corollary 1. For the schedule π produced by the algorithm D-NF-SPT for the
problem (1, h(1) | non-pmtn,D, si | Cmax), the vehicle idles inside the time
interval [C1, Cα] if and only if Cα > Dα−1. ��

Machine Scheduling with a Maintenance Interval 109

Consider the associated instance I of the bin-packing problem to pack all the
jobs of J = {J1, J2, . . . , Jn} by their size into the minimum number of batches
(of capacity 1); let ko denote this minimum number of batches. It is known
that k ≤ 2ko − 1 [5], where k is the number of batches by the algorithm NF.
The algorithm NF is one of the simplest approximation algorithms designed
for the bin-packing problem, but not the best in terms of approximation ratio.
Nevertheless, there are important properties of the packing result achieved by
the algorithm NF, stated in the next two lemmas.

Lemma 3. Consider the job batch sequence 〈B′
1, B

′
2, . . . , B

′
k〉 produced by the

algorithm D-NF-SPT in Step 2. Let J ′ be any subset of jobs, and assume all
its jobs can be packed into k′ batches. For any k1, if

∑k1
j=1 s(B′

j) ≤ s(J ′), then
k1 ≤ 2k′ − 1.

Proof. From the execution of the NF algorithm, we know that every two adjacent
batches, B′

j and B′
j+1, have a total size strictly greater than 1. If k1 is odd, then

∑k1
j=1 s(B′

j) > k1−1
2 ; otherwise,

∑k1
j=1 s(B′

j) > k1
2 . On the other hand, every one

of the k′ batches has size at most 1, and thus s(J ′) ≤ k′. Putting together, we
have

k′ ≥ s(J ′) ≥
k1
∑

j=1

s(B′
j) >

k1 − 1
2

.

That is, k′ > k1−1
2 + 1 = k1+1

2 . This proves the lemma. ��

Lemma 4. Consider the job batch sequence 〈B′
1, B

′
2, . . . , B

′
k〉 produced by the

algorithm D-NF-SPT in Step 2. Let J ′ be any subset of jobs. For any k1, if
∑k1

j=1 p(B′
j) > p(J ′), then

∑k1
j=1 s(B′

j) > s(J ′).

Proof. Recall that in Step 1 of the algorithm D-NF-SPT, all the jobs of J are
sorted by non-increasing density si

pi
. Assume to the contrary that

∑k1
j=1 p(B′

j) >

p(J ′) and
∑k1

j=1 s(B′
j) ≤ s(J ′). There must exist at least one job J ∈ J ′ but

not in the first k1 batches B′
1, B

′
2, . . . , B

′
k1

, such that

s(J)
p(J)

>

∑k1
j=1 s(B′

j)
∑k1

j=1 p(B′
j)

≥ min
Ji∈B′

k1

{

si

pi

}

.

However, this is a contradiction since such a job J must have been in one of the
first k1 batches B′

1, B
′
2, . . . , B

′
k1

, from the execution of the NF algorithm. This
proves the lemma. ��

Let π∗ denote an optimal schedule, in which there are k∗ job batches B∗
1 , B∗

2 ,
. . ., B∗

k∗ , when finished, delivered in this order. We assume that the batch B∗
α∗

is the first one in this order containing a job processed after time t; and use
δ∗ to denote the length of the machine idle time before the maintenance. It is
important to note that we may assume without loss of generality that the jobs
of B∗

j , for each j < α∗, are processed continuously (in an arbitrary order), but
no specific processing order for the jobs of B∗

α∗ , B∗
α∗+1, . . . , B

∗
k∗ .

110 J. Hu et al.

The makespan of the optimal schedule π∗ is denoted as C∗
max. Again for ease

of presentation, the finish processing time of the batch B∗
j on the machine is

denoted as C∗
j , and let D∗

j denote the time at which the vehicle delivers the
batch B∗

j to the distribution center and returns back to the machine. Clearly,
D∗

j − C∗
j ≥ T , for every j.

Lemma 5. For the optimal schedule π∗ for the problem (1, h(1) | non-pmtn,D,
si | Cmax), the makespan is

C∗
max ≥ max

⎧

⎨

⎩

p(B∗
1) + k∗T,

k∗
∑

j=1

p(B∗
j) + Δ + δ∗ + T

⎫

⎬

⎭

.

Proof. Since after the first batch B∗
1 is processed on the machine, the vehicle

needs to deliver all the k∗ batches; thus the makespan is at least p(B∗
1) + k∗T .

On the other hand, the finish processing time of the last batch B∗
k∗ is C∗

k∗ =
∑k∗

j=1 p(B∗
j)+Δ+δ∗, and afterwards it has to be delivered; hence the makespan

is at least
∑k∗

j=1 p(B∗
j) + Δ + δ∗ + T . This completes the proof. ��

Now we are ready to prove the main theorem.

Theorem 1. The algorithm D-NF-SPT is an O(n log n)-time 2-approximation
for the problem (1, h(1) | non-pmtn,D, si | Cmax).

Proof. First, if
∑n

i=1 pi ≤ s, i.e. all the jobs can be processed before the machine
maintenance, the target problem reduces to the problem (1 | D, si | Cmax), which
admits a 1.5-approximation algorithm [8]. We thus assume in the following that
∑n

i=1 pi > s. Consequently, 1 ≤ α ≤ k and 1 ≤ α∗ ≤ k∗ (these four quantities
are all well defined).

If in the schedule π produced by the algorithm D-NF-SPT, Ck ≥ Dk−1,
then by Lemma 2 the makespan is Cmax =

∑k
j=1 p(Bj) + Δ + δ + T . On the

other hand, from Lemma 5 we have C∗
max ≥

∑k∗

j=1 p(B∗
j) + Δ + δ∗ + T . Clearly,

δ ≤ p(Bα) ≤
∑k

j=1 p(Bj) =
∑k∗

j=1 p(B∗
j). It follows that

Cmax =
k

∑

j=1

p(Bj) + Δ + δ + T ≤ 2
k∗
∑

j=1

p(B∗
j) + Δ + T ≤ 2C∗

max.

That is, the makespan of the schedule π is no more than twice of the optimum.
If k∗ = 1 in the optimal schedule π∗, that is, all the jobs can form into

a single batch, then we also have k = 1 in the schedule π, and consequently
Cmax = p(B1) + Δ + δ + T . As in the previous paragraph the makespan of the
schedule π is no more than twice that of the optimum.

In the following we consider Ck < Dk−1, k ≥ 2 and k∗ ≥ 2, and we separate
the discussion into two cases. Note that in the following D0 = 0, meaning at the
beginning the vehicle is ready.

Machine Scheduling with a Maintenance Interval 111

Case 1. Cα ≤ Dα−1.
From Corollary 1 and Lemma 2, we know that in the schedule π the vehicle

does not idle inside the time interval [C1, Cα] and the makespan is Cmax =
p(B1) + kT .

By letting J ′ be the whole set J of jobs in Lemma 3, we have k ≤ 2k′ − 1 ≤
2k∗ − 1, since k′ is the minimum number of batches for all the jobs of J .

One can check that for every possible value of α, we always have C2 ≤ D1

because there is no vehicle idling inside the time interval [C1, Cα], and thus
p(B1) ≤ p(B2) = C2 − C1 ≤ D1 − C1 = T . It follows from Lemma 5 that

Cmax = p(B1) + kT ≤ T + (2k∗ − 1)T = 2k∗T ≤ 2C∗
max.

Case 2. Cα > Dα−1.
Note that we have Ck < Dk−1, and thus α ≤ k − 1. From Corollary 1 and

Lemma 2, we know that in the schedule π, the vehicle idles inside the time interval
[C1, Cα] and the makespan is Cmax =

∑α
j=1 p(Bj) + Δ + δ + (k − α + 1)T .

If α > 2 and the vehicle idles inside the time interval [C1, Cα−1], then
p(Bα−1) > T . Consequently, p(Bk) > T too, which contradicts Ck < Dk−1.
In the remaining situation, either α = 1 (i.e., no jobs processed before the
machine maintenance), or 2 ≤ α ≤ k − 1 and the vehicle idles only inside the
time interval [Cα−1, Cα]. Thus we always have p(Bα) ≤ p(Bα+1) ≤ T (again, as
otherwise Ck > Dk−1, a contradiction).

Subcase 2.1. α∗ = 1. In this subcase, all the batches are finished after time t,
and thus C∗

max ≥ t + k∗T . It follows from p(Bα) ≤ T and k ≤ 2k∗ − 1 [5] that

Cmax = t + p(Bα) + (k − α + 1)T ≤ t + T + 2k∗T − αT = t + 2k∗T ≤ 2C∗
max.

Subcase 2.2. α∗ ≥ 2. In this subcase, C∗
max ≥ max{t + (k∗ − α∗ + 1)T, p(B∗

1) +
k∗T}.

Let J ′ denote the subset of jobs that are processed before time s in the opti-
mal schedule π∗, and J ′′ = J −J ′. Clearly,

∑α
j=1 p(Bj) > p(J ′) since not all the

jobs of Bα can be processed before time s. On the other hand, the batch sequence
〈B1, B2, . . . , Bk〉 is the rearrangement of the batch sequence 〈B′

1, B
′
2, . . . , B

′
k〉 in

the SPT order; therefore,
∑α

j=1 p(Bj) ≤
∑α

j=1 p(B′
j). It follows that

α
∑

j=1

p(B′
j) > p(J ′).

By Lemma 4 we have
α

∑

j=1

s(B′
j) > s(J ′),

and thus
k

∑

j=α+1

s(B′
j) < s(J ′′).

112 J. Hu et al.

From Lemma 3 and that the jobs of J ′′ are in k∗ − α∗ + 1 batches, we conclude
that

k − α ≤ 2(k∗ − α∗ + 1) − 1.

It follows from p(Bα) ≤ T that

Cmax = t + p(Bα) + (k − α + 1)T
≤ t + T + 2(k∗ − α∗ + 1)T
= (t + (k∗ − α∗ + 1)T) + (k∗ − α∗ + 2)T
≤ 2C∗

max.

That is, in the remaining situation we also have Cmax ≤ 2C∗
max. Hence the

algorithm D-NF-SPT is a 2-approximation.
The running time of the algorithm D-NF-SPT in O(n log n), where n is the

number of jobs, is clearly seen, because the job sorting by density and the later
job batch sorting by processing time take an O(n log n)-time, and the algorithm
NF takes only an O(n)-time. This proves the theorem. ��

2.1 A Tight Instance

In this instance I there are 2n jobs, J = {J1, J2, . . . , J2n}, with n being even.
The processing time and the size of the job Ji is (pi, si), and here J2i−1 = (iε, 1

2)
and J2i = ((2i + 1)ε2, ε) for every i = 1, 2, . . . , n. The positive constant ε is
small such that ε < 1

2n+1 . The machine maintenance time interval is [s, t] where
s = 1

2n(n − 1)ε + (n − 1)(n + 1)ε2 + 1
2 (2n − 1)ε2 and t = s + 1

2 (2n − 1)ε2, i.e.
Δ = 1

2 (2n − 1)ε2. The one shipment delivery time is T = 1.
Clearly, si

pi
= 1

(i+1)ε for every i = 1, 2, . . . , 2n and therefore the job order after
Step 1 of the algorithm D-NF-SPT is 〈J1, J2, . . . , J2n〉. Using this job order, the
algorithm NF packs the jobs into a sequence of n batches B′

j = {J2j−1, J2j},
j = 1, 2, . . . , n. Clearly, s(B′

j) = 1
2 + ε for all j, and p(B′

j) = jε + (2j + 1)ε2.
Therefore, Bj = B′

j for every j, and the final batch order is 〈B1, B2, . . . , Bn〉.
Note that

s =
1
2
n(n − 1)ε + (n − 1)(n + 1)ε2 +

1
2
(2n − 1)ε2 =

n−1
∑

j=1

p(Bj) +
1
2
(2n − 1)ε2.

Since p(Bj) = jε + (2j + 1)ε2 < T for every j, Cn−1 < s < t < Cn−1 + p(Bn)
and (2n − 1)ε2 + p(Bn) < T , for the achieved schedule π its makespan is

Cmax = p(B1) + nT = ε + 3ε2 + nT. (2)

Consider a feasible schedule in which there are n
2 + 1 batches where B∗

j =
{J4j−3, J4j−1} for each j = 1, 2, . . . , n

2 , and B∗
n
2 +1 = {J2, J4, . . . , J2n}. Clearly,

s(B∗
j) = 1 for all 1 ≤ j ≤ n

2 , s(B∗
n
2 +1) = nε, p(B∗

j) = (4j − 1)ε for all 1 ≤ j ≤ n
2 ,

and p(B∗
n
2 +1) = n(n + 2)ε2. Since

∑
n
2 −1
j=1 p(B∗

j) < s, all the jobs of the batches

Machine Scheduling with a Maintenance Interval 113

B∗
1 , B∗

2 , . . . , B∗
n
2 −1 are processed before time s in this feasible schedule. Due to

∑
n
2 +1
j=1 p(B∗

j)+(2n−1)ε2 < n
2 −1, no matter when the jobs of the batches B∗

n
2

and
B∗

n
2 +1 are processed, the vehicle has not delivered the batch B∗

n
2 −1 and comes

back to the machine. It follows that the makespan of this feasible schedule is at
most p(B∗

1) + (n
2 + 1)T = 3ε + (n

2 + 1)T . Therefore, the makespan of an optimal
schedule for the instance I is also

C∗
max ≤ 3ε +

(n

2
+ 1

)

T. (3)

Consequently, putting Eqs. (2) and (3) together gives

Cmax

C∗
max

≥ ε + 3ε2 + nT

3ε + (n
2 + 1)T

→ 2, when n → +∞.

3 Conclusions

We have investigated the single scheduling problem with job delivery coordi-
nation, in which the machine has an unavailable maintenance interval. A good
schedule needs not only to well organize jobs into a smaller number of shipments
to save delivery time, but also must wisely exploit the machine time period
before maintenance. The first consideration is addressed by employing a good
approximation algorithm for the bin-packing problem, where the item size is the
job physical size and the bin has a size that is the vehicle capacity. Nevertheless,
the second consideration implies that the machine should perhaps process first
those jobs of shorter processing times. We realized that this is not the same as
the machine processing first those batches of shorter processing time. We thus
propose to sort the jobs in a non-increasing order of the density si/pi, and call
the next-fit (NF) bin-packing algorithm to pack the jobs into batches. Two key
properties of the packing results achieved by the algorithm NF lead to the desired
performance analysis.

We also showed that the worst-case performance ratio 2 of the algorithm
D-NF-SPT is tight. It would be really interesting to see whether the problem
admits a better approximation algorithm, for example, by distinguishing the
machine availability before and after the maintenance. From the practical point
of view, it is worth investigating the problem where the machine has multiple
maintenance periods, whether they occur on a regular basis, or irregularly but
known in advance.

Acknowledgements. Hu is supported by the National Natural Science Foundation
of China (NNSF) Grants No. 11271324 and 11471286. Luo is supported by a sabbat-
ical research grant of Lin; his work was mostly done during his visit to the UofA.
Dong is supported by the Zhejiang Provincial Natural Science Foundation Grants No.
LY13A010015 and the Science Foundation of Zhejiang Sci-Tech University (ZSTU)
Grants No. 13062171-Y. Tong is supported by an Alberta Innovates Technology Futures
(AITF) Graduate Student Scholarship. Goebel is supported by AITF and the Natural

114 J. Hu et al.

Sciences and Engineering Research Council of Canada (NSERC). Xu is supported by
the NNSF Grants No. 61221063 and 71371129, and the Program for Changjiang Schol-
ars and Innovative Research Team in University Grant No. IRT1173. Lin is supported
by NSERC and the Science Foundation of Zhejiang Sci-Tech University (ZSTU) Grants
No. 14062170-Y; his work was mostly done during his sabbatical leave at the ZSTU.

References

1. Chang, Y.-C., Lee, C.-Y.: Machine scheduling with job delivery coordination. Eur.
J. Oper. Res. 158, 470–487 (2004)

2. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman and Company, San Francisco (1979)

3. Garey, M.R., Johnson, D.S.: A 71/60 theorem for bin-packing. J. Complex. 1,
65–106 (1985)

4. He, Y., Zhong, W., Gu, H.: Improved algorithms for two single machine scheduling
problems. Theoret. Comput. Sci. 363, 257–265 (2006)

5. Johnson, D.S.; Near-optimal allocation algorithms. Ph.D. thesis, Massachusetts
Institute of Technology (1973)

6. Lee, C.-Y., Chen, Z.-L.: Machine scheduling with transportation considerations. J.
Sched. 4, 3–24 (2001)

7. Lee, C.-Y., Lei, L., Pinedo, M.: Current trends in deterministic scheduling. Ann.
Oper. Res. 70, 1–41 (1997)

8. Lu, L., Yuan, J.: Single machine scheduling with job delivery to minimize
makespan. Asia-Pac. J. Oper. Res. 25, 1–10 (2008)

9. Wang, X., Cheng, T.C.E.: Machine scheduling with an availability constraint and
job delivery coordination. Naval Res. Logistics 54, 11–20 (2007)

10. Zhong, W., Dósa, G., Tan, Z.: On the machine scheduling problem with job delivery
coordination. Eur. J. Oper. Res. 182, 1057–1072 (2007)

Lower and Upper Bounds for Random
Mimimum Satisfiability Problem

Ping Huang1(B) and Kaile Su2

1 Key Laboratory of High Confidence Software Technologies, Ministry of Education,
School of Electronic Engineering and Computer Science,

Institute of Software, Peking University, Beijing 100871, China
huangping@pku.edu.cn

2 Institute for Integrated and Intelligent Systems,
Griffith University, Nathan, Australia

k.su@griffith.edu.au

Abstract. Given a Boolean formula in conjunctive normal form with n
variables and m = rn clauses, if there exists a truth assignment satis-
fying (1 − 2−k − q(1 − 2−k))m clauses, call the formula q-satisfiable.
The Minimum Satisfiability Problem (MinSAT) is a special case of
q-satisfiable, which asks for an assignment to minimize the number of sat-
isfied clauses. When each clause contains k literals, it is called MinkSAT.
If each clause is independently and randomly selected from all possible
clauses over the n variables, it is called random MinSAT. In this paper,
we give upper and lower bounds of r (the ratio of clauses to variables) for
random k-CNF formula with q-satisfiable. The upper bound is proved by
the first moment argument, while the proof of lower bound is the second
moment with weighted scheme. Interestingly, our experimental results
about MinSAT demonstrate that the lower and upper bounds are very
tight. Moreover, these results give a partial explanation for the excellent
performance of MinSatz, the state-of-the-art MinSAT solver, from the
perspective of pruning effects. Finally, we give a conjecture about the
relationship between the minimum number and the maximum number
of satisfied clauses on random SAT instances.

Keywords: MinSAT · Upper bounds · Lower bounds

1 Introduction

Given a Boolean formula in conjunctive normal form(CNF), the satisfiability
problem (SAT), which is a prototype of many NP-complete problems, asks for
the existence of a satisfying assignment to the formula. In the past decades, SAT
has been one of the most active and prolific research areas. Many problems, such
as planning [21] and Pseudo-Boolean Constraints, can be translated into SAT
[10]. Recently, the success of SAT research has led to exploring its optimization
formalisms, such as the maximum satisfiability problem (MaxSAT) [4–6,8,12,15,
19,23] and the minimum satisfiability problem (MinSAT) [14,16,17]. MaxSAT
c© Springer International Publishing Switzerland 2015
J. Wang and C. Yap (Eds.): FAW 2015, LNCS 9130, pp. 115–124, 2015.
DOI: 10.1007/978-3-319-19647-3 11

116 P. Huang and K. Su

asks for a Boolean assignment to maximize the number of satisfied clauses, while
MinSAT asks for a Boolean assignment to minimize the number of satisfied
clauses.

MaxSAT is considered as one of the fundamental combinatorial optimization
problems, with close ties to important problems like max cut or max clique,
and with applications in scheduling, routing, etc. For MaxSAT, there is a long
tradition of theoretical works, e.g. [6,12,15,19]. Moreover, Coppersmith et al.
consider the phase transitions of random MaxkSAT (k ≥ 2) problem, where
each clause contains two literals and is selected independently and randomly
[9]. They demonstrate that, with increasing of r, i.e. the ratio between number
of clauses and number of variables, the expected number of unsatisfied clauses
under an optimal assignment quickly changes from Θ(1/n) to Θ(n). Furthermore,
they provide the upper and lower bounds of the maximum number of satisfied
clauses for MaxSAT. Xu et al. improve the upper bound of Max2SAT by the
first moment argument via correcting error items [24]. Achlioptas et al. first
studied the p-satisfiable problem while there exists a truth assignment satisfying
a fraction of 1 − 2−k + p2−k of all clauses. They introduced weighting second
moment method to prove the upper and lower bound of r(clauses/variables) [2].
Zhou et al. improve the lower bound by giving a different weight to the truth
assignment if exactly one of k literals in a clause is satisfied [26].

The research of MaxSAT leads to increasing interest in its counterpart, Min-
SAT, which is introduced by Kohli, Krishnamurti and Mirchandani in [14]. They
show that MinSAT is NP-complete, even when the formula is a 2-CNF formula,
i.e. each clause of which contains at most two literals, or a Horn formula, i.e.
each clause of which contains at most one positive variable. They also analyze
the performances of deterministic greedy and probabilistic greedy heuristics for
MinSAT. A reduction from MinSAT to the minimum vertex cover (MinVC)
problem is given in [20], to improve the approximation ratio of MinSAT to 2.
A simple randomized 1.1037-approximation algorithm for Min2SAT, and a
1.2136-approximation algorithm for Min3SAT, are given by Avidor and Zwick
in [1]. The first exact algorithm for MinSAT is by encoding MinSAT to MaxSAT
and solving it with a MaxSAT solver [16]. A branch and bound algorithm for
solving MinSAT is proposed by Li et al. in [17]. Their experiments show that
solving problems like MaxClique and combinatorial auction problems, is faster
by encoding them to MinSAT than reducing them to MaxSAT.

Compared with MaxSAT, there is a lack of knowledge about the bounds of
random MinSAT. A k-CNF of q-satisfiable asks for a truth assignment satisfying
a fraction of 1− 2−k − q(1− 2−k) of all clauses. In this paper, we give upper and
lower bounds of r for k-CNF to be q-satisfiable. The upper bound is obtained
by the first moment method, while the proof of lower bound is weighted second
moment used by [2].

We also present experimental results to demonstrate the tightness of these
lower and upper bounds. For MinSAT, the experimental results explain the excel-
lent performance of the state-of-the-art solver MinSatz. Moreover, we investigate
the relationship between MaxSAT and MinSAT, and propose a conjecture about

Lower and Upper Bounds for Random Mimimum Satisfiability Problem 117

the expected sum of the maximum number and the minimum number of satisfied
clauses for a random SAT instance.

This paper is organized as follows. In the next section, we review some
basic definitions about SAT and MinSAT. Then the lower and upper bounds of
k-CNF to be q-satisfiable are proved respectively. After that, experimental results
are presented, as well as a discussion on the relationship between MaxSAT and
MinSAT suggested by the experimental results. Finally, we conclude our work
and point out future research directions.

2 Preliminaries

A Boolean formula in conjunctive normal form F is a set of clauses
{C1, C2, ..., Cm}, where m is the number of clauses in F . A clause is a dis-
junction of literals, xi1 ∨ xi2 ∨ · · · ∨ xik , where k is the length of the clause.
A literal is either a Boolean variable x or its negation x. The SAT problem is
to determine the existence of an assignment satisfying all the clauses. If there is
no assignment to satisfy all the clauses, a natural but more practical question
is, how far or how close can one get to satisfiability? This is the optimization
version of SAT, which is to find an assignment satisfying the most or the least
number of clauses.

Definition 1. (MinSAT) Given a SAT instance F , MinSAT asks for an assign-
ment to all the variables such that the minimum number of clauses are satisfied.
This number is called the value of the MinSAT instance.

Definition 2. (q-satisfiable) Given a k-CNF formula F , if there exists a truth
assignment satisfying a fraction of 1−2−k −q(1−2−k) (0 < q < 1) of all clauses,
it is q-satisfiable.

For simplicity, we use x in lieu of �x�, the largest integer no more than x. The
following standard asymptotic notations will be used in this paper.

lim
x→∞

f(x)
g(x)

= 0 ⇒ f(x) = o(g(x))

lim
x→∞

f(x)
g(x)

= 1 ⇒ f(x) � g(x)

lim
x→∞ sup

f(x)
g(x)

≤ M(M > 0) ⇒ f(x) = O(g(x))

Especially, while M = 1, f(x) � g(x) means f(x) is less than or equal to g(x)
asymptotically.

3 The Upper Bound

Given a k-CNF instance F to be q-satisfiable. Let Pr be the probabilistic distri-
bution and let N denote the solutions number of the instance.

118 P. Huang and K. Su

Theorem 1. Let r > 2 ln 2
q2(2k−1)

, we have

lim
n→∞ Pr[F is q − satisfiable] = 0

Proof. The expected value of N , denoted as E(N), is given by

E(N) = 2n

ρrn
∑

i=0

(

rn

i

)(

1
2k

)rn−i(

1 − 1
2k

)i

where ρ = 1 − 2−k − q(1 − 2−k).

The last term is maximized for q ∈ (0, 1), so E(N) is upper bounded by

E(N) ≤ 2n(ρrn + 1)
(

rn

ρrn

)(

1
2k

)rn−ρrn(

1 − 1
2k

)ρrn

According to Stirling’s formula n! � (n/e)nO(n), and
(

rn

ρrn

)

�
(

ρ−ρ(1 − ρ)ρ−1
)rn

,

We have

E(N) ≤ 2n(ρrn + 1)

(

ρ−ρ(1 − ρ)ρ−1

(

1
2k

)1−ρ(

1 − 1
2k

)ρ
)rn

It is easy to prove that E(N) < 0 while r > 2 ln 2
q2(2k−1)

. By the Markov inequality
Pr(SAT) ≤ E(N), the upper bound is obtained.

4 The Lower Bound

Generally, the standard second moment method can be used to prove the lower
bound for random problems, such as SAT, CSP. Unfortunately, it fails by using to
optimization problem like MaxSAT. To cover this problem, Achlioptas provide a
weighting scheme of the second moment to improve the lower bound of kSAT [3]
and MaxSAT [2]. We following this line to prove the lower bound of q-satisfiable
problem.

For any truth assignment σ ∈ {0, 1}n, let

H = H(σ, F) = Unsat(l, σ) − Sat(l, σ)
S = S(σ, F) = Sat(c, σ)

where Unsat(l, σ)(Sat(l, σ)) is the number of unsatisfied(satisfied) literal,
Sat(c, σ) is the number of satisfied clauses.

Let N defined as the number of solutions to q-satisfiable problem. Define

N = ΣσγH(σ,F)ηS(σ,F)−s0rn

Lower and Upper Bounds for Random Mimimum Satisfiability Problem 119

where s0 = 1 − q − (1 − q)2−k, 0 < γ, η < 1.
Using the following two functions,

f(α, γ, η)
= η−2s0E[γH(σ,F)+S(τ,F)ηH(σ,F)+S(τ,F)]

= η2s0

[

(

α(γ2+γ−2

2) + 1 − α
)k

− 2(1 − η)
(

(

α(γ2+γ−2

2) + 1 − α
)k

−
(

αγ−2+1−α
2

)k
)

+ (1 − η)2
((

(

α(γ2+γ−2

2) + 1 − α
)k

− 2
(

αγ−2+1−α
2

)k
)

+ 2−k
(

αγ−2
)k

)]

Let

gr(α, γ, η) =
f(α, γ, η)r

αα(1 − α)1−α

We have

E2[N] = 2n

ηs0rn

[

(γ+γ−1

2)k − (1 − η)[γ+γ−1

2)k − (2γ)−k]
]rn

=
(

2gr

(

1
2 , γ, η

))n

Theorem 2. Given a k-CNF formula F , if r ≤ ln 2
(q+(1−q) ln(1−q))2k

(1−O(k2−k)),

lim
n→∞[F is q − satisfiable] = 1.

The proof is similar to the lower bound for MaxSAT in [2], so we ignore here.

5 Experimental Results

We conduct experiments to k-CNF formula to be q-satisfiable, the results are
presented in Fig. 1. The upper bound (upper) is proved by the first moment

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

14

16

q

cl
au

se
s/

va
ria

bl
es

k=3

upper
lower
lower*

Fig. 1. The upper and lower bound for q-satisfiable

120 P. Huang and K. Su

1 2 3 4 5 6 7 8

50

100

150

200

250

300

350

400

450

clauses/variables

M
in

3S
A

T
 v

al
ue

n=80

exact
lower
upper*
upper

Fig. 2. The bounds of n = 80 for Min3SAT

2 3 4 5 6 7 8 9
100

150

200

250

300

350

400

450

500

550

600

clauses/variables

M
in

2S
A

T
 v

al
ue

exact
lower
upper

Fig. 3. The bounds of n = 120 for Min2SAT

method, while the proof of the lower bound (lower) is weighted scheme of the
second moment method. We also give a poor lower bound (lower*) by algorithm
analysis, which was used to MaxSAT in [9].

From Fig. 1, we can see that the space between upper bond and lower bound
become smaller as q increase. That is to say, the bounds is tighter while the
number of satisfying clauses is less. Based on this, the lower and upper bounds
of MinkSAT is presented in Fig. 2, which indicate that the bounds for MinSAT
(k = 3) provided by this paper is very tight. However, the second moment is
poor to upper bound for Min2SAT, so algorithm analysis is considered in Fig. 3.

Lower and Upper Bounds for Random Mimimum Satisfiability Problem 121

Table 1. Comparing with MinSATz with branching number

r = 6 r = 7

#n MinSatz + LB MinSatz Minsatz + LB MinSatz

120 6593 7331 14601 14764

130 24881 25605 319657 333949

140 109061 112213 946257 947779

150 49597 49744 552269 552442

In the second experiment, we apply our work to the state-of-the-art solver
MinSatz. In MinSatz, UB is the largest number of falsified clauses while extend-
ing the current partial assignment to a complete one, and LB is the number
of clauses falsified in the best assignment found so far. if LB < UB, MinSatz
select a variable and instantiate it, otherwise, the solver backtracks. Besides,
MinSatz introduces both clique partitioning algorithms and MaxSAT technol-
ogy to improve the UB so as to prune the search tree quickly. However, we focus
on the other side, and give LB an initial number so as to reduce the branching
number. We conduct an experiment to test the performances before and after
adding our work to MinSatz in Table 1. The branching number can be reduced
while giving UB a initial value computed by this paper, but the improvements is
not so obvious. Further analysis indicate that the genuine MinSatz is an excel-
lent solver for MinSAT. However, if the MinSAT solver is not so excellent as
MinSatz, such as a trivial MinSAT solver with no inference rules (minsat), the
improvements will be more obvious. The results are presented in Table 2, which
indicates that a MinSAT solver with our work outperforms the one without.

Li et al. have found from experiments that the relationship between MaxSAT
and MinSAT is counter-intuitive [17,18]: for the same instances, the bigger the
MaxSAT value is, the smaller the MinSAT value is, the opposite is also true.
They focus these instances at the threshold (c = 4.25 for 3SAT). We follow this
line, and conjecture that, the sum of the MaxSAT and MinSAT value is a con-
stant value. In our experiments, the number of variables in random instances
ranges from 40 to 140, and the density r considered are 6, 7 and 8. We compare
the sum of exact MinSAT value and MaxSAT value (‘sum’ in Table 3) with our
conjectured value (‘conjecture’ in Table 3). From experiments, the accuracy of
our conjecture is found to be over 99 % (‘accuracy’ in Table 3). This indicates

Table 2. Application to MinSAT solver

r= 0.8 r= 1 r=2

#n minsat minsat +LB incr minsat minsat +LB incr minsat minsat +LB incr

20 0 0 0 1 1 0 1 1 0

30 0 0 0 1 1 0 100 85 15%

40 500 420 16% 600 500 16.67% 1783 1458 18.22%

50 1284 1076 16.2% 2117 1916 9.49% 4839 4279 11.57%

122 P. Huang and K. Su

Table 3. The relationship of MinSAT and MaxSAT

r = 6 r = 7 r = 8

#n Sum Conjecture Accuracy Sum Conjecture Accuracy sum Conjecture Accuracy

40 357 360 99.17% 418 420 99.52% 478 480 99.58%

60 535 540 99.07% 627 630 99.52% 716 720 99.44%

80 715 720 99.31% 834 840 99.29% 954 960 99.37%

100 892 900 99.11% 1041 1050 99.14% 1191 1200 99.25%

120 1071 1080 99.17% 1251 1260 99.29% 1431 1440 99.37%

140 1248 1260 99.05% 1459 1470 99.25% 1669 1680 99.35%

that our conjecture is close to the exact value. For kSAT instances, the sum of
MinSAT value and MaxSAT value is approximately (2−21−k)cn. If the relation-
ship between MinSAT and MaxSAT values is clear, this conjecture can be used
to get a better upper bound for MaxSAT. In other words, give the exact value
of MinSAT, the value of MaxSAT for the same instance can be approximated.
Besides, this value is significantly better than the upper bound obtained by [9],
see Table 4.

Table 4. Conjecture about the upper bound of MaxSAT. ‘MinSAT value’ (‘MaxSAT
value’) is the exact value of MinSAT (MaxSAT), ‘ub04’ is the upper bound of MaxSAT
obtained by [9], ub� is our guess value.

#n MinSAT value MaxSAT value ub� ub04

40 142 215 218 229

60 213 322 327 344

80 283 432 437 459

100 353 539 547 574

120 423 648 657 689

140 493 755 767 804

6 Conclusions and Future Work

We have presented upper and lower bounds of the minimization versions of the
SAT problem. For the upper bound, the first moment argument is used, while the
lower bound is derived by weighting second moment. The experimental results
confirm the correctness and accuracy of our work. Furthermore, we consider the
relationship between MinSAT and MaxSAT, and an interesting conjecture is
presented. As for future work, the bounds of other optimization problems such
as Min-CUT of random graphs [7] and Min-CSP [13] of random CSPs [25] may
be considered.

Lower and Upper Bounds for Random Mimimum Satisfiability Problem 123

References

1. Avidor, A., Zwick, U.: Approximating MIN 2-SAT and MIN 3-SAT. Theor. Com-
put. Syst. 38(3), 329–345 (2005)

2. Achlioptas D., Naor A., Peres, Y.: On the maximum satisfiability of random for-
mulas. In: FOCS 2003, pp. 362–370 (2003)

3. Achlioptas, D., Peres, Y.: The threshold for random k-SAT is 2k log 2 − O(k). J.
Am. Math. Soc. 17(4), 947–973 (2004)

4. Anstegui, C., Bonet, M.L., Levy, J.: SAT-based MaxSAT algorithms. Artif. Intell.
196, 77–105 (2013)

5. Anstegui, C., Malitsky, Y., Sellmann, M: MaxSAT by improved instance-specific
algorithm configuration. In: AAAI 2014, pp. 2594–2600 (2014)

6. Bollobas, B., Borgs, C., Chayes, J.T., Kim, J.H., Wilson, D.B.: The scaling window
of the 2-SAT transition. Random Struct. Algorithms 18(3), 201–256 (2001)

7. Bollobas, B.: Random Graphs. Cambridge Studies in Advanced Mathematics, vol.
73, 2nd edn. Cambridge University Press, Cambridge (2001)

8. Cai, S.W., Luo, C., Thornton, J., Su, K.L.: Tailoring local search for partial
MaxSAT. In: AAAI 2014, pp. 2623–2629 (2014)

9. Coppersmith, D., Gamarnik, D., Hajiaghayi, M.T., Sorkin, G.B.: Random MAX
SAT random MAX CUT, and their phase transitions. Random Struct. Algorithms
24, 502–545 (2004)

10. Eén, N., Sörensson, N.: Translating pseudo-boolean constraints into SAT. J. Sat-
isfiability Boolean Model. Comput. 2(2006), 21–26 (2006)

11. Gramm, J., Hirsch, E.A., Niedermeier, R., Rossmanith, P.: Worst-case upper
bounds for MAX-2-SAT with an application to MAX-CUT. Discrete Appl. Math.
130, 139–155 (2003)

12. Hirsch, E.A.: A new algorithm for MAX-2-SAT. In: Reichel, H., Tison, S. (eds.)
STACS 2000. LNCS, vol. 1770, pp. 65–73. Springer, Heidelberg (2000)

13. Huang, P., Yin, M.H.: An upper (lower) bound for Max(Min) CSP. Sci. China Inf.
Sci. 57(7), 1–9 (2014)

14. Kohli, R., Krishnamurti, R., Mirchandani, P.: The minimum satisfiability problem.
SIAM J. Discrete Math. 7, 275–283 (1994)

15. Li, C.M., Many, F., Nouredine, N.O., Planes, J.: Resolution-based lower bounds in
MaxSAT. Constraints 15(4), 456–484 (2010)

16. Li, C.M., Manyà, F., Quan, Z., Zhu, Z.: Exact MinSAT solving. In: Strichman, O.,
Szeider, S. (eds.) SAT 2010. LNCS, vol. 6175, pp. 363–368. Springer, Heidelberg
(2010)

17. Li, C.M., Zhu, Z., Many, F., Simon, L.: Minimum satisfiability and its applications.
In: IJCAI 2011, pp. 605–610 (2011)

18. Li, C.M., Zhu, Z., Many, F., Simon, L.: Optimizing with minimum satisfiability.
Artif. Intell. 190, 32–44 (2012)

19. Lin, H., Su, K.L., Li, C.M.: Within problem learning for efficient lower bound
computation in Max-SAT solving. In: AAAI 2008, pp. 351–356 (2008)

20. Marathe, M.V., Ravi, S.S.: On approximation algorithms for the minimum satisfi-
ability problem. Inf. Process. Lett. 58, 23–29 (1996)

21. Robinson, N., Gretton, C., Pham, D.N., Sattar, A.: A compact and efficient SAT
encoding for planning. In: ICAPS 2008, pp. 296–303 (2008)

22. Spencer, J.H.: Ten Lectures on the Probabilistic Method. SIAM, Philadelphia
(1994)

124 P. Huang and K. Su

23. Whitley, D., Howe, A.E., Hains, D.: Greedy or Not? Best Improving versus first
improving stochastic local search for MAXSAT. In: AAAI 2013 (2013)

24. Xu, X.L., Gao, Z.S., Xu, K.: A tighter upper bound for random MAX 2-SAT. Inf.
Process. Lett. 111(3), 115–119 (2011)

25. Xu, K., Li, W.: Exact phase transitions in random constraint satisfaction problems.
J. Artif. Intell. Res. (JAIR) 12, 93–103 (2000)

26. Zhou, G.Y., G Z.S., Liu J.: On the lower bounds of random Max 3 and 4-SAT.
Manuscript

On Solving Systems of Diagonal Polynomial
Equations Over Finite Fields

Gábor Ivanyos1 and Miklos Santha2,3(B)

1 Institute for Computer Science and Control, Hungarian Academy of Sciences,
Budapest, Hungary

Gabor.Ivanyos@sztaki.mta.hu
2 LIAFA, Université Paris Diderot, CNRS, 75205 Paris, France

3 Centre for Quantum Technologies, National University of Singapore,
Singapore, Singapore

miklos.santha@gmail.com

Abstract. We present a randomized algorithm to solve a system of diag-
onal polynomial equations over finite fields when the number of variables
is greater than some fixed polynomial of the number of equations whose
degree depends only on the degree of the polynomial equations. Our
algorithm works in time polynomial in the number of equations and the
logarithm of the size of the field, whenever the degree of the polyno-
mial equations is constant. As a consequence we design polynomial time
quantum algorithms for two algebraic hidden structure problems: for the
hidden subgroup problem in certain semidirect product p-groups of con-
stant nilpotency class, and for the multi-dimensional univariate hidden
polynomial graph problem when the degree of the polynomials is con-
stant.

Keywords: Algorithm · Polynomial equations · Finite fields ·
Chevalley–Warning theorem · Quantum computing

1 Introduction

Finding small solutions in some well defined sense for a system of integer linear
equations is an important, well studied, and computationally hard problem.
Subset Sum, which asks the solvability of a single equation in the binary domain
is one of Karp’s original 21 NP-complete problems [16].

The guarantees of many lattice based cryptographic system come from the
average case hardness of Short Integer Solution, dating back to Ajtai’s break-
through work [1], where we try to find short nonzero vectors in a random integer
lattice. Indeed, this problem has a remarkable worst case versus average case
hardness property: solving it on the average is at least as hard as solving various
lattice problems in the worst case, such as the decision version of the shortest
vector problem, and finding short linearly independent vectors.

c© Springer International Publishing Switzerland 2015
J. Wang and C. Yap (Eds.): FAW 2015, LNCS 9130, pp. 125–137, 2015.
DOI: 10.1007/978-3-319-19647-3 12

126 G. Ivanyos and M. Santha

Turning back to binary solutions, deciding, if there exists a nonzero solution
of the system of linear equations

a11x1 + . . . + a1nxn = 0
...

...
...

am1x1 + . . . + amnxn = 0
(1)

in the finite field Fp, for some prime number p is easy when p = 2. However, by
modifying the standard reduction of Satisfiability to Subset Sum [24] it can be
shown that it is an NP-hard problem for p ≥ 3.

The system (1) is equivalent to the system of equations

a11x
p−1
1 + . . . + a1nxp−1

n = 0
...

...
...

am1x
p−1
1 + . . . + amnxp−1

n = 0

(2)

where we look for a nonzero solution in the whole F
n
p .

In this paper we will consider finding a nonzero solution for a system of
diagonal polynomial equations similar to (2), but where more generally, the
variables are raised to some power 2 ≤ d. We state formally this problem.

Definition 1. The System of Diagonal Equation problem SDE is parametrized
by a finite field F and three positive integers n,m and d.
SDE(F, n,m, d)

Input: A system of polynomial equations over F:

a11x
d
1 + . . . + a1nxd

n = 0
...

...
...

am1x
d
1 + . . . + amnxd

n = 0

(3)

Output: A nonzero solution (x1, . . . , xn) �= 0n.

For j = 1, . . . , n, let us denote by vj the vector (a1j , . . . , amj) ∈ F
m. Then the

system of Eq. (3) is the same as

n
∑

j=1

xd
jvj = 0. (4)

That is, solving SDE(F, n,m, d) is equivalent to the task of representing the
zero vector as a nontrivial linear combinations of a subset of {v1, . . . , vn} with
dth power coefficients. We present our algorithm actually as solving this vector
problem. The special case d = |F| − 1 is the vector zero sum problem where the
goal is to find a non-empty subset of the given vectors with zero sum.

Under which conditions can we be sure that for system (3) there exists a
nonzero solution? The elegant result of Chevalley [3] states that a system of
homogeneous polynomial equations has a nonzero solution if the number of vari-
ables is greater than the sum of the degrees of the polynomials. In our case this

On Solving Systems of Diagonal Polynomial Equations Over Finite Fields 127

means that when n > dm, the existence of a nonzero solution is assured. In
addition, Warning has proven [26] that under similar condition the number of
solutions is in fact a multiple of the characteristic of F.

In general where little is known about the complexity of finding a nonzero
solution for systems which satisfy the Chevalley condition. When |F| = 2,
Papadimitriou has shown [20] that this problem is in the complexity class Poly-
nomial Parity Argument (PPA), the class of NP search problems where the
existence of the solution is guaranteed by the fact that in every finite graph
the number of vertices with odd degree is even. This implies that it can not be
NP-hard unless NP = co-NP. Nonetheless finding efficiently a nonzero solution
in general seems to be a very hard task.

Let us come back to our special system of Eq. (3). In the case m = 1, a nonzero
solution can be found in polynomial time for the single equation which satisfies
the Chevalley condition due to the remarkable work of van de Woestijne [25]
where he proves the following.

Fact 1. In deterministic polynomial time in d and log |F| we can find a nontriv-
ial solution for a1x

d
1 + . . . + ad+1x

d
d+1 = 0.

In the case of more than one equation we don’t know how to find a nonzero
solution for Eq. (3) under just the Chevalley condition. However, if we relax
the problem, and take much more variable than required for the existence of
a nonzero solution, we are able to give a polynomial time solution. Using van
de Woestijne’s result for the one dimensional case, a simple recursion on m
shows that if n ≥ (d + 1)m then SDE(Fp, n,m, d) can be solved in deterministic
polynomial time in n and log p. The time complexity of this algorithm is therefore
polynomial for any fixed m. The case when d is fixed and m grows appears to
be more difficult. To our knowledge, the only existing result in this direction is
the case d = 2 for which it was shown in [14] that there exists a randomized
algorithm that, when n = Ω(m2), solves SDE(Fp, n,m, d) in polynomial time
in n and log p. In the main result of this paper we generalize this result by
showing, for every constant d, the existence of a randomized algorithm that, for
every n larger than some polynomial function of m, solves SDE(Fp, n,m, d) in
polynomial time in n and log p.

Theorem 2. Let d be constant. For n > dd2 log d(m + 1)d log d, the problem
SDE(Fp, n,m, d) can be solved by a randomized algorithm in polynomial time
in n and log p.

The large number of variables that makes possible a polynomial time solution
unfortunately also makes our algorithm most probably irrelevant for crypto-
graphic applications. Nonetheless, it turns out the algorithm is widely applicable
in quantum computing for solving efficiently various algebraic hidden structure
problems. We explain now this connection.

Simply speaking, in a hidden structure problem we have to find some hidden
object related to some explicitly given algebraic structure A. We have access
to an oracle input, which is an unknown member f of a family of black-box

128 G. Ivanyos and M. Santha

functions which map A to some finite set S. The task is to identify the hidden
object solely from the information one can obtain by querying the oracle f . This
means that the only useful information we can obtain is the structure of the level
sets f−1(s) = {a ∈ A : f(a) = s}, s ∈ S, that is, we can only determine whether
two elements in A are mapped to the same value or not. In these problems we
say that the input f hides the hidden structure, the output of the problem. We
define now the two problems for which we can apply our algorithm for SDE.

Definition 2. The hidden subgroup problem HSP is parametrized by a finite
group G and a family H of subgroups of G.
HSP(G,H)
Oracle input: A function f from G to some finite set S.
Promise: For some H ∈ H, we have f(x) = f(y) ⇐⇒ Hx = Hy.
Output: H.

The hidden polynomial graph problem HPGP is parametrized by a finite field
Fp and three positive integers n,m and d.
HPGP(Fp, n,m, d).
Oracle input: A function f from F

n
p × F

m
p to a finite set S.

Promise: For some Q : F
n
p → F

m
p , where Q(x) = (Q1(x), . . . , Qm(x)),

and Qi(x) is an n-variate degree d polynomial over Fp with zero constant
term, we have f(x, y) = f(x′, y′) ⇐⇒ y − Q(x) = y′ − Q(x′).

Output: Q.

While no classical algorithm can solve the HSP with polynomial query complex-
ity even if the group G is abelian, one of the most powerful results of quantum
computing is that it can be solved by a polynomial time quantum algorithm for
any abelian G (see, e.g., [15]). Shor’s factorization and discrete logarithm finding
algorithms [23], and Kitaev’s algorithm [17] for the abelian stabilizer problem
are all special cases of this general solution.

Extending the quantum solution of the abelian HSP to non abelian groups
is an active research area since these instances include several algorithmically
important problems. For example, efficient solutions for the dihedral and the
symmetric group would imply efficient solutions, respectively, for several lattice
problems [21] and for graph isomorphism. While the non abelian HSP has been
solved efficiently by quantum algorithms in various groups [2,8–11,18,19], finding
a general solutions seems totally elusive.

A different type of extension was proposed by Childs, Schulman and Vazi-
rani [4] who considered the problem where the hidden object is a polynomial.
To recover it we have at our disposal an oracle whose level sets coincide with
the level sets of the polynomial. Childs et al. [4] showed that the quantum query
complexity of this problem is polynomial in the logarithm of the field size when
the degree and the number of variables are constant. In [7] the first time efficient
quantum algorithm was given for the case of multivariate quadratic polynomials
over fields of constant characteristic.

The hidden polynomial graph problem HPGP was defined in [5] by Decker,
Draisma and Wocjan. Here the hidden object is again a polynomial, but the
oracle is more powerful than in [4] because it can also be queried on the graphs

On Solving Systems of Diagonal Polynomial Equations Over Finite Fields 129

that are defined by the polynomial functions. They obtained a polynomial time
quantum algorithm that correctly identifies the hidden polynomial when the
degree and the number of variables are considered to be constant. In [7] this
result was extended to polynomials of constant degree. The version of the HPGP

we define here is more general than the one considered in [5] in the sense that
we are dealing not only with a single polynomial but with a vector of several
polynomials. The restriction on the constant terms of the polynomials are due
to the fact that level sets of two polynomials are the same if they differ only in
their constant terms, and therefore the value of the constant term can not be
recovered.

It will be convenient for us to consider a slight variant of the hidden polyno-
mial graph problem which we denote by HPGP

′. The only difference between
the two problems is that in the case of HPGP

′ the input is not given by an
oracle function but by the ability to access random level set states, which are
quantum states of the form

∑

x∈Fn
p

|x〉|u + Q(x)〉,

where u is a random element of F
m
p . Given an oracle input f for HPGP, a simple

and efficient quantum algorithm can create such a random coset state. Therefore
an efficient quantum algorithm for HPGP

′ immediately provides an efficient
quantum algorithm for HPGP.

In [6] it was shown that HPGP
′(Fp, 1,m, d) is solvable in quantum poly-

nomial time when d and m are both constant. Part of the quantum algo-
rithm repeatedly solved instances of SDE(Fp, n,m, d) under such conditions.
We present here a modification of this method which works in polynomial time
even if m is not constant.

Theorem 3. Let d be constant. If SDE(Fp, n,m, d) is solvable in randomized
polynomial time for some n, then HPGP

′(Fp, 1,m, d) is solvable in quantum
polynomial time.

Using Theorem 2 it is possible to dispense in the result of [6] with the assumption
that m is constant.

Corollary 1. If d is constant then HPGP
′(Fp, 1,m, d) is solvable in quantum

polynomial time.

Bacon, Childs and van Dam in [2] have considered the HSP in p-groups of
the form G = Fp � F

m
p when the hidden subgroup belongs to the family H of

subgroups of order p which are not subgroups of the normal subgroup 0 × F
m
p .

They have found an efficient quantum algorithm for such groups as long as
m is constant. In [7], based on arguments from [2] it was sketched how the
HSP(Fp � F

m
p ,H) can be translated into a hidden polynomial graph problem.

For the sake of completeness we state here and prove the exact statement about
such a reduction.

130 G. Ivanyos and M. Santha

Proposition 1. Let d be the nilpotency class of a group G of the form Fp �F
m
p .

There is a polynomial time quantum algorithm which reduces HSP(G,H) to
HPGP

′(Fp, 1,m, d).

Putting together Corollary 1 and Proposition 1, it is also possible to get rid of
the assumption that m is constant in the result of [2].

Corollary 2. If the nilpotency class of the group G of the form Fp � F
m
p is

constant then HSP(G,H) can be solved in quantum polynomial time.

The special cases of Theorem 2 for d = 2, 3 will be shown in Sect. 2. The proof of
Theorem 2 will be given in Sect. 3. The proofs of Theorem 3 and Proposition 1 are
given in the full and improved version of the paper [13]. We remark that the proof
of Theorem 2 extends to arbitrary finite fields (only minor notational changes are
needed). Also, the method can be made deterministic using techniques similar
to those used by van de Woestijne in [25]. Details of these can also be found
in [13].

2 Warm-Up: The Quadratic and Cubic Cases

2.1 The Quadratic Case

Proposition 2. The problem SDE(Fp, (m+1)2,m, 2) can be solved in random-
ized polynomial time.

Proof. We assume that p > 2 and that we have a non-square ζ in Fp at hand.
Such an element can be efficiently found by a random choice. Assuming GRH,
even a deterministic polynomial time method exists for finding a non-square.

Our input is a set V of (m+1)2 vectors in F
m
p , and we want to represent the

zero vector as a nontrivial linear combination of some vectors from V where all
the coefficients are squares. The construction is based on the following. Pick any
m+1 vectors u1, . . . , um+1 from F

m
p . Since they are linearly dependent, it is easy

to represent the zero vector as a proper linear combination
∑m+1

i=1 αiui = 0. Let

J1 = {i : α
p−1
2

i = 1} and J2 = {i : α
p−1
2

i = −1}. Using ζ, we can efficiently find
in deterministic polynomial time in log p by the Shanks-Tonelli algorithm [22]
field elements βi such that αi = β2

i for i ∈ J1 and αi = β2
i ζ for i ∈ J2. Let

w1 =
∑

i∈J1
β2

i vi and w2 =
∑

i∈J2
β2

i vi. Then w1 = −ζw2. Notice that we are
done if either of the sets J1 or J2 is empty.

What we have done so far, can be considered as a high-level version of the
approach of [14]. The method of [14] then proceeds with recursion to m − 1.
Unfortunately, that approach is appropriate only in the quadratic case. Here we
use a completely different idea which will turn to be extensible to more general
degrees.

From the vectors in V we form m + 1 pairwise disjoint sets of vectors of size
m + 1. By the construction above, we compute w1(1), w2(1), . . ., w1(m + 1),
w2(m + 1), where

w1(i) = −ζw2(i), (5)

On Solving Systems of Diagonal Polynomial Equations Over Finite Fields 131

for i = 1, . . . , m+1. Moreover, these 2m vectors are represented as linear combi-
nations with nonzero square coefficients of 2m pairwise disjoint nonempty subsets
of the original vectors.

Now w1(1), . . . , w1(m + 1) are linearly dependent and again we can find
disjoint subsets J1 and J2 and scalars γi for i ∈ J1 ∪ J2 such that for
w11 =

∑

i∈J1
γ2

i w1(i) and w12 =
∑

i∈J2
γ2

i w1(i) we have w11 = −ζw12. But
then for w21 =

∑

i∈J2
γ2

i w2(i) and w22 =
∑

i∈J2
γ2

i w1(i), using Eq. (5) for all i,
we similarly have w21 = −ζw22. On the other hand, if we sum up Eq. (5) for
i ∈ J1, we get w11 = −ζw21. Therefore w11 = ζ2w22 and w12 = w21 = −ζw22.
By Fact 1 we can find field elements δ11, δ22, δ12, not all zero, such that
ζ2δ211 − 2ζδ212 + δ222 = 0, and therefore (ζ2δ211 − 2ζδ212 + δ222)w22 = 0. But
(ζ2δ211 − 2ζδ212 + δ222)w22 = δ211w11 + δ212(w12 + w21) + δ222ζ

2w22. Then expanding
δ211w11 + δ212(w12 + w21) + δ222ζ

2w22 = 0 gives a representation of the zero vector
as a linear combination with square coefficients (squares of appropriate product
of βs, γs and δs) of a subset of the original vectors.

2.2 The Cubic Case

Proposition 3. Let n = (9m + 1)(3m + 1)(m + 1). Then SDE(Fp, n,m, 3) can
be solved in randomized polynomial time.

Proof. We assume that p−1 is divisible by 3 since otherwise the problem is triv-
ial. By a randomized polynomial time algorithm we can compute two elements
ζ2, ζ3 from Fp such that ζ1 = 1, ζ2, ζ3 are a complete set of representatives of the
cosets of the subgroup {x3 : x ∈ F

∗
p} of F

∗
p. Let V be our input set of n vectors in

F
m
p , now we want to represent the zero vector as a nontrivial linear combination

of some vectors from V where all the coefficients are cubes.
As in the quadratic case, for any subset of m+1 vectors u1, . . . , um+1 from V ,

we can easily find a proper linear combination summing to zero,
∑m+1

i=1 αiui = 0.
For r = 1, 2, 3, let Jr be the set of indices such that 0 �= αi = β3

i ζr. We know
that at least one of these three sets is non-empty. For each αi �= 0 we can
efficiently identify the coset of αi and even find βi. Let wr =

∑

i∈Jr
β3

i vi. Then
ζ1w1 + ζ2w2 + ζ3w3 = 0. Without loss of generality we can suppose that J1

is non-empty since if Jr is non-empty for r ∈ {2, 3}, we can just multiply αis
simultaneously by ζ1/ζr.

From any subset of size (3m + 1)(m + 1) of V we can form 3m + 1 groups of
size m+1, and within each group we can do the procedure outlined above. This
way we obtain, for k = 1, . . . , 3m + 1, and r = 1, 2, 3, pairwise disjoint subsets
Jr(k) of indices and vectors wr(k) such that

ζ1w1(k) + ζ2w2(k) + ζ3w3(k) = 0. (6)

For k = 1, . . . , 3m + 1, we know that J1(k) �= ∅ and the vectors wr(k) are
combinations of input vectors with indices form Jr(k) having coefficients which
are nonzero cubes. Let W (k) ∈ F 3m

p denote the vector obtained by concatenating
w1(k), w2(k) and w3(k) (in this order). Then we can find three pairwise disjoint

132 G. Ivanyos and M. Santha

subsets M1,M2,M3 of {1, . . . , 3m + 1}, and for each k ∈ Ms, a nonzero field
element γk such that

3
∑

s=1

ζs

∑

k∈Ms

γ3
kW (k) = 0. (7)

We can arrange that M2 is non-empty. For r, s ∈ {1, 2, 3}, set Jrs =
⋃

k∈Ms
Jr(k)

and wrs =
∑

k∈Ms
γ3

kwr(k). Then wrs is a linear combination of input vectors
with indices from Jrs having coefficients that are nonzero cubes. The equality (7)
just states that ζ1wr1+ζ2wr2+ζ3wr3 = 0, for r = 1, 2, 3. Furthermore, summing
up the equalities (6) for k ∈ Ms, we get ζ1w1s +ζ2w2s +ζ3w3s = 0, for s = 1, 2, 3.

Continuing this way, from (9m + 1)(3m + 1)(m + 1) input vectors we can
make 27 linear combinations with cubic coefficients wrst, for r, s, t = 1, 2, 3,
having pairwise disjoint supports such that the support of w123 is non-empty
and they satisfy the 27 equalities ζ1w1st + ζ2w2st + ζ3w3st = 0 (s, t = 1, 2, 3);
ζ1wr1t + ζ2wr2t + ζ3wr3t = 0 (r, t = 1, 2, 3); ζ1wrs1 + ζ2wrs2 + ζ3wrs3 = 0 (r, s =
1, 2, 3). From these we use the following 6 equalities: ζ1w123+ζ2w223+ζ3w323 = 0;
ζ1w132 + ζ2w232 + ζ3w332 = 0; ζ1w213 + ζ2w223 + ζ3w233 = 0; ζ1w312 + ζ2w322 +
ζ3w332 = 0; ζ1w231 + ζ2w232 + ζ3w233 = 0; ζ1w321 + ζ2w322 + ζ3w323 = 0. Adding
these equalities with appropriate signs so that the terms with coefficients ζ2 and
ζ3 cancel and dividing by ζ1, we obtain w123 + w231 + w312 − w132 − w213 −
w321 = 0. Observing that −1 = (−1)3, this gives a representation of zero as a
linear combination of the input vectors with coefficients that are cubes.

3 The General Case

In this section we prove Theorem 2. First we make the simple observation that
it is sufficient to solve SDE(Fp, n,m, d) in the case when d divides p − 1. If it
is not the case, then let d′ = gcd(d, p − 1). Then from a nonzero solution of the
system

n
∑

j=1

xd′
j vj = 0,

one can efficiently find a nonzero solution of the original equation. Indeed, the
extended Euclidean algorithm efficiently finds a positive integer t such that td =
u(p − 1) + d′ for some integer u. Then for any nonzero x ∈ Fp we have (xt)d =
xd′

mod p, and therefore (xt
1, . . . , x

t
n) is a solution of Eq. (4). From now on we

suppose that d divides p − 1.
Our algorithm will distinguish two cases, according to the value of d. The first

case is when −1 is not a dth power in Fp. Then d is necessarily an even number,
and we give a method which reduces to the problem HPGP with polynomials
of degree d/2. Observe that in that case −1 is a d/2th power, and the algorithm
proceeds with the method of the second case. The second case is when −1 is
a dth power in Fp, then our algorithm directly solves the problem. For both
cases we will denote by C(d,m) the number of vectors (variables) used by our
algorithm. For d = 1, we can take C(1,m) = m + 1.

On Solving Systems of Diagonal Polynomial Equations Over Finite Fields 133

3.1 The Reduction When d is Even

We assume that p − 1 is divisible by d and that we have a non-square ζ in
Fp at hand. We also assume that we can efficiently express the zero vector as
a nontrivial linear combination with dth power coefficients of any given t =
C(d/2,m) vectors u1, . . . , ut ∈ F

m
p :

∑t
i=1 αd

i ui = 0.

As in the quadratic case, let J1 = {i : α
p−1
2

i = 1} and J2 = {i : α
p−1
2

i = −1}.
Using ζ, we can efficiently find βi such that αi = β2

i for i ∈ J1 and αi = β2
i ζ

for i ∈ J2. Let w1 =
∑

i∈J1
β2

i vi and w2 =
∑

i∈J2
β2

i vi. Then w1 = −ζdw2. Note
that we are done if either of the sets J1 or J2 is empty.

Suppose that we have C(d/2,m) groups, each consisting of C(d/2,m) vectors
of length m. For each i, we can build vectors w1(i) and w2(i) in the ith group with
the properties of w1 and w2 above. Then we can express the zero vector as a linear
combination with nonzero dth power coefficients from a subset of the vectors
w1(i). Like in the quadratic case, we find four vectors, a scalar multiple of each
other, represented as nontrivial linear combinations with dth power coefficients
of four pairwise disjoint subsets of the original variables.

We can iterate this process. In the �th iteration we start with C(d/2,m)
groups, each consisting of C(d/2,m)�−1 vectors of length m. At the end of the
�th iteration we can find a nonzero vector w and scalars λ1, . . . , λ2� together with
representations of the vectors λ1w, . . . , λ2�w as linear combination with nonzero
dth power coefficients of � pairwise disjoint subsets of the original vectors.

After �log2(d + 1) ≤ log d + 1 iterations, starting from at most
C(d/2,m)log d+1 input vectors, we get a vector w and scalars λ1, . . . , λd+1,
together with the representations of the vectors w1 = λ1w, . . . , wd+1 = λd+1w
as above.

By Fact 1 we can find field elements z1, . . . , zd+1 such that
∑d+1

i=1 λiz
d
i = 0,

which implies that
∑d+1

i=1 zd
i wi = 0. The representations of w1, . . . , wd+1 give

then the desired representation of the zero vector. Observe that we have also
shown that in that case C(d,m) ≤ C(d/2,m)log d+1.

3.2 The Algorithm When d
√−1 ∈ Fp

We assume that p − 1 is divisible by d, we have a dth root μ of −1 as well
as ζ2, . . . , ζd in Fp at hand such that ζ1 = 1, ζ2, . . . , ζd are a complete set of
representatives of the cosets of F

∗
p
d in F

∗
p. To construct such elements μ, ζ2, . . . , ζd

we need ρth non-residues for any prime factor ρ of 2d. Such non-residues can
be found in time polynomial in log p and d by random choice or a deterministic
search assuming GRH [12].

For � = 1, . . . , d, put B�(d,m) = d
�(�−1)

2 (m + 1)�. For any �-tuple a =
(a1, . . . , a�) ∈ {1, . . . , d}�, for s ∈ {1, . . . , d} and for 1 ≤ j ≤ �, set a(j, s) =
(a1, . . . , aj−1, s, aj+1, . . . , a�).

Claim. From B = B�(d,m) input vectors v1, . . . , vB , in time polynomial in B
and log p, we can find d� pairwise disjoint subsets Ja ⊆ {1, . . . , B} and field

134 G. Ivanyos and M. Santha

elements β1, . . . , βB such that J(1,...,�) �= ∅, and if we set wa =
∑

i∈Ja
βd

i vi, then
we have

d
∑

s=1

ζswa(j,s) = 0, for every a ∈ {1, . . . , d}� and j = 1, . . . , �.

Proof. We prove it by recursion on �. If � = 1 then any B�(d,m) = m+1 vectors
from F

m
p are linearly dependent. Therefore there exist α1, . . . , αm+1 ∈ Fp, not

all zero, such that
∑m+1

i=1 αivi = 0. For r = 1, . . . , d, let Jr be the set of indices
i such that there exists βi ∈ F

∗
p with αi = ζrβ

d
i . For i ∈ Jr, such a βi can be

efficiently found. At least one of the sets Jr is non-empty. If J1 is empty then
we multiply the coefficients αi simultaneously by ζ1/ζ−1

r where Jr is nonempty
to arrange that J1 becomes nonempty.

To describe the recursive step, assume that we are given B�+1(d,m) =
d�(m + 1)B vectors. Put E = d�(m + 1), and for convenience assume that
the input vectors are denoted by vki, for k = 1, . . . , E and i = 1, . . . , B.
By the recursive hypothesis, for every k ∈ {1, . . . , E}, there exist subsets
Ja(k) ⊆ {1, . . . , B} and field elements βi(k) such that J(1,...,�)(k) �= ∅, and with
wa(k) =

∑

i∈Ja(k)
βi(k)dvki, we have

d
∑

s=1

ζswa(j,s)(k) = 0, (8)

for every a ∈ {1, . . . , d}� and j = 1, . . . , �.
For every k = 1, . . . , E, let W (k) be the concatenation of the vectors wa(k) in

a fixed, say the lexicographic, order of {1, . . . , d}�. Then the W (k)’s are vectors
of length d�m < E. Therefore there exist field elements α1, . . . , αE , not all zero,
such that

∑E
i=k α(k)W (k) = 0. For a k such that α(k) �= 0, let α(k) = ζrγ(k)d

for some 1 ≤ r ≤ d and γ(k) ∈ F
∗
p. The index r and γ(k) can be computed

efficiently. For r = 1, . . . , d, let Mr be the set of k’s such that α(k) = ζrγ(k)d.
We can arrange that M�+1 is nonzero by simultaneously multiplying the α(k)’s
by ζ�+1/ζr for some r, if necessary. Observe that we have

d
∑

s=1

ζs

∑

k∈Ms

γ(k)dW (k) = 0. (9)

For i ∈ {1, . . . , B} and k ∈ {1, . . . , E} set β′
ki = γ(k)βi(k). We fix a′ ∈

{1, . . . , d}�+1, and we set a = (a′
1, . . . a

′
�) and r = a′

�+1. We define J ′
a′ =

{(k, i) : k ∈ Mr and i ∈ Ja(k)} and w′
a′ =

∑

(k,i)∈J ′
a′

β′d
kivki. Then w′

a′ =
∑

k∈Mr
γd

kwa(k). This equality, together with the Eq. (8) imply that for every
j = 1, . . . , �, we have

d
∑

s=1

ζswa′(j,s) = 0.

On Solving Systems of Diagonal Polynomial Equations Over Finite Fields 135

Eq. (9) for j − � + 1 gives
∑d

s=1 ζs

∑

k∈Ms
γ(k)dwa(k) = 0. Expanding wa(k) in

the inner sum
∑

k∈Ms
γ(k)dwa(k) gives that it equals wa′(�+1,s). Thus also

d
∑

s=1

ζswa′(�+1,s) = 0,

finishing the proof of the claim.

We apply the procedure of the claim for � = d. From any B = Bd(d,m) =
d

d(d−1)
2 (m+1)d input vectors v1, . . . , vB , we compute in time polynomial in log p

and B subsets Ja, with J(12...d) �= ∅, as well as nonzero elements β1, . . . , βB ∈ Fp

such that with wa =
∑

i∈Ja
βd

i vi, we have

d
∑

s=1

ζswa(j,s) = 0, (10)

for every j = 1, . . . , d and for every a ∈ {1, . . . , d}d.
Permutative tuples a ∈ Sd are of special interest. By sgn(a) we denote the

sign of such a permutation, which is 1 if a is even and −1 if a is odd. We show
that

∑

a∈Sd

sgn(a)wa = 0. (11)

For a ∈ Sd, let ja be the position of 1 in a and for every s ∈ {1, . . . , d}, we
denote by a[s] the sequence obtained from a by replacing 1 with s. Notice that
a[s] = a(ja, s), therefore (10) implies

∑

a∈Sd

sgn(a)
d

∑

s=1

ζswa[s] = 0.

We claim that

∑

a∈Sd

sgn(a)
d

∑

s=2

ζswa[s] = 0.

To see this, observe that for s > 1 the tuple a[s] has entries from {2, . . . , d}, where
s occurs twice, while the others once. Any such sequence a′ can come from exactly
two permutations which differ by a transposition: these are obtained from a′ by
replacing one of the occurrences of s with 1. Then (11) is just the difference of
the above two equalities.

For i ∈ Ja, let γi = 0 if a is not a permutation, γi = βi if a is an
even permutation and γi = μβi if a is an odd permutation. Then (11) gives
∑B

i=1 γd
i vi = 0, the required representation of the zero vector. Observe that in

that case C(d,m) ≤ d
d(d−1)

2 (m + 1)d. The bounds obtained in the two cases
imply that C(d,m) ≤ dd2 log d(m + 1)d log d in general.

136 G. Ivanyos and M. Santha

Acknowledgements. Research was supported in part by the Hungarian Scientific
Research Fund (OTKA) Grant NK105645, the Singapore Ministry of Education and
the National Research Foundation Tier 3 Grant MOE2012-T3-1-009, by the European
Commission IST STREP project Quantum Algorithms (QALGO) 600700, and the
French ANR Blanc Program Contract ANR-12-BS02-005.

References

1. Ajtai, M.: Generating hard instances of lattice problems. In: 28th Annual ACM
Symposium on Theory of Computing (STOC), pp. 99–108 (1996)

2. Bacon, D., Childs, A.M., van Dam, W.: From optimal measurement to efficient
quantum algorithms for the hidden subgroup problem over semidirect product
groups. In: 46th IEEE Symposium on Foundations of Computer Science (FOCS),
pp. 469–478 (2005)

3. Chevalley, C.: Démonstration d’une hypothèse de M. Artin. Abh. Math. Sem.
Hamburg 11, 73–75 (1936)

4. Childs, A.M., Schulman, L., Vazirani, U.: Quantum algorithms for hidden nonlin-
ear structures. In: 48th IEEE Symposium on Foundations of Computer Science
(FOCS), pp. 395–404 (2007)

5. Decker, T., Draisma, J., Wocjan, P.: Quantum algorithm for identifying hidden
polynomial function graphs. Quantum Inf. Comput. 9, 0215–0230 (2009)

6. Decker, T., Høyer, P., Ivanyos, G., Santha, M.: Polynomial time quantum algo-
rithms for certain bivariate hidden polynomial problems. Quantum Inf. Comput.
14, 790–806 (2014)

7. Decker, T., Ivanyos, G., Santha, M., Wocjan, P.: Hidden symmetry subgroup prob-
lems. SIAM J. Comput. 42, 1987–2007 (2013)

8. Denney, A., Moore, C., Russell, A.: Finding conjugate stabilizer subgroups in
PSL(2; q) and related groups. Quantum Inf. Comput. 10, 282–291 (2010)

9. Friedl, K., Ivanyos, G., Magniez, F., Santha, M., Sen, P.: Hidden translation and
translating coset in quantum computing. SIAM J. Comput. 43, 1–24 (2014)

10. Grigni, M., Schulman, L., Vazirani M., Vazirani, U.: Quantum mechanical algo-
rithms for the nonabelian hidden subgroup problem. In: 33rd ACM Symposium on
Theory of Computing (STOC), pp. 68–74 (2001)

11. Hallgren, S., Russell, A., Ta-Shma, A.: Normal subgroup reconstruction and quan-
tum computation using group representations. SIAM J. Comput. 32, 916–934
(2003)

12. Huang, M-D.A: Riemann hypothesis and finding roots over finite fields. In: 17th
Annual ACM Symposium on Theory of Computing (STOC), pp. 121–130 (1985)

13. Ivanyos, G., Santha, M.: On solving systems of diagonal polynomial equations over
finite fields. arXiv:1503.09016 [cs.CC]

14. Ivanyos, G., Sanselme, L., Santha, M.: An efficient quantum algorithm for the
hidden subgroup problem in nil-2 groups. Algoritmica 62, 480–498 (2012)

15. Jozsa, R.: Quantum factoring, discrete logarithms, and the hidden subgroup prob-
lem. Comput. Sci. Engin. 3, 34–43 (2001)

16. Karp, R.: Reducibility among combinatorial problems. In: Miller, R., Thatcher,
J.W., Bohlinger, J.D. (eds.) Complexity of Computer Computations. The IBM
Research Symposia Series, pp. 85–103. Springer, New York (1972)

17. Kitaev, A.Y.: Quantum measurements and the Abelian Stabilizer Problem (1995).
arXiv:quant-ph/9511026v1

http://arxiv.org/abs/1503.0901
http://arxiv.org/abs/quant-ph/9511026v1

On Solving Systems of Diagonal Polynomial Equations Over Finite Fields 137

18. Kuperberg, G.: A subexponential-time quantum algorithm for the dihedral hidden
subgroup problem. SIAM J. Comput. 35, 170–188 (2005)

19. Moore, C., Rockmore, D., Russell, A., Schulman, L.: The power of basis selection
in Fourier sampling: hidden subgroup problems in affine groups. In: 15th Annual
ACM-SIAM Symposium on Discrete Algorithms, pp. 1113–1122 (2004)

20. Papadimitriou, C.: On the complexity of the parity argument and other inefficient
proofs of existence. J. Comput. Syst. Sci. 48, 498–532 (1994)

21. Regev, O.: Quantum computation and lattice problems. SIAM J. Comput. 33,
738–760 (2004)

22. Shanks., D.: Five number-theoretic algorithms. In: 2nd Manitoba Conference on
Numerical Mathematics, pp. 51–70 (1972)

23. Shor, P.: Algorithms for quantum computation: discrete logarithm and factoring.
SIAM J. Comput. 26, 1484–1509 (1997)

24. Sipser, M.: Introduction to the Theory of Computation. PWS Publishing Company,
Boston (1997)

25. van de Woestijne, C.E.: Deterministic equation solving over finite fields. Ph.D.
thesis, Universiteit Leiden (2006)

26. Warning, E.: Bemerkung zur vorstehenden Arbeit von Herrn Chevalley. Abh. Math.
Sem. Hamburg 11, 76–83 (1936)

Pattern Backtracking Algorithm
for the Workflow Satisfiability Problem
with User-Independent Constraints

Daniel Karapetyan1, Andrei Gagarin2, and Gregory Gutin2(B)

1 University of Nottingham, Nottingham, UK
Daniel.Karapetyan@gmail.com

2 Royal Holloway, University of London, Surrey, UK
{Andrei.Gagarin,G.Gutin}@rhul.ac.uk

Abstract. The workflow satisfiability problem (WSP) asks whether
there exists an assignment of authorised users to the steps in a workflow
specification, subject to certain constraints on the assignment. (Such an
assignment is called valid.) The problem is NP-hard even when restricted
to the large class of user-independent constraints. Since the number
of steps k is relatively small in practice, it is natural to consider a
parametrisation of the WSP by k. We propose a new fixed-parameter
algorithm to solve the WSP with user-independent constraints. The
assignments in our method are partitioned into equivalence classes such
that the number of classes is exponential in k only. We show that one
can decide, in polynomial time, whether there is a valid assignment in an
equivalence class. By exploiting this property, our algorithm reduces the
search space to the space of equivalence classes, which it browses within
a backtracking framework, hence emerging as an efficient yet relatively
simple-to-implement or generalise solution method. We empirically eval-
uate our algorithm against the state-of-the-art methods and show that
it clearly wins the competition on the whole range of our test problems
and significantly extends the domain of practically solvable instances of
the WSP.

1 Introduction

In the workflow satisfiability problem (WSP), we aim at assigning authorised
users to the steps in a workflow specification, subject to some constraints arising
from business rules and practices. The WSP has applications in information
access control (e.g. see [1–3]), and it is extensively studied in the security research
community [2,3,8,14]. In the WSP, we are given a set U of users, a set S of steps,
a set A = {A(u) : u ∈ U} of authorisation lists, where A(u) ⊆ S denotes the set
of steps for which user u is authorised, and a set C of (workflow) constraints. In
general, a constraint c ∈ C can be described as a pair c = (T,Θ), where T ⊆ S
is the scope of the constraint and Θ is a set of functions from T to U which
specifies those assignments of steps in T to users in U that satisfy the constraint
(authorisations disregarded). Authorisations and constraints described in WSP
c© Springer International Publishing Switzerland 2015
J. Wang and C. Yap (Eds.): FAW 2015, LNCS 9130, pp. 138–149, 2015.
DOI: 10.1007/978-3-319-19647-3 13

Pattern Backtracking Algorithm for the Workflow Satisfiability Problem 139

literature are relatively simple such that we may assume that all authorisations
and constraints can be checked in polynomial time (in |U |, |S| and |C|).

Given a workflow W = (S,U,A, C), W is satisfiable if there exists a function
π : S → U such that

– for all s ∈ S, s ∈ A(π(s)) (each step is allocated to an authorised user);
– for all (T,Θ) ∈ C, π|T ∈ Θ (every constraint is satisfied).

A function π : S → U is an authorised (eligible, valid, respectively) complete plan
if it satisfies the first condition above (the second condition, both conditions,
respectively).

For example, consider the following instance of WSP. The step and user
sets are S = {s1, s2, s3, s4} and U = {u1, u2, . . . , u5}. The authorisation lists
are A(u1) = {s1, s2, s3, s4}, A(u2) = {s1}, A(u3) = {s2}, A(u4) = A(u5) =
{s3, s4}. The constraints are (s1, s2,=) (the same user must be assigned to s1
and s2), (s2, s3, �=) (s2 and s3 must be assigned to different users), (s3, s4, �=),
and (s4, s1, �=). Since the function π assigning u1 to s1 and s2, u4 to s3, and u5

to s4 is a valid complete plan, the workflow is satisfiable.
Clearly, not every workflow is satisfiable, and hence it is important to be able

to determine whether a workflow is satisfiable or not and, if it is satisfiable, to
find a valid complete plan. Unfortunately, the WSP is NP-hard [14] and, since the
number k of steps is usually relatively small in practice (usually k � n = |U | and
we assume, in what follows, that k < n), Wang and Li [14] introduced its para-
meterisation1 by k. Algorithms for this parameterised problem were also studied
in [4–6,9]. While in general the WSP is W[1]-hard [14], the WSP restricted2 to
some practically important families of constraints is fixed-parameter tractable
(FPT) [5,9,14]. (Recall that a problem parameterised by k is FPT if it can be
solved by an FPT algorithm, i.e. an algorithm of running time O∗(f(k)), where
f is an arbitrary function depending on k only, and O∗ suppresses not only con-
stants, but also polynomial factors in k and other parameters of the problem
formulation.)

Many business rules are not concerned with the identities of the users that
perform a set of steps. Accordingly, we say a constraint c = (T,Θ) is user-
independent if, whenever θ ∈ Θ and φ : U → U is a permutation, then φ◦θ ∈ Θ.
In other words, given a complete plan π that satisfies c and any permutation
φ : U → U , the plan π′ : S → U , where π′(s) = φ(π(s)), also satisfies c.
The class of user-independent constraints is general enough in many practical
cases; for example, all the constraints defined in the ANSI RBAC standard [1]
are user-independent. Most of the constraints studied in [4,6,9,14] and other
papers are also user-independent. Classical examples of user-independent con-
straints are the requirements that two steps are performed by either two differ-
ent users (separation-of-duty), or the same user (binding-of-duty). More complex

1 We use terminology of the recent monograph [10] on parameterised algorithms and
complexity.

2 While we consider special families of constraints, we do not restrict authorisation
lists.

140 D. Karapetyan et al.

constraints state that at least/at most/exactly r users are required to complete
some sensitive set of steps (these constraints belong to the family of counting con-
straints), where r is usually small. A simple reduction from Graph Colouring
shows that the WSP restricted to the separation-of-duty constraints is already
NP-hard [14].

The WSP is an important applied problem and is thoroughly studied in the
literature. However, as was shown by Cohen et al. [4], the methods developed so
far were capable of solving user-independent WSP instances only for relatively
small values of k. In this paper we propose a new approach that, compared to the
existing solution methods, significantly extends the number of steps in practically
solvable instances now covering the values of k expected in the majority of
real-world instances. Importantly, the proposed method is relatively simple to
implement or extend with new constraints, such that its accessibility is similar
to that of SAT-solvers used by practitioners [14].

The proposed solution method is a deterministic algorithm that uses back-
tracking to browse the space of all the equivalence classes of partial solutions. We
show that it is possible to test efficiently if there exists an authorised complete
plan in a given equivalence class. This makes our algorithm FPT as the number
of equivalence classes is exponential in k only.

2 Patterns and the User-Iterative Algorithm

A plan is a function π : T → U , where T ⊆ S (note that if T = S then π is a
complete plan). We define an equivalence relation on the set of all plans, which
is a special case of an equivalence relation defined in [5]. For user-independent
constraints, two plans π : T → U and π′ : T ′ → U are equivalent, denoted by
π ≈ π′, if and only if T = T ′, and π(s) = π(t) if and only if π′(s) = π′(t)
for every s, t ∈ T . Assuming an ordering s1, s2, . . . , sk of steps S, every plan
π : T → U can be encoded into a pattern P = P (π) = (x1, . . . , xk) defined by:

xi =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

0 if si /∈ T,

1 if i = 1 and s1 ∈ T,

xj if π(si) = π(sj) and j < i,

max {x1, x2, . . . , xi−1} + 1 otherwise.

(1)

The pattern P (π) uniquely encodes the equivalence class of π, and P (π) = P (π′)
for every π′ in that equivalence class [5]. The pattern P represents an assignment
of steps in T to some users in any plan of the equivalence class of π. We say that
a pattern is complete if xi �= 0 for i = 1, 2, . . . , k.

The state-of-the-art FPT algorithm for the WSP with counting constraints
proposed in [4] and called here User-Iterative (UI), iterates over the set of users
and gradually computes all encoded equivalence classes of valid plans until it finds
a complete solution to the problem, or all the users have been considered. Effec-
tively, it uses the breadth-first search in the space of plans. In the breadth-first
search tree, equivalent plans can be generated but they are detected efficiently

Pattern Backtracking Algorithm for the Workflow Satisfiability Problem 141

using patterns and the corresponding search branches are then merged together.
Since the UI algorithm generates a polynomial number of plans per equivalence
class and the number of equivalence classes is exponential in k only, the UI algo-
rithm is FPT. The results of [4,6] show that the generic user-iterative FPT algo-
rithm of [5] has a practical value, and its implementations are able to outperform
the well-known pseudo-Boolean SAT solver SAT4J [13].

In this paper we propose a new FPT solution method for the WSP which
also exploits equivalence classes and patterns but in a more efficient manner.
Among other advantages, our algorithm never generates multiple plans within
the same equivalence class. For further comparison of our algorithm with the UI
algorithm, see Sect. 4.

3 The Pattern-Backtracking Algorithm

We call our new method Pattern-Backtracking (PB) as it uses the backtracking
approach to browse the search space of patterns. To describe it, we introduce
several additional notations. We will say that a plan π : T → U is authorised
if s ∈ A(π(s)) for every s ∈ T , eligible if it does not violate any constraint
in C, and valid if it is both authorised and eligible. Similarly, a pattern P is
authorised, eligible or valid if there exists a plan π such that P (π) = P and π
is authorised, eligible or valid, respectively. By P (si) we denote the value xi in
P = (x1, x2, . . . , xk). We also use notations A−1(s) = {u ∈ U : s ∈ A(u)} for
the set of users authorised for step s ∈ S and P−1(xi) = {s ∈ S : P (s) = xi}
for all the steps assigned to the same user encoded by the value of xi in P . Note
that P−1(xi) �= ∅ for i = 1, 2, . . . , k for any complete pattern.

In Sect. 3.1 we show how to find a valid plan for an eligible pattern, which
is an essential part of our algorithm, and in Sect. 3.2 we describe the algorithm
itself.

3.1 Pattern Validity Test

The PB algorithm searches the space of patterns; once an eligible complete
pattern P is found, we need to check if it is valid and, if it is, then to find a plan
π such that P = P (π). The following theorem allows us to address these two
questions efficiently.

For a complete pattern P = (x1, x2, . . . , xk), let X = {xi : i = 1, 2, . . . , k}
(note that the cardinality of the set X may be smaller than k). Let G = (X∪U,E)
be a bipartite graph, where (xi, u) ∈ E if and only if u ∈ A−1(s) for each
s ∈ P−1(xi), xi ∈ X.

Theorem 1. A pattern P is authorised if and only if G has a matching of
size |X|.

Proof. Suppose M is a matching of size |X| in G. Construct a plan π as follows:
for each edge (xi, u) ∈ M and s ∈ P−1(xi), set π(s) = u. Since M covers
xi for every i = 1, 2, . . . , k and P is a complete pattern, the above procedure
defines π(s) for every step s ∈ S. Hence, π is a complete plan. Now observe

142 D. Karapetyan et al.

that, for each xi ∈ X, all the steps P−1(xi) are assigned to exactly one user,
and if xi �= xj for some i, j ∈ {1, 2, . . . k}, then π(si) �= π(sj) by definition of the
matching. Therefore P (π) = P . Observe also that π respects the authorisation
lists; for each edge (xi, u) ∈ M ⊆ E and each step s ∈ P−1(xi), we guarantee
that u ∈ A(s). Thus, plan π is authorised and, hence, pattern P = P (π) is also
authorised.

On the other hand, assume there exists an authorised plan π such that P (π) =
P for a given pattern P . Let X = {xi : i = 1, 2, . . . , k}. Construct a set M as
follows: M = {(xi, u) : xi ∈ X and ∃s ∈ P−1(xi) s.t. u = π(s)}. Consider a
pair (xi, u) ∈ M , and find some s ∈ P−1(xi). Note that, as P = P (π) and by
definition of pattern, π(s′) = u for every s′ ∈ P−1(xi). Since π is authorised,
u ∈ A(s′) for every s′ ∈ P−1(xi), i.e. (xi, u) ∈ E and M ⊆ E. In other words,
M is a subset of edges of G.

Now notice that, for each xi ∈ X, there exists at most one edge (xi, u) ∈ M
as π(s′) = u for every s′ ∈ P−1(xi). Moreover, for each u ∈ U , there exists at
most one edge (xi, u) ∈ M as otherwise there would exist some i, j ∈ {1, 2, . . . , k}
such that π(si) = π(sj) and xi �= xj , which violates P = P (π). Hence, the edge
set M is disjoint. Finally, |M | = |X| because P−1(xi) is non-empty for every
xi ∈ X. We conclude that M is a matching in G of size |X|. �

Theorem 1 implies that, to determine whether an eligible pattern P is valid, it is
enough to construct the bipartite graph G = (X ∪U,E) and to find a maximum
size matching in G. It also provides an algorithm for converting a maximum
matching M of size |X| in G into a valid plan π such that P (π) = P .

The matching problem arising in Theorem 1 has some interesting properties:

– The bipartite graph G = (X ∪ U,E) is highly unbalanced as |X| ≤ k, and
we assume that |U | � k. It is easy to see that the maximum length of an
augmenting path in G is |X| ≤ k and, hence, the time complexity of the
Hungarian and Hopcroft-Karp methods are O(k3) and O(k2.5), respectively.

– We are interested only in matchings of size |X|. If the maximum matching is
of a smaller size, we do not need to retrieve it.

– Once a matching of size |X| is found, the PB algorithm terminates since a
valid plan is found. However, the algorithm might test an exponential number
(in k) of graphs with the maximum matching of size smaller than |X|. Hence,
we are mainly interested in time of checking whether the maximum matching
is smaller than |X|.

To exploit the above features, we use the Hungarian method with a speed-up
heuristic provided by the following proposition.

Proposition 1. If M = {(xχ(1), uψ(1)), . . . , (xχ(t), uψ(t))}, t < |X|, is a match-
ing in the graph G = (X ∪ U,E) such that there exists no M -augmenting path
in G starting at a vertex xχ(t+1) ∈ X, then there is no matching covering all the
vertices of X in G.

Pattern Backtracking Algorithm for the Workflow Satisfiability Problem 143

Proof. W.l.o.g, assume that M = {(x1, u1), . . . , (xt, ut)} and xχ(t+1) = xt+1.
Now suppose that G has a matching

M ′ = {(x1, y1), (x2, y2), . . . , (xk, yk)}, yi ∈ U, i = 1, 2, . . . , k

covering all of X. Consider the symmetric difference of two matchings H = (M ∪
M ′)\(M ∩M ′). Since every vertex of H has degree at most 2, the graph induced
by H consists of some disjoint paths and even cycles having edges alternating
between M and M ′. Since xt+1 is not in M but covered by M ′, it is an end
point of one of the alternating paths in H, say Pt+1. Now, it is possible to see
that Pt+1 is an augmenting path in G with respect to the matching M : since,
starting at xt+1, every time we use an edge of M ′ to go from a vertex in X to
a vertex in U , Pt+1 must have an end point in a vertex of U not covered by
M (M ′ covers all the vertices in X). This contradicts the fact that there is no
augmenting path in G starting at xt+1 with respect to M . �

The result of Proposition 1 allows us to terminate the Hungarian algorithm as
soon as a vertex xi ∈ X is found such that no augmenting path starting from xi

can be obtained. Construction of the graph takes O(kn) time, and solving the
maximum matching problem in G with the Hungarian method takes O(k3) time.

3.2 The Backtracking Algorithm

The PB algorithm uses a backtracking technique to search the space of patterns,
and for each eligible pattern, it verifies whether such a pattern is valid. If a
valid pattern P is found, the algorithm returns a complete plan π such that
P (π) = P , see Sect. 3.1 for details. If no valid pattern is found during the search,
the instance is unsatisfiable.

The calling procedure for the PB algorithm is shown in Algorithm 1, which
in turn calls the recursive search function in Algorithm 2. The recursive function
tries all possible extensions P ′ of the current pattern P by adding one new step
s to it (line 12). The step s is selected heuristically (line 9), where function ρ(s)
is an empirically tuned function indicating the importance of step s in narrowing
down the search space. The implementation of ρ(s) depends on the specific types
of constraints involved in the instance and should reflect the intuition regarding
the structure of the problem. See (2) in Sect. 5 for a particular implementation
of ρ(s) for the types of constraints we used in our computational study. Note
that our branching heuristic dynamically changes the steps ordering used in the
pattern definition in Sect. 2. Nevertheless, this does not affect any theoretical
properties of the pattern.

We use a heuristic (necessary but not sufficient) test (lines 13–15 of
Algorithm 2) to check whether the pattern P ′ can be authorised; that allows
us to prune branches which are easily provable to include no authorised pat-
terns.

In line 16, the algorithm checks whether the new pattern P ′ violates any
constraints and, if not, then executes the recursive call.

144 D. Karapetyan et al.

Algorithm 1. Backtracking search initialisation (entry procedure of PB)
input : WSP instance W = (S, U, A, C)
output: Valid plan π or UNSAT

1 Initialise P (s) ← 0 for each s ∈ S;
2 π ← Recursion(P);
3 return π (π may be UNSAT here);

4 Comparison of the PB and UI Algorithms

In this section we analyse the time and memory complexity of the PB algorithm
and compare it to the UI algorithm.

Observe that each internal node (corresponding to an incomplete plan) in the
search tree of the PB algorithm has at least two children, and each leaf in this tree
corresponds to a complete pattern. Thus, the total number of patterns considered
by the PB algorithm is less than twice the number of complete patterns. Observe
that the number of complete patterns equals the number of partitions of a set
of size k, i.e. the kth Bell number Bk. Finally, observe that the PB algorithm
spends time polynomial in n on each node of the search tree.3 Thus, the time
complexity of the PB algorithm is O∗(Bk). The PB algorithm follows the depth-
first search order and, hence, stores only one pattern at a time. At each leaf
node, it also solves the matching problem generating a graph with O(kn) edges.
Hence, the memory complexity of the algorithm is O(kn).

It is interesting to compare the PB algorithm to the UI algorithm (briefly
described in Sect. 2). Despite both algorithms using the idea of equivalence
classes and being FPT, they have very different working principles and
properties.

1. Observe that, in the worst case, the UI algorithm may store all patterns, and
the number of patterns is Bk+1. Indeed, consider a pattern P = (x1, . . . , xk)
and a set {s1, . . . , sk, sk+1}. Then each partition of the set corresponds to a
pattern of P , where xi = 0 if and only if si and sk+1 are in the same subset
of the partition. Therefore, the UI algorithm takes O(kBk+1) memory, which
is in sharp contrast to the PB algorithm that requires very little memory.
Considering that, e.g. B20 = 51 724 158 235 372, memory consumption poses
a serious bottleneck for the UI algorithm as the RAM capacity of any main-
stream machine is well below the value of B20. Moreover, the UI algorithm
accesses a large volume of data in a non-sequential order, which might have a
dramatic effect on the algorithm’s performance when implemented on a real
machine as shown in [12].

2. From the practical point of view, the PB algorithm considers less patterns
than the UI algorithm (O(Bk) vs. O(Bk+1)) as the PB algorithm assigns the
steps in a strict order, avoiding generation of duplicate patterns. Moreover,

3 Assuming that the WSP instance does not include any exotic constraints.

Pattern Backtracking Algorithm for the Workflow Satisfiability Problem 145

Algorithm 2. Recursion(P) (recursive function for backtracking search)
input : Pattern P
output: Eligible plan or UNSAT if no eligible plan exists in this branch of the

search tree
1 Initialise the set S′ ⊆ S of assigned steps S′ ← {s ∈ S : P (s) �= 0};
2 if S′ = S then
3 Verify if pattern P is valid (using the matching algorithm of Theorem 1);
4 if pattern P is valid then
5 return plan π realising P ;

6 else
7 return UNSAT ;

8 else
9 Select unassigned step s ∈ S \ S′ that maximises ρ(s);

10 Calculate k′ ← 1 + maxs∈S P (s);
11 for x = 1, 2, . . . , k′ do
12 Set P (s) ← x to obtain a new pattern P ′;
13 Compute the set of steps Q assigned to x: Q = {t ∈ S : P ′(t) = x};
14 if |⋂t∈Q A−1(t)| = 0 then

15 Proceed to the next value of x (reject P ′);

16 if P ′ is an eligible pattern then
17 π ← Recursion(P ′);
18 if π �= UNSAT then
19 return π;

20 return UNSAT (for a particular branch of recursion; does not mean that the
whole instance is unsat);

the PB algorithm generates each pattern at most once, while the UI algorithm
is likely to generate a pattern several times rejecting the duplicates afterwards.

3. Both algorithms use heuristics to determine the order in which the search
tree is explored. However, while the UI algorithm has to use a certain fixed
order of users for all the search branches, the PB algorithm has the flexibility
of changing the order of steps in each branch of the search. Note that the
order of assignments is crucial to the algorithm’s performance as it can help
to prune branches early.

5 Computational Experiments

In this section we empirically verify the efficiency of the PB algorithm. We
compare the following WSP solvers:

PB. The algorithm proposed in this paper;
UI. Another FPT algorithm proposed in [5] and evaluated in [4,6];
SAT4J. A pseudo-Boolean SAT formulation [4,6] of the problem solved with

SAT4J.

146 D. Karapetyan et al.

Due to the difficulty of acquiring real-world WSP instances [4,14], we use the ran-
dom instance generator described in [4]. Three families of user-independent con-
straints are used: not-equals (also called separation-of-duty) constraints (s, t, �=),
at-most-r constraints (r,Q,�) and at-least-r constraints (r,Q,�). A not-equals
constraint (s, t, �=) is satisfied by a complete plan π if and only if π(s) �= π(t).
An at-most-r constraint (r,Q,�) is satisfied if and only if |π(Q)| ≤ r, where
Q is the scope of the constraint. Similarly, an at-least-r constraint (r,Q,�) is
satisfied if and only if |π(Q)| ≥ r. We do not explicitly consider the widely used
binding-of-duty constraints, that require two steps to be assigned to one user,
as those can be trivially eliminated during preprocessing. While the binding-of-
duty and separation-of-duty constraints provide the basic modelling capabilities,
the at-most-r and at-least-r constraints impose more general “confidentiality”
and “diversity” requirements on the workflow, which can be important in some
business environments.

The instance generator (available for downloading [11]) takes four parame-
ters: the number of steps k, the number of not-equals constraints e, the num-
ber of at-most and at-least constraints c and the random generator seed value.
Each instance has n = 10k users. For each user u ∈ U , it generates a uni-
formly random authorisation list A(u) such that |A(u)| is selected uniformly
from {1, 2, . . . , �0.5k�} at random. It also generates e distinct not-equals, c at-
most and c at-least constraints uniformly at random. All at-most and at-least
constraints are of the form (3, Q, σ), where |Q| = 5 and σ ∈ {�,�}.

Our test machine is based on two Intel Xeon CPU E5-2630 v2 (2.6 GHz) and
has 32 GB RAM installed. Hyper-threading is enabled, but we never run more
than one experiment per physical CPU core concurrently. The PB algorithm is
implemented in C#, and the UI algorithm is implemented in C++. Concurrency
is not exploited in any of the tested solution methods. The PB algorithm is also
available for downloading [11].

The branching heuristic implemented in line 9 of Algorithm 2 selects a step
s ∈ S that maximises a ranking function ρ(s):

ρ(s) = c�=(P) + αc0≤(P) + βc1≤(P) + γc2≤(P), (2)

where c�=(P) is the number of not-equals constraints involving step s, ci
≤(P) is

the number of at-most-r constraints involving s such that r − i distinct users
are already assigned to it, and α, β and γ are parameters. The intuition is
that the steps s that maximise ρ(s) are tightening the search space quickly.
The parameters α, β and γ were selected empirically. We found out that the
algorithm is not very sensitive to the values of these parameters, and settled
down at α = 100, β = 2 and γ = 1. Note that the function does not account
for at-least constraints. This reflects our empirical observation that the at-least
constraints are usually relatively weak in our instances and rarely help in pruning
branches of search.

We started from establishing what parameter values make the instances hard.
However, due to the lack of space, we provide only the conclusions drawn from
this series of experiments. As it could be expected, greatly under- and over-
subscribed instances are easier to solve than the instances in the region between

Pattern Backtracking Algorithm for the Workflow Satisfiability Problem 147

10−3

10−2

10−1

100

101

102

103

104

R
u
n
n
in

g
ti

m
e,

se
c

PB UI SAT4J

10 15 20 25 30 35 40 45 50 55 60 65
0

50

100

Number of steps k

S
o
lv

ed
,
%

Fig. 1. Running time vs. number of steps k. For each k, we generate 50 instance sets
with different seed values. The distributions are presented in the boxplot form, where
the width of a box is proportional to the number of instance sets on which the solver
succeeded. The plot at the bottom of the figure also shows the success rate of each
solver.

148 D. Karapetyan et al.

those two extremes. The behaviour of the analysed solvers is consistent in this
regard. The particular values of the number of not-equals constraints e and
the number c of at-most and at-least constraints that make the instances most
challenging depend on k. Thus, in our final experiment, which is to establish
the maximum size k of instances practically solvable by each of the methods, we
considered several instances with a range of parameters to ensure that at least
one of them is hard. In particular, we fixed the density of not-equals constraints,
calculated as d = 2e

k(k−1) · 100%, at d = 10% and the number c of at-most and
at-least constraints at each of c = 1.0k, c = 1.2k and c = 1.4k, producing three
instances for each k and seed value.

Each solver is given one hour limitation for each instance from the set. If a
solver fails on at least one of the instances (could not terminate within 1 hour),
we say that it fails on the whole set. The intention is to make sure that the
solver can tackle hard satisfiable and unsatisfiable instances within a reasonable
time. The results are presented in Fig. 1 in the form of boxplots. The percentage
of runs in which the solver succeeded is shown as the width of the box. This
information is also provided at the bottom of Fig. 1.

The PB algorithm, being faster than the two other methods by several orders
of magnitude, reliably solves all the instances of size up to k = 49. Compare it
to the UI and SAT4J solvers that succeed only for k ≤ 23 and k ≤ 15, respec-
tively. Moreover, its running time grows slower than that of the UI and SAT4J
solvers, which indicates that it has higher potential if more computational power
is allocated. In other words, thanks to our new solution method, the previ-
ously unapproachable problem instances of practical sizes can now be routinely
tackled.

6 Conclusion

We proposed a new FPT algorithm for the WSP with user-independent
constraints. Our experimental analysis have shown that the new algorithm out-
performs all the methods in the literature by several orders of magnitude and
significantly extends the domain of practically solvable instances. Another advan-
tage of the new FPT algorithm is that it is relatively easy to implement and
extend; for example, it is straightforward to parallelise it.

Future research is needed to establish further potential to improve the
algorithm’s performance. Particular attention has to be paid to the branching
heuristic. Thorough empirical analysis has to be conducted to investigate the
performance of the algorithms on easy and hard instances.

Another relevant subject was recently studied in [7]; the paper introduces an
optimisation version of WSP and proposes an FPT branch and bound algorithm
inspired by Pattern Backtracking.

Acknowledgment. This research was partially supported by EPSRC grants
EP/H000968/1 (for DK) and EP/K005162/1 (for AG and GG). The source codes of the
Pattern Backtracking algorithm and the instance generator are publicly available [11].

Pattern Backtracking Algorithm for the Workflow Satisfiability Problem 149

References

1. American National Standards Institute. ANSI INCITS 359-2004 for Role Based
Access Control (2004)

2. Basin, D.A., Burri, S.J., Karjoth, G.: Obstruction-free authorisation enforcement:
aligning security and business objectives. J. Comput. Secur. 22(5), 661–698 (2014)

3. Bertino, E., Ferrari, E., Atluri, V.: The specification and enforcement of authori-
sation constraints in workflow management systems. ACM Trans. Inf. Syst. Secur.
2(1), 65–104 (1999)

4. Cohen, D., Crampton, J., Gagarin, A., Gutin, G., Jones, M.: Engineering algo-
rithms for workflow satisfiability problem with user-independent constraints. In:
Chen, J., Hopcroft, J.E., Wang, J. (eds.) FAW 2014. LNCS, vol. 8497, pp. 48–59.
Springer, Heidelberg (2014)

5. Cohen, D., Crampton, J., Gagarin, A., Gutin, G., Jones, M.: Iterative plan con-
struction for the workflow satisfiability problem. J. Artif. Intell. Res. 51, 555–577
(2014)

6. Cohen, D., Crampton, J., Gagarin, A., Gutin, G., Jones, M.: Algorithms for the
workflow satisfiability problem engineered for counting constraints. J. Combin.
Optim. 22 (2015, to apppear). doi:10.1007/s10878-015-9877-7

7. Crampton, J., Gutin, G., Karapetyan, D.: Valued workflow satisfiability problem.
In: Proceedings of ACM Symposium on Access Control Models and Technologies
(SACMAT), Vienna, Austria, 1–3 June. ACM (2015, to appear)

8. Crampton, J.: A reference monitor for workflow systems with constrained task
execution. In: Ferrari, E., Ahn, G.J. (eds.) SACMAT, pp. 38–47. ACM (2005)

9. Crampton, J., Gutin, G., Yeo, A.: On the parameterized complexity and kernel-
ization of the workflow satisfiability problem. ACM Trans. Inf. Syst. Secur. 16(1),
4 (2013)

10. Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity.
Springer, London (2013)

11. Karapetyan, D., Gutin, G., Gagarin, A.: Source codes of the Pattern Backtracking
algorithm and the instance generator. doi:10.6084/m9.figshare.1360237. Accessed
31 March 2015

12. Karapetyan, D., Gutin, G., Goldengorin, B.: Empirical evaluation of construction
heuristics for the multidimensional assignment problem. In: Proceedings of London
Algorithmics 2008: Theory and Practice, Texts in Algorithmics 11, pp. 107–122.
College Publications (2009)

13. Le Berre, D., Parrain, A.: The SAT4J library release 2.2. J. Satisf. Bool. Model.
Comput. 7, 59–64 (2010)

14. Wang, Q., Li, N.: Satisfiability and resiliency in workflow authorisation systems.
ACM Trans. Inf. Syst. Secur. 13(4), 40 (2010)

http://dx.doi.org/10.1007/s10878-015-9877-7
http://dx.doi.org/10.6084/m9.figshare.1360237

On the Sound Covering Cycle Problem
in Paired de Bruijn Graphs

Christian Komusiewicz1(B) and Andreea Radulescu2

1 Institut für Softwaretechnik und Theoretische Informatik,
TU Berlin, Berlin, Germany

christian.komusiewicz@tu-berlin.de
2 LINA - UMR CNRS 6241, Université de Nantes, Saint-Nazaire, France

andreea.radulescu@etu.univ-nantes.fr

Abstract. Paired de Bruijn graphs are a variant of classic de Bruijn
graphs used in genome assembly. In these graphs, each vertex v is asso-
ciated with two labels L(v) and R(v). We study the NP-hard Sound
Covering Cycle problem which has as input a paired de Bruijn graph G
and two integers d and �, and the task is to find a length-� cycle C con-
taining all arcs of G such that for every vertex v in C and the vertex u
which occurs exactly d positions after v in C, we have R(v) = L(u). We
present the first exact algorithms for this problem and several variants.

1 Introduction

DNA sequencing is the task of deciphering the sequence of a given DNA frag-
ment. Most technologies approach this task by obtaining a collection of possibly
overlapping small subfragments, called reads, of the given fragment. Genome
assembly aims at recovering the original DNA fragment from the set of reads.
When no reference genome is used, this is called de novo assembly.

Recent sequencing technologies, known as next-generation sequencing (NGS),
create billions of very short erroneous reads. For this new type of data, de novo
assembly is a challenging task [3,5,11,13]. The use of short reads makes it par-
ticularly difficult to correctly assemble repeated regions since the repeat may be
longer than the reads. Therefore, many NGS methods generate pairs of reads
separated by a known distance, called insert length, that is much longer than
the read length. This new type of reads, called paired-end reads, is used to span
regions that contain long repeats.

One classic approach in de novo genome assembly is the de Bruijn method
[6,9] which computes a de Bruijn graph from the read set. This is done as follows.
First, generate the set of k-mers of the reads, that is, the set of all length-k strings
that occur as substrings of at least one read. Each k-mer in this set corresponds
to exactly one vertex of the de Bruijn graph. Now draw an arc from a vertex u
to a vertex v if and only if there is a k + 1-mer s in one of the input reads such

C. Komusiewicz – Partially supported by the DAAD Procope program (project
55934856).

c© Springer International Publishing Switzerland 2015
J. Wang and C. Yap (Eds.): FAW 2015, LNCS 9130, pp. 150–161, 2015.
DOI: 10.1007/978-3-319-19647-3 14

On the Sound Covering Cycle Problem in Paired de Bruijn Graphs 151

Fig. 1. A paired de Bruijn graph with a sound cycle: (a) The DNA fragment to be
sequenced. (b) The set of paired reads with insert distance d = 8. (c) The paired de
Bruijn graph constructed from the paired reads in (b) for a k = 3. The upper part of
each vertex v is the label L(v), the lower part is the label R(v).

that the k-mer corresponding to u is a prefix of s and the k-mer corresponding
to v is a suffix of s. A walk in this graph then corresponds to a DNA sequence.
Classic de Bruijn assembling software uses paired-end information only in a
post-processing step.

The paired de Bruijn graph model incorporates the paired-end information
directly into the graph [8]. It is based on the classic de Bruijn graph, though
now the overlaps are computed between pairs of k-mers separated by the insert
length of the read pairs. This improves assembly quality and facilitates repeat
detection but the computational problems involved in computing an assembly
in these graphs become more challenging. In particular, the Sound Covering
Cycle which we define below is NP-hard [7]. In this work, we present the first
exact algorithms for Sound Covering Cycle and several variants.

Preliminaries. For a string s, let s[i] denote the letter at position i of s and s[i, j]
the substring of s that starts at position i and ends at position j. We consider
directed graphs G = (V,A) with vertex set V and arc set A. A walk (v1, . . . , vp)
is a tuple of vertices such that (vi, vi+1) ∈ A, 1 ≤ i < p. The length |W | of a
walk W := (v1, . . . , vp) is the number p of tuple elements. A walk is simple if i �= j
implies vi �= vj . Given two walks W1 = (v1, . . . , vp) and W2 = (u1, . . . , uq) such
that (vp, u1) ∈ A, let W1 ·W2 := (v1, . . . , vp, u1, . . . , uq) denote the concatenation
of W1 and W2. For a walk W = (v1, . . . , vp), let W [i] := vi denote the i-th vertex
of W . Finally, let A(W) denote the set of arcs contained in a walk W .

Paired de Bruijn Graphs. Before defining the problem, we describe how the paired
de Bruijn graph is constructed from the input data; see Fig. 1 for an example.
The input is a set R := {(rL

1 , rR
1), . . . , (rL

m, rR
m)} of paired-end reads and two

integers d and k. Each (rL
i , rR

i) is a pair of strings of the same length over an
alphabet Σ. The integer d is the insert size or shift. It specifies that the paired-
end read corresponds to two substrings of the complete genome whose first letters
have distance exactly d in the genome. The integer k is a user-defined parameter.

152 C. Komusiewicz and A. Radulescu

In a paired de Bruijn graph G(R) constructed from a read set R, each vertex v
is associated with a pair of k-mers (L(v),R(v)). This pair is called bilabel. Each
node has a unique bilabel. For a read set R, the vertex set of G(R) is defined as

V (R) := {(s, t) ∈ Σk × Σk |∃(rL
i , rR

i) ∈ R, p ∈ N :

s = rL
i [p, p + k − 1] ∧ t = rR

i [p, p + k − 1]}. (1)

An arc is drawn from a vertex u to a vertex v if some read in R contains the
bilabels of u and v in consecutive positions. More precisely, the arc set of G(R) is

A(R) := {(u, v) |∃(rL
i , rR

i) ∈ R, p ∈ N :

L(u) = rL
i [p, p + k − 1] ∧ L(v) = rL

i [p + 1, p + k]∧
R(u) = rR

i [p, p + k − 1] ∧ R(v) = rR
i [p + 1, p + k]}.

A walk in a paired de Bruijn graph directly corresponds to a string over Σ
and thus to a DNA sequence. More precisely, a walk W := (v1, . . . , vp) in a
paired de Bruijn graph spells the two strings L(v1) · L(v2)[k] · . . . · L(vp)[k] and
R(v1) · R(v2)[k] · . . . · R(vp)[k]. There is one walk in G(R) that corresponds to
the original DNA sequence. This walk fulfills several properties that we describe
below. The computational task that we consider here is deciding whether a
walk fulfilling these properties exists in G(R). In the remainder of this work,
the read set R is irrelevant in the computational problems, thus, we denote the
paired de Bruijn graph G = (V,A) instead of G(R).

The Sound Covering Cycle Problem. In the case of organisms with a single
circular chromosome, the walk that corresponds to the genome is a cycle. Slightly
abusing notation, we define a cycle in a graph G = (V,A) as a walk (v1, . . . , vp),
vi ∈ V , such that (vp, v1) ∈ A. This cycle should have a length � which is the
estimated genome length. As described above, the cycle spells two cyclic strings.
The cycle that spells the genome should also spell every pair of observed k + 1-
mers. By construction of G, a pair of k + 1-mers in the read set corresponds to
an arc between two vertices. Thus, we demand the cycle to contain every arc of
the graph. Accordingly, a cycle C is called covering if for each arc (u, v) ∈ A
there is a vi such that (u, v) = (vi, vi+1) or (u, v) = (vp, v1).

The above properties are also relevant in classic de Bruijn graphs. In a
paired de Bruijn graph the walks should also fulfill the insert size constraint.
Recall that the distance between the L- and R-label of a vertex is d. The sound-
ness constraint will ensure that the strings spelled by these two labels are con-
sistent with the insert size. More precisely, in a paired de Bruijn graph, a cycle
is called sound if the pair of strings it spells matches with shift d. Let s and t
be the two strings spelled by the bilabels of the cycle C. If d ≤ �, then we call
C sound if

– s[i + d] = t[i] for 1 ≤ i ≤ � − d, and
– s[i] = t[i + � − d] for 1 ≤ i ≤ d.

On the Sound Covering Cycle Problem in Paired de Bruijn Graphs 153

Accordingly, we call a vertex vi in a walk (v1, . . . , vq) sound if R(vi) = L(vi+d).
The soundness definition corresponds to the one of Kapun and Tsarev [7]. This
leads to our main problem definition.

Sound Covering Cycle
Input: A paired de Bruijn graph G = (V,A) and nonnegative integers
d and �.
Question: Does G contain a sound covering cycle of length �?

Related Work. Kapun and Tsarev [7] show that Sound Covering Cycle is NP-
hard even if the values of d or k are small constants. They also claim that if |Σ|
and k are constants, which implies that the graph has constant size, then Sound
Covering Cycle cannot be NP-hard as the language defined by it is sparse
since d is encoded in unary. We do not make this assumption, that is, in our case d
and � are encoded in binary. Thus, the complexity of Sound Covering Cycle
for fixed graph size is open in our encoding. A related graph-based approach
of modeling the information of paired-end reads are rectangle graphs [1,10,12].
Computing a covering cycle of length at most � in a directed graph is known as
Directed Chinese Postman and can be solved in polynomial time [4].

Contribution and Organization of the Paper. In Sect. 2, we describe a decom-
position of cycles in directed graphs that we use throughout this work. More-
over, we describe an algorithm for computing a fixed-length covering cycle. This
algorithm is used as a subroutine in Sect. 5 and may also be of independent
interest. In Sect. 3, we present an algorithm for Sound Covering Cycle that
runs in f(n, d) · poly(log �) time. In Sect. 4, we present similar algorithms for
variants of Sound Covering Cycle such as searching for a shortest covering
sound cycle and dealing with relaxed models of soundness that model noisy input
data. In Sect. 5, we present a special case of Sound Covering Cycle that is
solvable in f(n) · poly(log � + log d) time. Since paired de Bruijn graphs are very
sparse, we use the maximum outdegree Δ in our running time bounds.

Due to space constraints, most proofs are deferred to an appendix. We use
the following observations in our algorithms.

Lemma 1. Let G = (V,A) be a directed graph with maximum outdegree Δ and
let � be an integer. There are at most n · Δ�−1 walks and cycles of length � in G
and they can be enumerated in O(n · Δ�−1 · (� + Δ)) time.

This statement implies the following bound on the number of simple walks.

Lemma 2. A directed graph G = (V,A) with n vertices and maximum outde-
gree Δ has at most 2n · Δn−1 different simple walks.

2 Cycle-Walk Decompositions

Before presenting our algorithms, we describe a structured representation of
cycles and walks.

154 C. Komusiewicz and A. Radulescu

First, we show that we can decompose any walk or cycle into maximal simple
walks (denoted by Ωi) and possibly empty simple walks between them (denoted
by Wi). Herein, the term maximal refers to the property that in C each Ωi =
(u1, . . . , ut) is followed by its first vertex u1. This implies in particular that Ωi

is a cycle.

Lemma 3. Let C be a walk in a graph G. Then C can be written as a concate-
nation of simple walks Ω1 · W1 · . . . · Ωq · Wq such that

1. |Ωi| > 0 for each i ∈ {1, . . . , q}, and
2. for each Ωi := (u1, u2, . . . , us), 1 ≤ i ≤ q it holds that u1 = v1 where v1 is the

first vertex of Wi · Ωi+1 .

A representation adhering to Lemma 3 is called cycle-walk decomposition of C.
Our next aim is to show the existence of cycle-walk decompositions with a com-
pact description. The proof exploits the fact that if there are too many different
cycles in the decomposition, then some of them can be replaced by repetitions
of other cycles.

Before proving Lemma 5, we show the correctness of the following exchange
operation.

Lemma 4. Let C be a covering cycle of a graph G with cycle-walk decomposi-
tion Ω1 · W1 · . . . · Ωq · Wq. If C contains a cycle Ωj such that

– there is a walk Ωi, i < j, that has the same length as Ωj, and
– for each arc a ∈ A(Ωj), there is a walk Ωp, p �= j, such that a ∈ A(Ωp),

then C ′ := Ω1 · . . . · Wi−1 · Ω2
i · Wi · . . . · Wj−1 · Wj · . . . · Wq is a covering cycle

of the same length in G.

Proof. Let Ωi := (u1, u2, . . . , us) and Wi · Ωi+1 := (w1, w2, . . . , wt). Since Ωi is
a cycle, Ωi · Ωi · Wi is a walk. Now consider Ωj−1 · Wj−1 := (x1, . . . , xs), Ωj :=
(y1, . . . , yt), and Wj ·Ωj+1 := (z1, . . . , zr). Since C is a walk we have (xs, y1) ∈ A
and by the properties of cycle-walk decompositions also y1 = z1. Therefore,
(xs, z1) ∈ A and thus Ωj−1 · Wj−1 · Wj · Ωj+1 is a walk. Consequently, C ′ is
a walk. Since Ωi and Ωj have the same length, C ′ has the same length as C.
Moreover, C ′ is covering as every arc of Ωj is contained in some Ωp, p �= j. ��

Using the exchange operation described by Lemma 4, we now show that there
are compact cycle-walk decompositions.

Lemma 5. If a directed graph G has a covering cycle C of length �, then it
has a covering cycle C ′ of length � such that C ′ has a cycle-walk decomposition
(Ω1)r1 · W1 · . . . · (Ωq)rq · Wq where q ≤ n + m.

Proof. Assume that G has a covering cycle C of length �. According to Lemma 3,
C has a cycle-walk decomposition (Ω1)r1 · W1 · . . . · (Ωq)rq · Wq (Lemma 3 shows
the existence of the special case r1 = . . . = rq = 1). Now consider of all covering
cycles of G one with a decomposition in which q +

∑q
i=1 |Wi| is minimum.

On the Sound Covering Cycle Problem in Paired de Bruijn Graphs 155

Now assume towards a contradiction, that in this decomposition there are
indices i and j, i �= j, such that |Ωi| = |Ωj | and each arc of Ωj is contained in
some Ωp, p �= j. Without loss of generality assume i < j. We transform C into a
new cycle C ′ in which q+

∑q
i=1 |Wi| is smaller. This contradicts our choice of C.

By the assumption on i and j and by Lemma 4, C ′ := Ω1 · . . . · Wi−1 ·
(Ωi)ri+rj · Wi · . . . · Ωj−1 · Wj−1 · Wj · Ωj+1 · . . . · Wq is also a covering cycle
of G. Clearly, |C| = |C ′| = � and C ′ is also a covering cycle. Now consider two
cases.

Case 1: Wj−1 · Wj contains a simple cycle Ω∗. Let Wj−1 · Wj = W ∗
1 · Ω∗ · W ∗

2

where W ∗
1 and W ∗

2 are not simple cycles. Then, C ′ := Ω1 · . . . · Wi−1 · (Ωi)ri+rj ·
Wi · . . . · Ωj−1 · W ∗

1 · Ω∗ · W ∗
2 · Ωj+1 · . . . · Wq. In this decomposition, the overall

number of Ω’s has not changed but, since |W ∗
1 |+ |W ∗

2 | < |Wj−1|+ |Wj |, the sum
of the lengths of the Wi’s has decreased. This contradicts our choice of C.

Case 2: Otherwise. In this case, Wj−1 · Wj is a simple walk. Thus, the number
of Ω’s has decreased by one while

∑q
i=1 |Wi| remains the same. This contradicts

our choice of C.
Since both cases lead to a contradiction to the choice of C we can assume

that for each Ωj in C there is either one arc aj that is not contained in any
other Ωp, p �= j, or there is no other Ωi of the same length as Ωj . By pigeonhole
principle,there can be at most |A| = m cycles Ωj for which the first condition
is true. For all further cycles, the first condition is false. Now since each Ωj has
length at most n there can be, again by pigeonhole principle, at most n further
cycles for which the second condition is true. This implies that q ≤ m + n. ��

The following lemma shows that the cycle lengths in a decomposition suffice to
determine the possible overall cycle length.

Lemma 6. A graph G has a covering cycle C of length � if and only if it has a
covering cycle C ′ with cycle-walk decomposition Ω1 · W1 · . . . · Ωq · Wq such that

1. C ′ has length x ≤ 2n(m + n), and
2. there are nonnegative integers pi, 1 ≤ i ≤ q, such that x+

∑

1≤i≤q pi ·|Ωi| = �.

We now bound the running time for determining the existence of such a cycle.

Theorem 1. Let G = (V,A) be a directed graph with n vertices and m arcs and
let � be an integer. Then, in O(8m · 2n) · poly(n + log �) time we can determine
whether G contains a covering cycle of length exactly �.

3 An Algorithm for the Parameters n and d

We now describe our first algorithm for Sound Covering Cycle. The running
time of this algorithm is exponential in n and d. Thus, we avoid a combinatorial
explosion in the number � which is at least as large as d and usually much larger.

The algorithm exploits that in a sound walk, parts with distance more than d
are “independent” with respect to the soundness property. To make the argument

156 C. Komusiewicz and A. Radulescu

more precise, consider a yes-instance (G, d, �) of Sound Covering Cycle with
a solution cycle C = W1 · W2 · . . . · Wq · W ∗, where |Wi| = d for 1 ≤ i ≤ q
and |W ∗| = � mod d. For each vertex vj in Wi the vertex that is relevant to
determine whether vj is sound is contained in Wi+1. Thus, consider a graph G =
(V,A) which contains each length-d walk as a vertex. In particular, G contains
each Wi. Moreover, assume that G contains an arc (W,W ′) if W · W ′ is a walk
in G which is sound for all positions in W . Then (Wi,Wi+1) ∈ A for each i < q.
Consequently, the walk W1 · W2 · . . . · Wq in G corresponds to a walk W in G
and W · W ∗ is a sound covering cycle of length � in G.

The algorithm outline hence is as follows: First construct the graph G, called
walk graph from now on. Second, compute “candidate” walks in G. Finally, check
for each candidate walk, whether there is some short walk W ∗ such that con-
catenating W ∗ at its end gives a sound covering cycle of the correct length.

Theorem 2. Sound Covering Cycle can be solved in O(8n·Δ ·2n·Δd

)·poly(n·
Δd + log �) time where Δ is the maximum outdegree of G.

Proof. We describe each of the three main steps of the algorithm in detail and
then bound its running time.

Constructing the Walk Graph G. First, enumerate all walks of length d in G.
Let V denote the set of these walks and make V the vertex set of G. Now construct
the arc set A of G as follows. For each pair of vertices W and W ′ in V, check
whether W · W ′ = (v1, . . . , v2d) is a walk in G and whether it is sound for
each vi, 1 ≤ i ≤ d. That is, check whether (vd, vd+1) ∈ A and whether R(vi) =
L(vi+d) for each vi, 1 ≤ i ≤ d. If this is the case, then add the arc (W,W ′) to
G; otherwise, do not add this arc. This completes the construction of G. Now
“almost” sound walks in G correspond to walks in G.

Observation 1: A walk W1 · . . . ·Wi of length d · i in G with |Wj | = d, 1 ≤
j ≤ i, is sound for all of its first d · (i − 1) positions ⇔ (W1, . . . ,Wi) is a
walk in G.

Dynamic Programming. Now, for a walk (W1, . . . ,Wi) in G, let A(W1, . . . ,Wi)
denote the arcs of W1 · . . . ·Wi in G. Moreover, for an arc (W,W ′) in G with W =
(v1, . . . , vd) and W ′ = (vd+1, . . . , v2d) let arc(W,W ′) denote the arc (vd, vd+1)
in G (by the construction of the walk graph, this arc is present in G).

Following the discussion above, we now solve Sound Covering Cycle by
determining whether there is a walk (W1, . . . ,Wq) of length q :=
�/d� in G and
a walk W ∗ of length � mod d in G such that (1) Wq · W ∗ · W1 is a walk of
length 2d + (� mod d) in G which is sound for its first d + (� mod d) positions,
and (2) every arc of G is contained in A(W1, . . . ,Wq) or in Wq · W ∗ · W1. This
is done by a dynamic programming algorithm that fills a table T with entries of
the type T [W,W ′, A′, Λ, y] where

– W and W ′ are vertices of G,
– A′ is a subset of A (note that A is the arc set of G not of G),

On the Sound Covering Cycle Problem in Paired de Bruijn Graphs 157

– Λ is a subset of {1, . . . , |V|}, and
– y is a nonnegative integer of value at most |V| · (|V| + |A|).

Each entry in T is either true or false. The aim of the algorithm is to fill
the table T such that T [W,W ′, A′, Λ, y] is true if and only if G contains a
walk (W, . . . , W ′) with cycle-walk decomposition Ω1 · Ψ1 · . . . · Ωi · Ψi such that

– A(W, . . . ,W ′) = A′, that is, the walk W · . . . · W ′ in G contains exactly the
arcs of A′,

– Λ = {|Ωj | | 1 ≤ j ≤ i}, and
– (W, . . . ,W ′) has length y.

The idea behind T is that, by Lemma 6, it suffices to consider walks of length
at most |V| · (|V| + |A|) and then to extend them by using the cycle lengths
in Λ. In a preprocessing, we compute a table D. For the correctly filled table D,
an entry D[W,W ′, A′, y] is true if and only if G contains a walk (W, . . . , W ′) of
length y such that A(W, . . . , W ′) = A′. The table is filled for all A′ ⊆ A and for
increasing y < |V|. Initially, set D[W,W,A(W), 1] to true for each W ∈ V. Then
the recurrence for D is

D[W,W ′, A′, y] :=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

true
if ∃(W̃ ,W ′) ∈ A, Ã ⊆ A′ :

Ã ∪ {arc(W̃ ,W ′)} ∪ A(W ′) = A′∧
D[W, W̃ , Ã, y − 1],

false otherwise.

After D is completely filled, compute the table T . The recurrence is

T [W,W ′, A′, Λ, y] :=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

true if Λ = {y} ∧ D[W,W ′, A′, y] ∧ (W ′,W) ∈ A,

true
if ∃(W̃ ,W ′) ∈ A, Ã ⊆ A′ :

Ã ∪ {arc(W̃ ,W ′)} ∪ A(W ′) = A′∧
T [W, W̃ , Ã, Λ, y − 1],

true

if ∃T [W, W̃ , Ã, Λ̃, y − z],D[W̃ ,W ′, A∗, z] :
T [W, W̃ , Ã, Λ̃, y − z] ∧ D[Ŵ ,W ′, A∗, z]∧
(W̃ , Ŵ) ∈ A ∧ Ã ∪ {arc(W̃ , Ŵ)} ∪ A∗ = A′∧
Λ \ {z} ⊆ Λ̃ ⊆ Λ,

false otherwise.

Determining the Possible Lengths for Candidate Entries. The next step is to
compute for each entry whether it can be extended, by repeating cycles of the
cycle-walk decomposition, to obtain a walk of length � − (� mod d).

This is done by reducing to Money Changing [2]. More precisely, for each
true entry T [W,W ′, A′, Λ, y], we check whether there is a walk of length � − (�
mod d) that can be obtained from repeating the simple cycles in a length-y
walk W whose existence is implied by the table entry. The set of different lengths

158 C. Komusiewicz and A. Radulescu

of simple cycles in W is Λ = {λ1, . . . , λ|Λ|}. Thus, determining the existence of
a cycle of length � − (� mod d) is equivalent to checking whether the equation

p1λ1 + p2λ2 + . . . + p|Λ|λ|Λ| = � − (� mod d) − y

has a solution in which each pi is a nonnegative integer. Each table entry for
which the above equation has such a solution is labeled as candidate entry.
By Lemma 6, the existence of a walk of length � − (� mod d) implies that there
is a corresponding candidate entry.

Closing the Cycle. The final step of the algorithm is to check whether any of
the candidate entries can be completed to a sound cycle of length � by adding
a “short” walk of length � mod d. To this end, first enumerate all walks W ∗

of length � mod d in G. Now, for each candidate entry T [W,W ′, A′, Λ, y] and
each W ∗ and for each enumerated short walk W ∗ do the following. Check
whether W ′ · W ∗ · W is a walk in G. If yes, then W · . . . · W ′ · W ∗ corresponds
to a cycle C in G. This cycle has length y + (� mod d) but since we consider
only candidate entries in T , the walk W · . . . · W ′ which has length y can be
extended to one of length � − (� mod d). Thus, the existence of C implies the
existence of a cycle C ′ of length � in G. It remains to check whether C ′ is sound
and covering. To check whether C ′ is sound it is sufficient to check whether the
walk W ′ · W ∗ · W is sound for its first d + (� mod d) positions (as every walk
in G corresponds to a walk in G whose positions are sound except for the last d).
Finally, it remains to check whether C ′ is covering. This is done by checking
whether A = A′ ∪ {(w′

d, w
∗
1), (w

∗
� mod d, w1)} ∪ A(W ∗) where w′

d is the last ver-
tex of W ′ and w1 is the first vertex of W in G. If yes, C ′ is a solution. If none of
the combinations of candidate entry and W ∗ yields a solution, then the instance
is a no-instance.

Running Time Analysis. By Lemma 1 the number of different walks of length d
in G is at most n ·Δd−1 and thus |V| ≤ n ·Δd−1. Consequently, the construction
of G can be performed in poly(n · Δd−1) time.

The running time in the dynamic programming part is dominated by the time
for filling the table T . This is dominated by the time needed to check whether
the third case of the recursion applies. To do this, one needs to consider, for
each table entry, O(|V|2 · 4n·Δ) possibilities (recall that n · Δ ≥ |A|). For each
possibility, the check can be performed in poly(|V|) time and there are O(|V|2 ·
2n·Δ ·2|V| · |V| · (|V|+ |E|)) = 2n·Δ ·2|V| ·poly(|V|) table entries to compute. Thus,
the overall running time in the dynamic programming part is 8n·Δ ·2|V| ·poly(|V|).

Next, we solve O(2n·Δ ·2|V|) Money Changing instances, each in poly(|V|+
log �) time [2]. The checks in the final stage require poly(|V|) time for each
candidate entry since less than |V| different short walks are considered and each
check needs poly(|V|) time. The overall running time follows. ��

4 Shortest Sound Cycles and Approximately
Sound Cycles

The idea described above can be used in several problem variants. One possibility
is to find a shortest sound covering cycle instead of one with fixed length.

On the Sound Covering Cycle Problem in Paired de Bruijn Graphs 159

Shortest Sound Covering Cycle
Input: A paired de Bruijn graph G = (V,A) and a nonnegative integer
d.
Task: Find a sound covering cycle of minimum length in G.

We first bound the length of a shortest sound covering cycle G.

Lemma 7. Let G = (V,A) be a directed graph with maximum outdegree Δ.
If G has a sound covering cycle, then it has a sound covering cycle of length at
most 2d(n · Δ + 1) · (n · Δd−1) + d.

Proof. Consider the walk graph G of G. This graph has n · Δd−1 vertices. Now
consider a walk W in G such that W · W ∗ is a sound covering cycle in G,
where |W ∗| < d and assume that W has minimum length with this property.

Let Ω1 · W1 · . . . · Ωq · Wq be the cycle-walk decomposition of W which exists
due to Lemma 3. Then, for each Ωi, i < q, there is some a ∈ A(Ωi) which is not
contained in any Ωj , j �= i, otherwise removing Ωi from W yields a shorter walk
in G whose corresponding walk in G also covers all arcs. By pigeonhole principle
this implies q ≤ |A|+1. Thus, the length of W in G is at most 2(|A|+1)·(n·Δd−1)
as each Ωi and Wi are simple walks in G. The corresponding walk in G has length
at most 2d(|A| + 1) · (n · Δd−1) since each vertex of G corresponds to a length-
d walk in G. The overall bound now follows from the fact that |A| ≤ n · Δ
and |W ∗| < d. ��

Using this bound, we now derive a dynamic programming algorithm that com-
putes walks of increasing length in G. In this computation, we store the last d
vertices of the walk, since these have influence on the soundness condition. More-
over, we store which arcs of G are already covered by the walk.

Theorem 3. Shortest Sound Covering Cycle can be solved in O(n4 · d ·
Δ3d) time.

The second variant relaxes the soundness constraint. This is motivated by the
fact that the insert size between the paired end reads is not always exactly d.
This relaxed notion of soundness is defined as follows. Recall that a cycle in a
paired de Bruijn graph spells two strings s and t. Now, a length-� cycle C is
called x-approximately sound if

∀i ∈ {1 ≤ i ≤} : t[i mod �] ∈ {s[i + d − x mod �], . . . , s[i + d mod �]}.

Informally, this means that the right label has distance at least d−x and distance
at most d to the left label. This definition leads to the following problem.

Approximately Sound Covering Cycle
Input: A paired de Bruijn graph G = (V,A) and nonnegative integers
d, x, and �.
Question: Does G contain an x-approximately sound covering cycle of
length �?

160 C. Komusiewicz and A. Radulescu

We slightly modify the algorithm for Sound Covering Cycle to obtain the
following.

Theorem 4. Approximately Sound Covering Cycle can be solved in O
(8n·Δ · 2n·Δd

) · poly(n · Δd + log �) time.

Finally, we consider the combination of finding a short and approximately sound
cycle. In this variant, we can even allow a number y of mismatches, that is,
there can be y positions that are not approximately sound. More formally, a
length-� walk W is called x-approximately sound with cost at most y if there is
a set M ⊆ {1, . . . , �} of size at most y such that

∀i ∈ {1, . . . , �} \ M : t[i mod �] ∈ {s[i + d − x mod �], . . . , s[i + d mod �]}.

The Cost-bounded Shortest Approximately Sound Covering Cycle
problem now is to find a shortest covering cycle that is x-approximately sound
with cost at most y (if such a cycle exists).

To obtain an algorithm for this variant, first note that the bound of Lemma7
also holds for shortest approximately sound cycles of bounded cost: the replace-
ment argument in the proof only removes cycles in the walk graph which does
not increase the cost of the solution.

Theorem 5. Cost-bounded Shortest Approximately Sound Covering
Cycle can be solved in O(n4 · d2 · Δ3d) time.

5 A Tractable Special Case for the Parameter n

Finally, we present an f(n) · poly(log �)-time algorithm for a special case of
Sound Covering Cycle. To describe the structure of this special case, we
introduce the following notion: the compatibility graph of a paired de Bruijn
graph G = (V,A) is a graph H = (V,B) such that (a, b) ∈ B if L(a) = R(b).

We now exploit this structure by presenting an algorithm for the case that H
is a union of loops. Then, each pair of vertices with distance d within a sound
cycle is identical. Due to this periodic behavior, we obtain the following rela-
tionship between sound cycles and shorter covering cycles.

Lemma 8. Let G be a paired de Bruijn graph such that its compatibility graph H
is a union of loops. Then, G has a sound covering cycle of length � with shift d
if and only if G has a covering cycle of length gcd(d, �).

Here, gcd(d, �) denotes the greatest common divisor of d and �.

Theorem 6. Sound Covering Cycle can be solved in O(8n·Δ ·2n) ·poly(n+
log �) time if the compatibility graph H of G is a union of loops.

Proof. By Lemma 8 the problem reduces to one of finding a covering cycle of the
correct length �′ ≤ �. Since G has n vertices and at most n · Δ arcs, this can be
done in O(8n·Δ · 2n) · poly(n + log �) time by Theorem 1. ��

On the Sound Covering Cycle Problem in Paired de Bruijn Graphs 161

6 Outlook

It would be clearly desirable to improve the presented algorithms. Any substan-
tial improvement would need to avoid the enumeration of all length-d walks
in G. Also it would be interesting to extend the algorithm for the case that H
is a disjoint union of loops, for example to the case that every vertex in H has
outdegree one. Finally, in a subroutine we consider the problem of computing
a covering cycle of fixed length. It is open whether this problem is NP-hard or
solvable in polynomial time.

References

1. Bankevich, A., Nurk, S., Antipov, D., Gurevich, A.A., Dvorkin, M., Kulikov, A.S.,
Lesin, V.M., Nikolenko, S.I., Pham, S., Prjibelski, A.D., et al.: SPAdes: a new
genome assembly algorithm and its applications to single-cell sequencing. J. Com-
put. Biol. 19(5), 455–477 (2012)

2. Böcker, S., Lipták, Z.: A fast and simple algorithm for the money changing problem.
Algorithmica 48(4), 413–432 (2007)

3. Earl, D., Bradnam, K., John, J.S., Darling, A., Lin, D., Fass, J., Yu, H.O.K.,
Buffalo, V., Zerbino, D.R., Diekhans, M., et al.: Assemblathon 1: a competitive
assessment of de novo short read assembly methods. Genome Res. 21(12), 2224–
2241 (2011)

4. Edmonds, J., Johnson, E.L.: Matching, Euler tours and the Chinese postman.
Math. Program. 5(1), 88–124 (1973)

5. Haiminen, N., Kuhn, D.N., Parida, L., Rigoutsos, I.: Evaluation of methods for de
novo genome assembly from high-throughput sequencing reads reveals dependen-
cies that affect the quality of the results. PLoS One 6(9), e24182 (2011)

6. Idury, R.M., Waterman, M.S.: A new algorithm for DNA sequence assembly. J.
Comput. Biol. 2(2), 291–306 (1995)

7. Kapun, E., Tsarev, F.: On NP-hardness of the paired de Bruijn sound cycle prob-
lem. In: Darling, A., Stoye, J. (eds.) WABI 2013. LNCS, vol. 8126, pp. 59–69.
Springer, Heidelberg (2013)

8. Medvedev, P., Pham, S., Chaisson, M., Tesler, G., Pevzner, P.: Paired de Bruijn
graphs: a novel approach for incorporating mate pair information into genome
assemblers. J. Comput. Biol. 18(11), 1625–1634 (2011)

9. Pevzner, P.A., Tang, H., Waterman, M.S.: An Eulerian path approach to DNA
fragment assembly. Proc. Nat. Acad. Sci. 98(17), 9748–9753 (2001)

10. Prjibelski, A.D., Vasilinetc, I., Bankevich, A., Gurevich, A., Krivosheeva, T., Nurk,
S., Pham, S., Korobeynikov, A., Lapidus, A., Pevzner, P.A.: ExSPAnder: a univer-
sal repeat resolver for DNA fragment assembly. Bioinformatics 30(12), i293–i301
(2014)

11. Salzberg, S.L., Phillippy, A.M., Zimin, A., Puiu, D., Magoc, T., Koren, S.,
Treangen, T.J., Schatz, M.C., Delcher, A.L., Roberts, M., et al.: GAGE: a critical
evaluation of genome assemblies and assembly algorithms. Genome Res. 22(3),
557–567 (2012)

12. Vyahhi, N., Pyshkin, A., Pham, S., Pevzner, P.A.: From de Bruijn graphs to rec-
tangle graphs for genome assembly. In: Raphael, B., Tang, J. (eds.) WABI 2012.
LNCS, vol. 7534, pp. 249–261. Springer, Heidelberg (2012)

13. Zhang, W., Chen, J., Yang, Y., Tang, Y., Shang, J., Shen, B.: A practical com-
parison of de novo genome assembly software tools for next-generation sequencing
technologies. PLoS One 6(3), e17915 (2011)

Approximation Algorithms for the Multilevel
Facility Location Problem with
Linear/Submodular Penalties

Gaidi Li1, Dachuan Xu1(B), Donglei Du2, and Chenchen Wu3

1 Department of Information and Operations Research,
Beijing University of Technology, 100 Pingleyuan, Chaoyang District,

Beijing 100124, People’s Republic of China
xudc@bjut.edu.cn

2 Faculty of Business Administration, University of New Brunswick,
Fredericton, NB E3B 5A3, Canada

3 College of Science, Tianjin University of Technology,
Tianjin 300384, People’s Republic of China

Abstract. We consider two multilevel facility location problems with
linear and submodular penalties respectively, and propose two approxi-
mation algorithms with performance guarantee 3 and 1+ 2

1−e−2 (≈ 3.314)
for these two problems.

Keywords: Multilevel facility location problem · Submodular function ·
Approximation algorithm

1 Introduction

Facility location is an important area in combinatorial optimization with vast
applications in operation research, computer science and management science.

The k-level facility location problem (k-LFLP) is a classical and extensively
investigated problem, which has many applications. For example, typical prod-
ucts are shipped through manufacturers, warehouses and retailers before they
can reach customers. One of the problems facing the business is to minimize the
cost across these multi-level facilities. Formally, we are given a set D of clients,
and k pairwise disjoint facility sets F� (� = 1, 2, . . . , k). Assume that the set
D ∪

(

∪k
�=1F�

)

constitutes a metric space; that is, if i, j ∈ D ∪
(

∪k
�=1F�

)

are con-
nected, then we pay a connected cost cij , which is symmetric, nonnegative and
satisfies triangle inequalities. Each facility has an open cost fi�

, i� ∈ F�. Define
a facility path as a sequence of k facilities (i1, i2, . . . , ik) such that i� ∈ F�,
(� = 1, 2, . . . , k). A path is open if all its facilities are open. If client j is con-
nected to a path p = (i1, i2, . . . , ik), the corresponding connection cost is defined
as cjp = cji1 +

∑k−1
�=1 ci�il+1 . The goal of the k-LFLP is to serve all the clients

in the set D by connecting each of them to an open path so as to minimize
the total cost, including both connection and open cost. When k is equal to 1,
c© Springer International Publishing Switzerland 2015
J. Wang and C. Yap (Eds.): FAW 2015, LNCS 9130, pp. 162–169, 2015.
DOI: 10.1007/978-3-319-19647-3 15

Multilevel Facility Location Problem with Linear/Submodular Penalties 163

the problem is reduced to the classic uncapacitated facility location problem,
which is proved to be NP-hard. The FLP has been widely studied. Shmoys et al.
[14] gave the first constant 3.16-approximation algorithm using LP-rounding
technique, and Li [12] proposed the current best approximation factor 1.488, close
to the lower bound 1.463 of this problem given by Guha and Khuller [7]. For the
k-LFLP, Aardal et al. [1] gave the current best approximation ratio 3 using the
stochastic LP-rounding technique, while Ageev et al. [3] presented the current
best combinatorial algorithm with performance guarantee 3.27. Based on the
stochastic LP-rounding, Wu and Xu [15] proposed a bifactor

(

ln(1/β)
1−β , 1 + 2

1−β

)

-

approximation algorithm1, where β ∈ (0, 1) is a constant. In addition, Gabor
et al. [6] gave a 3-approximation algorithm by adopting a new integer pro-
gramming formulation with a polynomial number of variables and constraints.
Li et al. [11] gave a cross-monotonic cost sharing method for the multi-level
economic lot-sizing game. On the negative side, Krishnaswamy and Sviridenko
[10] proved that the lower bound for the k-LFLP is 1.61. In light of the 1.488-
approximation algorithm of Li [12] for the FLP, the k-LFLP obviously is harder
to approximate.

The focus of this work is on the k-LFLP with penalties, where each client is
either connected to an open facility path by paying connection cost or rejected
for service with a penalty cost. The goal of the problem is to open a subset of
facilities from F�, � = 1, 2, . . . , k, such that each client j ∈ D is either connected
to an open facility path, or rejected with a penalty cost so as to minimize the
total facility cost, connection cost and penalty cost. If each client j has a fixed
penalty cost qj , the corresponding problem is called the k-LFLP with linear
penalties. On the other hand, the k-LFLP with submodular penalties treats the
penalty cost as a monotone increasing submodular function h(·) defined on the
client set D; that is, h(A) ≤ h(B) and h(A ∪ {j}) − h(A) ≥ h(B ∪ {j}) −
h(B) for all A ⊆ B, j /∈ B. Li et al. [8] extended the primal-dual technique of
Jain and Vazirani [9] to the k-LFLP with submodular penalties and obtained a
combinatorial 6-approximation algorithm. Based on LP-rounding, Asadi et al. [2]
gave a 4-approximation algorithm for the k-LFLP with linear penalties. For any
given k, Byrka et al. [4] considered the k-LFLP with linear penalties and gave an
approximation algorithm whose approximation ratio converges monotonically to
three when k tends to infinity.

Our main contribution is to give two approximation algorithms for the k-
LFLP with submodular/linear penalties, which are the current best approxi-
mation ratio respectively. The rest of the paper is organized as follows. We
present an

(

1 + 2
1−e−2

)

-approximation algorithm for the k-FLP with submod-
ular penalties in Sect. 2, and a 3-approximation algorithm for the k-FLP with
linear penalties in Sect. 3.

1 Let us denote the facility cost by F ∗ and the connection cost by C∗ in the optimal
solution. If an algorithm can get an integer feasible solution to the k-LFLP with the
total cost no more than aF ∗ + bC∗ in polynomial time, then this algorithm is called
a bifactor (a, b)-approximate algorithm for k-LFLP.

164 G. Li et al.

2 Multilevel Facility Location Problem with Submodular
Penalties

In this section, we consider the k-LFLP with submodular penalties. We introduce
several binary decision variables as follows: xjp indicates whether client j is
connected to path p or not; zS indicates whether the client set S is penalized
or not; and yi�

indicates whether facility i� is open or not. The k-LFLP with
submodular penalties can be formulated as an integer linear program:

min
k
∑

�=1

∑

i�∈Fl

fi�
yi�

+
∑

p∈P

∑

j∈D
cjpxjp +

∑

S⊆D
h(S)zS

s. t.
∑

p∈P
xjp +

∑

S⊆D:j∈S

zS ≥ 1, ∀j ∈ D,
∑

p:i�∈p

xjp − yi�
≤ 0, ∀j ∈ D, i� ∈ F l, � = 1, 2, . . . , k,

xjp ∈ {0, 1}, ∀p ∈ P, j ∈ D,
yi�

∈ {0, 1}, ∀i� ∈ F�, � = 1, 2, . . . , k,
zS ∈ {0, 1}, ∀S ⊆ D,

(1)

where the first constraints say that client j is either connected to a facility path
or penalized, and the second constraints imply that client j must be connected
to an open facility path.

Now we present the LP-based approximation algorithm for k-LFLP with
submodular penalties. We consider the convex relaxation of problem (1):

min
k
∑

�=1

∑

i�∈Fl

fi�
yi�

+
∑

p∈P

∑

j∈D
cjpxjp + h′(z)

s. t.
∑

p∈P
xjp + zj ≥ 1, ∀j ∈ D,

∑

p:i�∈p

xjp − yi�
≤ 0, ∀j ∈ D, i� ∈ F l, � = 1, 2, . . . , k,

xjp ≥ 0, ∀p ∈ P, j ∈ D,
yi�

≥ 0, ∀i� ∈ F�, � = 1, 2, . . . , k,
zj ≥ 0, ∀j ∈ D,

(2)

where h′(z) is the Lovász extension function of any given submodular function
h(·)(cf. [13]),

h′(z) = max
∑

j∈D
θjzj

s. t.
∑

j∈S

θj ≤ h(S), ∀S ⊆ D,

θj ≥ 0, j ∈ D.

It follows from Li et al. [13] that the function h′(·) has the following
properties.

Multilevel Facility Location Problem with Linear/Submodular Penalties 165

Property 1. h′(I(S)) = h(S), and h′(0) = h(∅).
Property 2. h′(aw) = ah′(w), a ≥ 0 is a number; w ≥ 0 is a vector.
Property 3. h′(·) is a monotonically increasing convex function.
Property 4. Given the optimal solution (x∗, y∗, z∗) to problem (2), and let

θ∗ := arg max h′(z∗). If j ∈ D, x∗
jp > 0 and z∗

j > 0, then we have θ∗
j ≥ cjp.

Now we illustrate the high level idea of our algorithm. Our algorithm is moti-
vated by Li et al. [8] for the one-level FLP (1-LFLP) with submodular penalties.
By considering the Lovász extension of submodular function, we overcome the
difficulties brought by submodular penalties and separate the client set into the
penalized set and the serviced set according to the optimal solution to the linear
programming relaxation. First, we solve the convex relaxation problem (2) to get
an optimal solution (x∗, y∗, z∗). Then based on the penalized/connected propor-
tion of each client, we partition the client set D into two sets: the connected
set Dγ and the penalized set D̄γ (where γ is a pre-specified parameter). Next,
we consider an instance of the k-LFLP with the facility sets F1, . . . ,Fk, and
the client set Dγ . Then, based on the optimal solution to problem (2), we con-
struct a feasible solution (x̂, ŷ) to the linear program relaxation for the k-LFLP
with client set Dγ . Finally, we call the bifactor

(

ln(1/β)
1−β , 1 + 2

1−β

)

-approximation
algorithm for the k-LFLP by Wu and Xu [15] as a subroutine (cf. Steps 4–6 of
Algorithm 1) to get a feasible integer solution (x̄, ȳ) to the k-LFLP with the
client set Dγ . Combining with the penalized client set D̄γ , we get a feasible
integer solution (x̄, ȳ, z̄) to our problem.

The algorithm is given below.

Algorithm 1
Step 1. Solve the LP relaxation (2) to obtain the fractional optimal solution

(x∗, y∗, z∗).
Step 2. According to the penalized proportion of client j, we partition the clients

set into two sets Dγ =

{

j ∈ D :
∑

p∈P
x∗

pj ≥ 1
γ

}

, and D̄γ = D \ Dγ . Penalize

the clients in D̄γ and set x̄jp := 0, ∀j ∈ D̄γ , p ∈ P,

z̄S :=
{

1, if S = D̄γ

0, otherwise
Step 3. For the served client set Dγ , set

x̂jp := x∗
jp

1−z∗
j
, ∀j ∈ Dγ , p ∈ P, ŷi := min{γy∗

i , 1},∀i ∈ ∪k
�=1F�.

Then (x̂, ŷ) is a feasible solution for the relaxed k-LFLP with the client set
Dγ and facility sets F1, . . . ,Fk.

Step 4. Given a parameter β ∈ (0, 1), choose randomly and uniformly α ∈ (β, 1).
Step 5. ∀j ∈ Dγ , let Pj := {p ∈ P : x̂jp > 0}. Sort the paths in Pj in an

nondecreasing distance to client j; that is, cjpj
1

≤ cjpj
2

≤ . . . ≤ cjpj
|Pj |

. Let

s∗
j be the number satisfying

∑

s≤s∗
j
x̂jpj

s
≥ α >

∑

s≤s∗
j −1 x̂jpj

s
and define

cj(α) = cjpj

s∗
j

. Calculate the average connection cost of client j,

166 G. Li et al.

Dav(j) :=

s∗
j

∑

s=1
cjpj

s
x̂jpj

s

s∗
j

∑

s=1
x̂jpj

s

.

Step 6. For the served client set Dγ , iteratively generate greedily cluster centers
as follows.
Step 6.1 Set t = 1, C := ∅, C′

= Dγ .
Step 6.2 Choose cluster center jt := arg min

j∈C′
cj(α) + Dav(j).

Step 6.3 Set Pt := {pjt

1 , pjt

2 , . . . , pjt

s∗
jt

},
Ft := ∪k

�=1{i� ∈ F� : ∃p ∈ Pt, s.t.i� ∈ p},
Ct := {j ∈ C′ : ∃s ≤ s∗

j s.t. pj
s ∩ Ft �= ∅}.

Step 6.4 Set C′
:= C′ \ Ct, C := C ∪ {jt}.

Step 6.5 We randomly open a facility path from the path set Pt; namely

choose a path p ∈ Pt with probability x̂jtp/
s∗

jt
∑

s=1
x̂

jtp
jt
s
; round all variables

{ȳi�
}i�∈p and {ȳi�

}i�∈Ft\p to 1 and 0 respectivly; connect the cluster center
jt to this open path; and set x̄jtp = 1 and x̄jtp′ = 0, ∀p′ ∈ P \ p.

Step 6.6 If C′ �= ∅, set t = t + 1 and go to Step 6.2.
Step 6.7 Connect all the clients j ∈ Dγ \ C to the closest open path.

Since Steps 4–6 of Algorithm 1 is Wu and Xu [15]’s bifactor
(

ln(1/β)
1−β , 1 + 2

1−β

)

-
approximation algorithm for the k-LFLP with feasible LP solution (x̂, ŷ), the cost
of integer feasible solution (x̄, ȳ) generated is no more than ln(1/β)

1−β F̂ +1+ 2
1−β Ĉ,

where F̂ , Ĉ are the facility cost and connection cost respectively of solution
(x̂, ŷ).

The performance of Algorithm 1 is summarized in the following theorem.

Theorem 1. When β = e−2, γ = 3−e−2

2 , Algorithm 1 is an
(

1 + 2
1−e−2

)

-
approximation algorithm for the k-LFLP with submodular penalties.

3 Multilevel Facility Location Problem with Linear
Penalties

Analogous to the k-LFLP with submodular penalties, the k-LFLP with linear
penalties can also be formulated as an integer linear program:

min
k
∑

�=1

∑

i�∈Fl

fi�
yi�

+
∑

p∈P

∑

j∈D
cjpxjp +

∑

j∈D
qjzj

s. t.
∑

p∈P
xjp + zj ≥ 1, ∀j ∈ D,

∑

p:i�∈p

xjp − yi�
≤ 0, ∀j ∈ D, i� ∈ F l, � = 1, 2, . . . , k,

xjp ∈ {0, 1}, ∀p ∈ P, j ∈ D,
yi�

∈ {0, 1}, ∀i� ∈ F�, � = 1, 2, . . . , k,
zj ∈ {0, 1}, ∀j ∈ D.

(3)

Multilevel Facility Location Problem with Linear/Submodular Penalties 167

The linear programming relaxation of the above program is as follows:

min
k
∑

�=1

∑

i�∈Fl

fi�
yi�

+
∑

p∈P

∑

j∈D
cjpxjp +

∑

j∈D
qjzj

s. t.
∑

p∈P
xjp + zj ≥ 1, ∀j ∈ D,

∑

p:i�∈p

xjp − yi�
≤ 0, ∀j ∈ P, i� ∈ F l, � = 1, 2, . . . , k,

xjp ≥ 0, ∀p ∈ P, j ∈ D,
yi�

≥ 0, ∀i� ∈ F�, � = 1, 2, . . . , k,
zj ≥ 0, ∀j ∈ D.

(4)

The dual of the problem (4) is

max
∑

j∈D
αj

s. t. αj −
∑

i�∈p

βi�j ≤ cjp, ∀p ∈ P, j ∈ D,
∑

j∈D
βi�j ≤ fi�

, ∀i� ∈ F l, � = 1, 2 . . . , k,

αj ≤ qj , ∀j ∈ D,
αj ≥ 0, βi�j ≥ 0, ∀j ∈ D, i� ∈ F�, � = 1, 2 . . . , k.

(5)

Lemma 2. Let (x∗, y∗, z∗) and (α∗, β∗), respectively, be the optimal solutions
to the primal and dual LP. Then we have

(1) x∗
jp > 0 ⇒ α∗

j −
∑

i�∈p

β∗
i�j = cjp, cjp ≤ α∗

j , ∀p ∈ P, j ∈ D;

(2) x∗
jp > 0, and z∗

j > 0 ⇒ cjp ≤ qj = α∗
j , ∀p ∈ P, j ∈ D.

Proof. If x∗
jp > 0, it follows from the complementary slackness condition that

α∗
j −

∑

i�∈P

β∗
i�j = cjp.

Combining with β∗
i�j ≥ 0, i� ∈ p, we get cpj ≤ α∗

j .
If x∗

pj > 0 and z∗
j > 0, we have cjp ≤ α∗

j from Case 1. On the other hand,
we have the complementary slackness condition z∗

j (α∗
j − qj) = 0, implying that

qj = α∗
j .

Our algorithm is motivated by Aardal et al. [1]. First, we solve the linear pro-
gram (4) and its relaxation (5) to obtain the optimal solutions (x∗, y∗, z∗) and
(α∗, β∗). Two clients j and j′ are neighbors if there exist two paths p and p′ such
that x∗

jp > 0, x∗
j′p′ > 0 and p ∩ p′ �= ∅. Set (x̄, ȳ, z̄) := (x∗, y∗, z∗). Iteratively

revise (x̄, ȳ, z̄) untill we obtain a feasible integer solution to problem (3). In each
iterative step, we maintain the feasibility of the solution (x̄, ȳ, z̄). Based on the
optimal solution (x∗, y∗, z∗), we partition the set D of clients into the penalized
set D̄γ of clients and the served set Dγ of clients.

Next for the client set Dγ , we construct pairwise disjoint cluster sets, each
containing a client called cluster center, all its neighbors and facilities from the
path of fractionally serving that cluster center in the solution (x∗, y∗, z∗).

168 G. Li et al.

For each cluster set, we randomly choose an open path from the path set serv-
ing cluster center fractionally, and connect cluster center to this path. Because
a non-cluster-center client j is possible to be the neighbor of two or more cluster
centers, we connect these clients to the closest open path finally.

Introduce the following notation:

Dav(j) =

⎛

⎝

∑

p∈P
cpjx

∗
pj

⎞

⎠ /(1 − z∗
j).

Algorithm 2
Step 1. Solve the LP relaxation (4) and its dual (5) to obtain the optimal solu-

tions of them (x∗, y∗, z∗) and (α∗, β∗). Set (x̄, ȳ, z̄) := (x∗, y∗, z∗).
Step 2. According to the penalized proportion of client j, we partition the clients

set into two sets Dγ = {j ∈ D :
∑

p∈P

x∗
jp ≥ 1

γ }, and D̄γ = D\Dγ . We penalized

the clients in the set D̄γ and set z̄j := 1, x̄jp := 0,∀j ∈ D̄γ , p ∈ P.
Step 3. For the served clients set Dγ , generate greedily cluster center as follows.

Step 3.1 Set t := 1, C := ∅, C′
:= Dγ .

Step 3.2 Choose cluster center jt := arg min
j∈C′

α∗
j + Dav(j).

Step 3.3 Set Pt := {p ∈ P : x∗
jtp

> 0},
Ft := ∪k

�=1{i� ∈ F� : ∃p ∈ Pt, s. t. i� ∈ p},
Ct := {j ∈ D : ∃p ∈ Ps. t. x∗

jp > 0, p ∩ Ft �= ∅}.
Step 3.4 Set C′

:= C′ \ Ct, C := C ∪ {jt}.
Step 3.5 We randomly open a path with probability 1 from the path

set Pt. Formally, choose a path p ∈ Pt with probability
x∗

jtp

1−z∗
jt

and

perform the following operations: round all the variables {ȳi�
}i�∈p to

1 and all other variables {ȳi�
}i�∈Ft\p to 0; connect the cluster center

jt to this open path; and set x̄jtp := 1 and x̄jtp′ := 0, ∀p′ ∈ P \ p.
Step 3.6 If C′ �= ∅, set t := t + 1, go to Step 3.2.
Step 3.7 Connect all the clients j ∈ Dγ \ C to the closest open path.

The performance of Algorithm 2 is given below.

Theorem 3. If γ = 1, then the expected total cost of (x̄, ȳ, z̄) is no more than
3 times the optimum cost, which implies that Algorithm 2 is a 3-approximation
algorithm for the k-LFLP with linear penalties.

Acknowledgments. The first author’s research is supported by the NSF of China
(No. 11201013). The research of the second author is supported by the NSF of China
(No. 11371001). The third authors research is supported in part by the Natural Sciences
and Engineering Research Council of Canada (NSERC) grant 283106.

Multilevel Facility Location Problem with Linear/Submodular Penalties 169

References

1. Aardal, K., Chudak, F., Shmoys, D.: A 3-approximation algorithm for the k-level
uncapacitated facility location problem. Inf. Process. Lett. 72, 161–167 (1999)

2. Asadi, M., Niknafs, A., Ghodsi, M.: An approximation algorithm for the k-
level uncapacitated facility location problem with penalties. In: Sarbazi-Azad, H.,
Parhami, B., Miremadi, S.-G., Hessabi, S. (eds.) Proceeding of CSICC. Com-
munications in Computer and Information Science, vol. 6, pp. 41–49. Springer,
Heidelberg (2008)

3. Ageev, A., Ye, Y., Zhang, J.: Improved combinatorial approximation algorithms
for the k-FLP. SIAM J. Discrete Math. 18, 207–217 (2007)

4. Byrka, J., Li, S., Rybicki, B.: Improved approximation algorithm for k -Level UFL
with penalties, a simplistic view on randomizing the scaling parameter. In: Kak-
lamanis, C., Pruhs, K. (eds.) WAOA 2013. LNCS, vol. 8447, pp. 85–96. Springer,
Heidelberg (2014)

5. Fujishige, S.: Submodular Functions and Optimization, 2nd edn. Elsevier,
Amsterdam (2005)

6. Gabor, F., Van Ommeren, J.: A new approximation algorithm for the multilevel
facility location problem. Discrete Appl. Math. 158, 453–460 (2010)

7. Guha, S., Khuller, S.: Greedy strikes back: improved facility location algorithms.
In: Proceeding of SODA, pp. 649–657 (1998)

8. Li, G., Wang, Z., Xu, D.: An approximation algorithm for the k-FLP with sub-
modular penalties. J. Ind. Manage. Optim. 18, 521–529 (2012)

9. Jain, K., Vazirani, V.: Approximation algorithms for metric facility location and
k-median problems using the primal-dual schema and Lagrangian relaxation. J.
ACM 48, 274–276 (2001)

10. Krishnaswamy, R., Sviridenko, M.: Inapproximability of the multi-level uncapaci-
tated facility location problem. In: Proceeding of SODA, pp. 718–734 (2012)

11. Li, G., Du, D., Xu, D., Zhang, R.: A cost-sharing method for the multi-level eco-
nomic lot-sizing game. Sci. China Inf. Sci. 57, 1–9 (2014)

12. Li, S.: A 1.488 Approximation Algorithm for the Uncapacitated Facility Location
Problem. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part II. LNCS,
vol. 6756, pp. 77–88. Springer, Heidelberg (2011)

13. Li, Y., Du, D., Xiu, N., Xu, D.: Improved approximation algorithms for the facil-
ity locaiton problem with linear/submodular penalties, Algorithmica. doi:10.1007/
s00453-014-9911-7

14. Shmoys, D., Tardos, E., Aardal, K.: Approximation algorithms for facility location
problem (extended abstract). In: Proceeding of STOC, pp. 265–274 (1997)

15. Wu, C., Xu, D.: An improved approximation algorithm for the k-FLP with soft
capacities, accepted by Acta Mathematicae Applicatae Sinica

http://dx.doi.org/10.1007/s00453-014-9911-7
http://dx.doi.org/10.1007/s00453-014-9911-7

Smaller Kernels for Several FPT Problems
Based on Simple Observations

Wenjun Li(B) and Shuai Hu

School of Information Science and Engineering, Central South University,
Changsha 410083, People’s Republic of China

liwenjun@csu.edu.cn

Abstract. In the field of parameterized computation and theory, as a
pre-processing technique of algorithms, kernelization has received con-
siderable attention. In this paper, we study the kernelization algorithms
for several fixed parameter tractable problems, including Co-Path
Set, Path-Contractibility and Connected Dominating Set on G7

Graphs. For these three problems, based on simple observations, we give
simple kernelization algorithms with kernel size of 4k, 3k + 4 and O(k2)
respectively, which are smaller than the previous corresponding smallest
kernels 6k, 5k + 3, and O(k3).

1 Introduction

With the development of modern industry, more and more computation prob-
lems has been emerged. Due to massive data input, many of them are hard
to be solved. For this reason, how to decrease the size of instances of prob-
lems effectively has become a research focus. Be accompanied with the Para-
meterized Computation and Complexity Theory coming to the world [5], as
a pre-processing technique of algorithms for decreasing the size of instances of
problems effectively, kernelization has drawn considerable attention, and become
a significant research direction.

In this paper, we consider kernelization algorithms for several FPT problems,
including Co-path Set, Path-Contractibility and Connected Dominat-
ing Set on G7 graphs (graphs with girth at least 7).

The Minimum Co-Path Set problem is to delete a minimum set of edges in
a given graph G such that each connected component in the remaining graph
is a path. This problem has a lot of practical applications [2,3,22,23]. Garey
and Johnson [10] proved that Co-path Set problem is NP-complete. The para-
meterized version of this problem is to ask whether deleting at most k edges in a
given graph G such that each connected component in the remaining graph is a
path. As to the kernelization algorithms for this problem, Jiang et al. [16] gave
a 5k-weak kernel. Roughly speaking, Weak kernel is the potential search space,
which is different from the traditional kernel. Usually, the size of the formal

This work is supported by the National Natural Science Foundation of China under
Grants (61232001, 61472449, 61420106009, 61402054).

c© Springer International Publishing Switzerland 2015
J. Wang and C. Yap (Eds.): FAW 2015, LNCS 9130, pp. 170–179, 2015.
DOI: 10.1007/978-3-319-19647-3 16

Smaller Kernels for Several FPT Problems Based on Simple Observations 171

is smaller than the later. Zhang et al. [24] presented a kernelization algorithm
with kernel size of 22k. Recently, Feng et al. [6] improved the kernel to 9k. It is
worthy to be remarked that, earlier in [7], Fernau presented a 6k kernel for the
parameterized problem named Linear Arrangement by Deleting Edges.
We find that this problem is actually equivalent to the parameterized Co-Path
Set problem.

The parameterized Path-Contractibility problem is to decide if the given
graph could be contracted into a path through at most k edge contractions. Edge
contraction is one type of graph modification operation, and it is also one of the
three minor operations (vertex deletion, edge deletion and edge contraction).
A lot of problems with respect to vertex deletion and edge deletion are proved
to be NP-hard and well studied. However, the problems with respect to edge
contraction do not have received extensive attention. P. Heggernes et al. [13]
proved that Bipartite Graph-Contractibility is FPT. Recently, P. Heggernes
et al. [14] presented a kernelization algorithm for Path-Contractibility prob-
lem with linear kernel (5k + 3), and shown that Tree-Contractibility does
not have a polynomial kernel, unless coNP ⊆ NP/poly.

In a graph G = (V,E), a dominating set is a set of vertices S ⊆ V such
that every vertex in G\S is adjacent to some vertex in S. A dominating set S
of G is said to be a connected dominating set if the subgraph G[S] induced by
S is connected. The parameterized (Connected) Dominating Set problem
is to decide if G has a (connected) dominating set with at most k vertices?
The girth of a graph G is the length of a shortest cycle in G. The notation Gr

denotes the set of all graphs with girth at least r ∈ N. On general graphs, the
Connected Dominating Set problem is NP-hard [10], and the parameter-
ized version of the problem is known to be W[2]-complete [19]. This problem
remains W[2]-complete even in many restricted classes of graphs, such as graphs
of bounded average degree, bipartite graphs, triangle free graphs, split graphs,
chordal graphs and G4 graphs [11,20,21]. But, the parameterized Connected
Dominating Set problem has FPT algorithms in certain restricted families of
graphs, such as planar graphs [8,12,17,18], graphs of bounded genus [1], apex-
minor-free graphs [9], nowhere-dense classes of graphs [4], graphs of bounded
degeneracy [11] and graphs of bounded treewidth [15]. Misra et al. [20] studied
the kernelization complexity of the Connected Dominating Set problem.
They showed that this problem has no polynomial kernel on graphs containing
cycles of length at most 6, unless the Polynomial Hierarchy (PH) collapses to
the third level, and gave an O(k3)-kernelization algorithm for the problem on
G7 graphs.

Based on simple observations, we give some improved kernelization algorithms
for the problems mentioned above. More precisely, our contributions in this paper
consist of the following four items:

– We find that the Linear Arrangement by Deleting Edges problem is
equivalent to the Co-Path Set problem.

– We show that parameterized Co-Path Set problem has a 4k-kernel.

172 W. Li and S. Hu

– We give a (3k + 4)-kernelization algorithm for the parameterized Path-
Contractibility problem.

– We present an O(k2)-kernelization algorithm for the parameterized Con-
nected Dominating Set problem on G7 Graphs, which can also lead to an
O(k2)-kernel for the parameterized Dominating Set problem on G7 Graphs.

The paper is organized as follows. Section 2 gives some related terminologies.
Section 3 proves that the Linear Arrangement by Deleting Edges prob-
lem is equivalent to the Co-Path Set problem, and shows a kernelization
algorithm for the parameterized Co-Path Set problem. Section 4 gives a ker-
nelization algorithm for the parameterized Path-Contractibility problem.
Section 5 presents a kernelization algorithm for the Connected Dominating
Set problem on G7 Graphs.

2 Preliminaries

Let G = (V,E) be a finite, undirected and simple graph. For two vertices u, v ∈
V , [u, v] denotes the edge between u and v. The neighborhood set of a vertex v
in G is N(v) = {w ∈ V |[v, w] ∈ E}. For a vertex subset S ⊆ V , G[S] denotes
the subgraph of G induced by S. For a subgraph G′ of G, E(G′) consists of all
the edges in G′. If the degree of vertex v is r, we say v is a degree-r vertex.
Furthermore, if the degree of vertex v is not less than r, then v is a degree≥r
vertex, and if the degree of vertex v is not larger than r, then v is a degree≤r
vertex. For the convenience, we use G − v to denote G[V \{v}] for a vertex
v ∈ V , and G − S to denote G[V \S] for a vertex subset S ⊆ V . Similarly, for
an edge e ∈ E and edge subset E′ ⊆ E, G − e and G − E′ denote the subgraph
G′ = (V,E\e) and G′′ = (V,E\E′) respectively. We use P = v1v2v3...vl to
denote a path with l vertices.

3 Co-Path Set and Linear Arrangement
by Deleting Edges

In this section, we prove that the Co-Path Set problem is equivalent to the
Linear Arrangement by Deleting Edges problem first. Later, we show
an improved kernelization algorithm for these two problems, which consists of
6 reduction rules and builds a 4k kernel for them. The formal definition of
parameterized Linear Arrangement by Deleting Edges is as follows.

Parameterized Linear Arrangement by Deleting Edges: Given an
undirected graph G = (V,E) and an integer k, is there an edge subset
E′ ⊆ E with |E′| ≤ k and a one-to-one mapping σ : V −→ {1, . . . , |V |}
such that

∑

[u,v]∈E\E′ |σ(u) − σ(v)| = |E\E′|?

Theorem 1. The Co-Path Set problem is equivalent to the Linear
Arrangement by Deleting Edges problem.

Smaller Kernels for Several FPT Problems Based on Simple Observations 173

Proof. Let (G = (V,E), k) be a yes-instance of the parameterized Co-Path
Set problem, and E′ be a subset of E with |E′| ≤ k such that each connected
component of G − E′ is a path. Assume that G − E′ = {P1, . . . , Pi, . . . , Pl} is
a set of paths and path Pi = vi,1 . . . vi,j . . . vi,ri , where 1 ≤ i ≤ l. Then we
can construct a one-to-one mapping σ as follows: σ(v1,j) = j, and σ(vi,j) =
∑i−1

m=1 rm + j, where 2 ≤ i ≤ l. It is easy to see that
∑

[u,v]∈E\E′ |σ(u) − σ(v)| =
|E\E′|.

For the other direction, let (G = (V,E), k) be a yes-instance of the parame-
terized Linear Arrangement by Deleting Edges problem, E′ be a subset
of E with |E′| ≤ k and σ : V −→ {1, . . . , |V |} be a one-to-one mapping such that
∑

[u,v]∈E\E′ |σ(u)−σ(v)| = |E\E′|. Assume one of the component C in G−E′ is
not a path, then there is a degree≥3 vertex in C or C itself is a cycle. From the
definition of σ, we know that, for any edge [u, v] ∈ E\E′, |σ(u)−σ(v)| ≥ 1. Since
∑

[u,v]∈E\E′ |σ(u)−σ(v)| = |E\E′|, we can say that for each edge [u, v] ∈ E\E′,
|σ(u)−σ(v)| = 1. If there is a degree≥3 vertex w in C, from the definition of σ, we
know that there is at least one vertex w′ such that, for the edge [w,w′] ∈ E\E′,
|σ(w) − σ(w′)| > 1, a contradiction. If C itself is a cycle, then |C| ≥ 3 for G is a
simple graph. In the following, we will prove that

∑

[u,v]∈E(C) |σ(u)−σ(v)| > |C|.
Assume that

∑

[u,v]∈E(C) |σ(u) − σ(v)| = |C|. Let C = {v1, v2, ..., v|C|, v1} be a
cycle. Obviously, C − [v|C|, v1] is a path. From the definition of σ, we know that
if

∑

[u,v]∈E(C)\[v|C|,v1]
|σ(u) − σ(v)| = |C| − 1, then |σ(v|C|) − σ(v1)| > 1. Thus,

∑

[u,v]∈E(C) |σ(u)−σ(v)| > |C|, which means
∑

[u,v]∈E\E′ |σ(u)−σ(v)| = |E\E′|,
also a contradiction, which finishes the proof of the theorem. ��

3.1 Reduction Rules

In this part, we give a kernelization algorithm for the parameterized Co-Path
Set problem, which consists of 6 reduction rules. It should be mentioned that
the former 5 rules have been given in [6,7]. Thus, we just prove the correctness
of the last rule.

Rule 3.1. Delete vertices of degree-0.
Rule 3.2. If a degree-1 vertex v is adjacent to a degree≤2 vertex, then delete v.
Rule 3.3. If a degree-2 vertex v is adjacent to a degree-2 vertex w such that

N(v) ∩ N(w) = ∅, then contract the edge [v, w].
Rule 3.4. If a degree-2 vertex v is adjacent to a degree-2 vertex w such that

N(v) ∩ N(w) �= ∅ (assume u = N(v) ∩ N(w)), then delete the edge [u, v] and
decrease the parameter k by one.

Rule 3.5. If v is a degree≥3 vertex such that N(v) includes two degree-1 vertices
x, y, then delete all the edges adjacent to v but [v, x] and [v, y], decrease the
parameter k by |N(v)| − 2.

Rule 3.6. If v is a degree≥3 vertex such that N(v) includes a degree-1 vertex x
and a degree-2 vertex y, then delete all the edges adjacent to v except [v, x]
and [v, y], decrease the parameter k by |N(v)| − 2.

174 W. Li and S. Hu

Lemma 1. Rule 3.6 is safe.

Proof. For a yes-instance (G = (V,E), k) of parameterized Co-Path Set prob-
lem, suppose G − E′ is a set of paths with |E′| ≤ k. Let v be a degree≥3 vertex
in G, x, y ∈ N(v), where x is a degree-1 vertex, y is a degree-2 vertex. Now, We
are going to prove that there is an edge set E′′ with |E′′| ≤ |E′| such that (1)
[v, x] /∈ E′′ and [v, y] /∈ E′′, and (2) each connected component of G − E′′ is a
path.

Assume [v, x] ∈ E′. If v is a degree-1 vertex in G − E′, then each connected
component of G − (E′\[v, x]) is also a path, which means that deleting all the
edges in E′′ = E′\[v, x] makes each connected component of G − E′′ is a path.
Furthermore, |E′′| = |E′|−1. If v is a degree-2 vertex in G−E′, let v1, v2 be the
two neighbors of v in G−E′, then deleting all the edges in E′′ = E′\[v, x]∪[v, v1]
makes each connected component of G − E′′ is also a path, and |E′′| = |E′|.

Suppose [v, y] ∈ E′. From the above proof, we can assume that [v, x] /∈ E′.
Since y is a degree-2 vertex in G, y is a degree≤1 vertex in G − E′. If v is a
degree-1 vertex in G − E′, then each connected component of G − (E′\[v, y]) is
also a path, i.e., deleting all the edges in E′′ = E′\[v, y] makes each connected
component of G − E′′ is a path. Furthermore, |E′′| = |E′| − 1. If v is a degree-2
vertex in G − E′, let w be a neighbor of v in G − E′ (x is the other neighbor of
v in G − E′), then deleting all the edges in E′′ = E′\[v, y] ∪ [v, w] makes each
connected component of G − E′′ is also a path, and |E′′| = |E′|.

Above all, there is an edge set E′′ with |E′′| ≤ |E′| such that (1) [v, x] /∈ E′′

and [v, y] /∈ E′′, and (2) each connected component of G − E′′ is a path. Since
the degree of each vertex on a path is no larger than 2, deleting all the edges
adjacent to v but [v, x] and [v, y] is safe. ��

3.2 Kernel Analysis

Let (G, k) be an instance of parameterized Co-Path Set problem. Starting from
(G, k), we repeatedly apply the Rules 3.1–3.6 if possible. Obviously, the total
running time of reduction process is polynomial.

If none of Rules 3.1–3.6 can be applied on graph G, then we say G is irre-
ducible. For any irreducible graph G, it holds the following two propositions,
which are the base of the kernel analysis.

Proposition 1. If v is degree-2 vertex, then the two neighbors of v are degree≥3
vertices.

Proof. If one neighbor of v is a degree-1 vertex, then Rule 3.2 could be applied.
And if one neighbor of v is a degree-2 vertex, then Rule 3.3 or 3.4 could be
applied. Therefore, the two neighbors of v are degree≥3 vertices.

Proposition 2. If v is a degree-1 vertex, then the only neighbor w of v is a
degree≥3 vertex and each vertex in N(w)\v is a degree≥3 vertex.

Smaller Kernels for Several FPT Problems Based on Simple Observations 175

Proof. By Rule 3.2, the only neighbor w of v must be a degree≥3 vertex. If there
is a degree-1 vertex in N(w)\v, then Rule 3.5 could be applied. And if there is
a degree-2 vertex in N(w)\v, then Rule 3.6 could be applied. Therefore, each
vertex in N(w)\v is a degree≥3.

Theorem 2. The parameterized Co-Path Set problem admits a kernel with size
of 4k.

Proof. For a yes-instance (G = (V,E), k) of parameterized Co-Path Set prob-
lem, let G − E′ be a set of paths with |E′| ≤ k. If vertex v is an endpoint of an
edge in E′, then we say v is an influenced vertex; otherwise, it is an un-influenced
vertex. Obviously, each degree≥3 vertex must be an influenced vertex. Further-
more, there is no degree-0 vertex in G, otherwise, Rule 3.1 could be applied.
Thus, we can divide the vertices in V into three disjoint parts: (1) A: influ-
enced vertices; (2) B: un-influenced degree-1 vertices; and (3) C: un-influenced
degree-2 vertices. Now, we are going to bound the size of V :

– |A| ≤ 2k: For the reason that |E′| ≤ k;
– |B| + |C| ≤ 2k: Let AB = {v|v ∈ A,N(v) ∩ B �= ∅} and AC = {v|v ∈

A,N(v) ∩ C �= ∅}. Obviously, AB ∪ AC ⊆ A. By Proposition 2, AB ∩ AC = ∅.
Therefore, |AB | + |AC | ≤ |A|. From Proposition 2, we know that |B| = |AB |.
By Proposition 1, each vertex of C is adjacent to exactly two vertices of AC

in G. Since each vertex of AC is a degree≤2 vertex in G − E′, it is adjacent
to at most two vertices of C in G. Therefore, we have |C| ≤ |AC |. Thus, the
inequality |B| + |C| ≤ |AB | + |AC | ≤ |A| ≤ 2k holds.

Summarizing above, |V | = |A| + |B| + |C| ≤ 2k + 2k = 4k. ��

4 Path-Contractibility

In this section, we consider kernelization algorithm for the parameterized Path-
Contractibility Problem. In the following, some necessary definitions and
notations are showed, which are identical with that in [14].

A graph is connected if there exists a path between every pair of vertices,
and disconnected otherwise. The connected component of graph G is its maximal
connected subgraph. We say that a vertex subset S of graph G is connected if
G[S] is connected. A bridge in a connected graph is an edge e such that G− e is
disconnected. A graph is 2-edge connected if it has no bridge. A 2-edge connected
component of graph G is a maximal 2-edge connected subgraph of G.

The contraction of edge [u, v] in G removes both u and v from G, and adds
a new vertex w, which is made adjacent to vertices in NG(u) ∪ NG(v) but u and
v. A graph G is contractible to a graph H, if H can be obtained from G by
a sequence of edge contractions. Equivalently, G is H-contractible if there is a
surjection φ : V (G) → V (H), with W (h) = {v ∈ V (G) | φ(v) = h} for every
h ∈ V (H), that satisfies the following two conditions: (1) for every h ∈ V (H),
W (h) is (non-empty) a connected set in G; (2) for every pair hi, hj ∈ V (H),

176 W. Li and S. Hu

there is an edge in G between a vertex of W (hi) and a vertex of W (hj) if and
only if [hi, hj] ∈ E(H). W = {W (h) | h ∈ V (H)} is an H-witness structure of
G, and the sets W (h), for h ∈ V (H), are called witness sets of W. If a vertex in
G is contained in some witness set which contains more than one vertex of G,
then we call it a contracted vertex; otherwise, it is an un-contracted vertex.

4.1 Reduction Rule and Kernel Analysis

The main idea of our kernelization algorithm for the parameterized Path-
Contractibility Problem is derived from the reduction rule in [14]. But it
includes the ideas of the following two observations. For any instance (G =
(V,E), k) of parameterized Path-Contractibility Problem, we assume that
G is connected. Otherwise, (G, k) is a trivial no-instance.

Observation 1: For an arbitrary 2-edge connected graph G = (V,E), if
G is contractible to a path P by q edge contractions, then q ≥ (|V |−1)/3.

For a given connected graph G, it is easy to see that after an edge contraction,
the newly constructed graph is also connected and the number of vertices is
decreased by 1. We first claim that for any edge [u, v] of G, at least one of u and
v is a contracted vertex. Assume that u and v are both un-contracted vertices.
By the definition of 2-edge connected graph, G\[u, v] is connected. Then G\[u, v]
remains connected after q edge contractions. As edge [u, v] is not contracted,
the new graph created by q edge contractions from G contains a cycle, which
contradicts to the fact that it is a path. Assume P be the path contracted
from G by q edge contractions. Let V1(P) = {v|v ∈ V (P), |W (v)| ≥ 2} and
V2(P) = V \V1(P). Then |V1(P)| ≥ (|V (P)|−1)/2�. Since the induced subgraph
G(W (x)) contracted to x needs a sequence of |W (x)|−1 edge contractions, then
|V (P)| ≤ (2|V | + 1)/3, which means q = |V | − |V (P)| ≥ |V | − (2|V | + 1)/3 =
(|V | − 1)/3.

Observation 2: In a given connected graph G = (V,E), C0 is a 2-edge
connected component or a single vertex such that each edge adjacent to
it is a bridge, G − C0 = {C1, ..., Ch}, where h ≥ 2. If G is contractible
to a path P , then there are at least h − 2 components of G − C0 such
that all the vertices in each component are contracted.

Suppose there are no more than h − 3 components in G − C0 such that all
the vertices in each component are contracted, which means that there are at
least three components in G − C0 such that there is at least one un-contracted
vertex in each component. We know that G(W (x)) is connected in G for every
vertex x ∈ V (P). Obviously, in this case, there is a degree≥3 vertex on P , a
contradiction.

Based on the above two observations, we can refine the reduction rule for the
parameterized Path-Contractibility Problem in [14] easily, and obtain the
following rule. The proof of its correctness is omitted here.

Smaller Kernels for Several FPT Problems Based on Simple Observations 177

Rule 4.1. For an induced subgraph C0 of G, where C0 is a 2-edge connected
component or a single vertex such that each edge adjacent to it is a bridge, let
G−C0 = {C1, ..., Ch}, where the number of vertices in C1, ..., Ch is in decreasing
order and h ≥ 1, e be a bridge between C0 and C1. If (i) |V \V (C1)| ≥ k+2, and
(ii) |V (C1)| + (|V (C0)| − 1)/3 ≥ k + 2, when 1 ≤ h ≤ 3; |V (C1)| + (|V (C0)| −
1)/3 +

∑h
i=4 |V (Ci)| ≥ k + 2, when h ≥ 4, then return (G′, k), where G′ is the

graph resulting from the contraction of edge e.

Theorem 3. Parameterized Path-Contractibility problem has a kernel
with at most 3k + 4 vertices.

Proof. Let G be a graph such that Rule 4.1 cannot be applied on it. For any
induced subgraph C0 of G, where C0 is a 2-edge connected component or a single
vertex such that each edge adjacent to it is a bridge, G − C0 = {C1, ..., Ch} is
a set of components, where the number of vertices in C1, ..., Ch is in decreasing
order and h ≥ 1, e = [u, v] is a bridge between C0 and C1. Obviously, for any
graph G, |V (C1)| is decided by C0. Assume C∗

0 be a 2-edge connected component
or a single vertex such that each edge adjacent to it is a bridge such that |V (C∗

1)|
is minimum.

If |V \V (C∗
1)| ≤ k+1 and |V (C∗

1)| ≤ k+1, then |V | = |V \V (C∗
1)|+|V (C∗

1)| ≤
2k + 2. If |V \V (C∗

1)| ≤ k + 1 and |V (C∗
1)| ≥ k + 2, then we can find another

induced subgraph C ′
0 satisfying that (1)C ′

0 is a 2-edge connected component or
a single vertex such that each edge adjacent to it is a bridge; and (2)|V (C ′

1)| <
|V (C∗

1)|. But this contradicts to the fact that |V (C∗
1)| is minimum. Thus, in this

case, we have |V | ≤ 2k + 2.
If |V \V (C∗

1)| ≥ k+2 and 1 ≤ h ≤ 3, then we must have |V (C∗
1)+(|V (C∗

0)|−
1)/3 ≤ k + 1. By definition, |V (C∗

1)| ≥ |V (C∗
2)| ≥ |V (C∗

3)|, here V (C∗
2) and

V (C∗
3) may be empty. Thus, |V | = |V (C∗

0)| + |V (C∗
1)| + |V (C∗

2)| + |V (C∗
3)| ≤

3|V (C∗
1)| + |V (C∗

0)| = 3(|V (C∗
1) + (|V (C∗

0)| − 1)/3) + 1 ≤ 3k + 4.
If |V \V (C∗

1)| ≥ k + 2 and h ≥ 4, then |V (C∗
1) + (|V (C∗

0)| − 1)/3 +
∑h

i=4 |V (C∗
i)| ≤ k + 1. Thus, |V | = |V (C∗

0)| + |V (C∗
1)| + |V (C∗

2)| + |V (C∗
3)| +

∑h
i=4 |V (C∗

i)| ≤ 3|V (C∗
1)| + |V (C∗

0)| + 3
∑h

i=3 |V (C∗
i)| ≤ 3k + 4. ��

5 Connected Dominating Set on G7 graphs

In this section, we give a kernelization algorithm for the parameterized Con-
nected Dominating Set problem on G7 Graphs. This algorithm consists of a
simple reduction rule, and leads to an O(k2)-kernel. Furthermore, such a kernel-
ization algorithm can also lead to an O(k2)-kernel for the parameterized Domi-
nating Set problem on G7 Graphs.

5.1 Reduction Rule and Kernel Analysis

In our kernelization algorithm for parameterized Connected Dominating Set
problem, there is only one reduction rule. Furthermore, this rule is simple and
trivial, and it is as follows.

178 W. Li and S. Hu

Rule 5.1 If there are more than one degree-1 vertex adjacent to a vertex u, then
delete all these degree-1 vertices except one.

Let G = (V,E) be a graph such that Rule 5.1 is not applicable on G, D be
a dominating set of G, where |D| ≤ k. We divide the vertices in V \D into three
disjoint parts: (1) V1: degree-1 vertices; (2) V2: each vertex has no neighbor in
V \D and has at least two neighbors in D; and (3) V3: other vertices in V \D.
Then, we have

– V1: By Rule 5.1, there are no two degree-1 vertices adjacent to a vertex in G.
Thus, there are at most k degree-1 vertices in V \D;

– V2: For each two vertices a and b in D, if there are two vertices u and v in
V \D such that vertices u and v are neighbors of a and b, then there is a cycle
{a, u, b, v, a} with size 4, which contradicts to the fact that G is a G7 graph.
Therefore, we can conclude that there are no two vertices in V \D having the
same two neighbors in D. Since there are at most k(k − 1)/2 different vertex
pairs in D, there are at most k(k − 1)/2 vertices in V2.

– V3: Let u be a vertex in V3. Then u has at least one neighbor v in V3, i.e.,
there is an edge [u, v] in G[V3]. Otherwise, v is a vertex in V1 or V2. Assume a
and b are the neighbors of u and v in D respectively. Then, a �= b, otherwise,
{u, v, a, u} is a triangle, a contradiction. Furthermore, there is no edge [u′, v′]
in G[V3] such that a and b are the neighbors of u′ and v′ respectively. Oth-
erwise, if {u, v} ∩ {u′, v′} = ∅;, then there is a cycle {u, v, b, v′, u′, a, u} with
girth of 6, a contradiction. Similarly, If {u, v} ∩ {u′, v′} �= ∅, then there is a
cycle with girth of 4, also a contradiction. Since there are at most k(k − 1)/2
vertex pairs in D, there are at most k(k − 1)/2 edges in G[V3], i.e., there are
at most k(k − 1) vertices in V3.

Above all, there are at most |V1| + |V2| + |V3| + |D| = k + k(k − 1)/2 + k
(k − 1) + k = 3/2k2 + k/2 vertices in G.

References

1. Bodlaender, H.L., Fomin, F.V., Lokshtanov, D., Penninkx, E., Saurabh, S.,
Thilikos, D.M.: (Meta) kernelization. In: FOCS 2009, pp. 629–638 (2009)

2. Cheng, Y., Cai, Z., Goebel, R., Lin, G., Zhu, B.: The radiation hybrid map con-
struction problem: recognition, hardness, and approximation algorithms (2008).
(unpublished manuscript)

3. Cox, D.R., Burmeister, M., Price, E.R., Kim, S., Myers, R.M.: Radiation hybrid
mapping: a somatic cell genetic method for constructing high resolution maps of
mammalian chromosomes. Science 250, 245–250 (1990)

4. Dawar, A., Kreutzer, S.: Domination problems in nowhere-dense classes. In:
FSTTCS2009, pp. 157–168 (2009)

5. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Monographs in Com-
puter Science. Springer, New York (1999)

6. Feng, Q., Zhou, Q., Li, S.: Randomized parameterized algorithms for co-path set
problem. In: Chen, J., Hopcroft, J.E., Wang, J. (eds.) FAW 2014. LNCS, vol. 8497,
pp. 82–93. Springer, Heidelberg (2014)

Smaller Kernels for Several FPT Problems Based on Simple Observations 179

7. Fernau, H.: Parameterized algorithmics for linear arrangement problems. Discrete
Appl. Math. 156(17), 3166–3177 (2008)

8. Fernau, H.: Parameterized algorithmics: a graph-theoretic approach. Habilitation-
sschrift, Universität Tübingen, Germany (2005)

9. Fomin, F.V., Lokshtanov, D., Saurabh, S., Thilikos, D.M.: Bidimensionality and
kernels. In: SODA2010, pp. 503–510. SIAM, Philadelphia (2010)

10. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP Completeness. W.H. Freeman, New York (1979)

11. Golovach, P.A., Villanger, Y.: Parameterized complexity for domination problems
on degenerate graphs. In: Broersma, H., Erlebach, T., Friedetzky, T., Paulusma,
D. (eds.) WG 2008. LNCS, vol. 5344, pp. 195–205. Springer, Heidelberg (2008)

12. Gu, Q., Imani, N.: Connectivity is not a limit for kernelization: planar connected
dominating set. In: López-Ortiz, A. (ed.) LATIN 2010. LNCS, vol. 6034, pp. 26–37.
Springer, Heidelberg (2010)

13. Heggernes, P., Hof, P.V.T., Lokshtanov, D., Paul, C.: Obtaining a bipartite graph
by contracting few edges. SIAM J. Discrete Math. 27(4), 2143–2156 (2013)

14. Heggernes, P., Hof, P.V., Lokshtanov, D., Paul, C.: Contracting graphs to paths
and trees. Algorithmica 68(1), 109–1320 (2014)

15. Hermelin, D., Mnich, M., van Leeuwen, E.J., Woeginger, G.J.: Domination when
the stars are out. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part I.
LNCS, vol. 6755, pp. 462–473. Springer, Heidelberg (2011)

16. Jiang, H., Zhang, C., Zhu, B.: Weak kernels. ECCC Report, TR10-005 (2010)
17. Lokshtanov, D., Mnich, M., Saurabh, S.: A linear kernel for a planar connected

dominating set. Theor. Comput. Sci. 412(23), 2536–2543 (2011)
18. Luo, W., Wang, J., Feng, Q., Guo, J., Chen, J.: An improved kernel for planar

connected dominating set. In: Ogihara, M., Tarui, J. (eds.) TAMC 2011. LNCS,
vol. 6648, pp. 70–81. Springer, Heidelberg (2011)

19. Marx, D.: Chordal deletion is fixed-parameter tractable. In: Fomin, F.V. (ed.) WG
2006. LNCS, vol. 4271, pp. 37–48. Springer, Heidelberg (2006)

20. Misra, N., Philip, G., Raman, V., Saurabh, S.: The kernelization complexity of
connected domination in graphs with (no) small cycles. Algorithmica 68(2), 504–
530 (2014)

21. Raman, V., Saurabh, S.: Short cycles make W-hard problems hard: FPT algorithms
for W-hard problems in graphs with no short cycles. Algorithmica 52(2), 203–225
(2008)

22. Richard, C.W., Withers, D.A., Meeker, T.C., Maurer, S., Evans, G.A., Myers,
R.M., Cox, D.R.: A radiation hybrid map of the proximal long arm of human
chromosome 11 containing the multiple endocrine neoplasia type 1 (MEN-1) and
bcl-1 disease loci. Am. J. Hum. Genet. 49(6), 1189 (1991)

23. Slonim, D., Kruglyak, L., Stein, L., Lander, E.: Building human genome maps with
radiation hybrids. J. Comput. Biol. 4, 487–504 (1997)

24. Zhang, C., Jiang, H., Zhu, B.: Radiation hybrid map construction problem para-
meterized. In: Lin, G. (ed.) COCOA 2012. LNCS, vol. 7402, pp. 127–137. Springer,
Heidelberg (2012)

Parameterized Minimum Cost Partition
of a Tree with Supply and Demand

Mugang Lin1,2(B), Wenjun Li1, and Qilong Feng1

1 School of Information Science and Engineering,
Central South University, Changsha, China

2 Department of Computer Science, Hengyang Normal University,
Hengyang, China

linmu718@csu.edu.cn

Abstract. In this paper, we study the minimum cost partition problem
of a tree with supply and demand. For the kernelizaton of the problem,
several reduction rules are given, which result in a kernel of size O(k2)
for the problem. Based on the branching technique, a parameterized
algorithm of running time O∗(2.828k) is presented.

1 Introduction

In practical applications, many problems can be efficiently formulated as a graph
partitioning problem and its variants, such as VLSI circuit layout [12], clustering
[2], and distributing workloads for parallel computation [4]. In this paper, we
are focused on a graph partitioning problem called Minimum Cost Partition
of a Tree with Supply and Demand(MCPTSD), which has applications in the
feeder reconfiguration of power delivery networks [3,14,18] and the self-adequacy
of interconnected smart micro-grids [1,9]. The problem can be modeled by a
directed tree T = (V,E) with node set V and edge set E, where V = Vd ∪ Vs,
and Vd ∩ Vs = ∅. Each node v ∈ Vd is called a demand node, and is assigned a
positive real number dem(v), called a demand of v. Each node u ∈ Vs is called
a supply node, and is assigned a positive real number sup(u), called a supply
of u. Every edge e ∈ E is also assigned a positive integer c(e), called the cost
of e, which represents the cost deleting e from T or reversing the direction of e
in T . A subset E′ ⊆ E is called a critical edge set, if by deleting or reversing
the edges in E′, a forest {T1, T2, · · · , Tl} satisfying following properties can be
obtained: (1) l = |Vs|,

⋃l
i=1 V (Ti) = V , and V (Ti) ∩ V (Tj) = ∅ (1 ≤ i < j ≤ l);

(2) each Ti (1 ≤ i ≤ l) is the tree which contains only one supply node ui ∈ Vs,
and

∑

v∈V (Ti)\{ui} dem(v) ≤ sup(ui); (3) each edge of Ti is directed away from
the supply node ui. The definition of the MCPTSD problem is given as follows.

This work is supported by the National Natural Science Foundation of China under
Grants (61232001, 61472449, 61420106009, 61402054), and the Hengyang Foundation
for Development of Science and Technology under Grant(2014KJ21).

c© Springer International Publishing Switzerland 2015
J. Wang and C. Yap (Eds.): FAW 2015, LNCS 9130, pp. 180–189, 2015.
DOI: 10.1007/978-3-319-19647-3 17

Parameterized Minimum Cost Partition of a Tree with Supply and Demand 181

Minimum Cost Partition of a Tree with Supply and Demand (MCPTSD):
Given a directed tree T = (V,E), where V = Vd ∪ Vs, and Vd ∩ Vs = ∅,
find a critical edge set E′ in T whose total cost

∑

e∈E′ c(e) is minimum
for T .

Ito et al. [5] studied the problem of partitioning a tree with supply and demand
such that the total obtained demand of all of subtrees is maximized, which allows
that some subtrees have no supply node. They showed that the problem is NP-
complete even for series-parallel graphs. However, if the problem is to decide
whether a given tree has at least one partition, it was proved in [5] that the
problem can be solved in linear time. A pseudo polynomial-time algorithm and
a FPTAS algorithm to solve the maximum partition problem for tree T are
given in [5]. In [6,7], the problem proposed in [5] is extended to general graphs,
which was proved to be MAXSNP-hard. Pseudo polynomial-time algorithms and
FPTAS algorithms for series-parallel graphs and partial k-trees were also stud-
ied in [6,7]. Ito et al. [8] proved that the MCPTSD problem is NP-hard, and
gave a pseudo polynomial-time algorithm and a FPTAS algorithm for the prob-
lem. Recently, lots of attention [9–11,13,15–17] have been paid on the partition
problem with supply and demand from heuristic and approximation algorithm
perspective.

In this paper, we study the parameterized Minimum Cost Partition of a Tree
with Supply and Demand problem. The definition of the problem is given as
follows.

Parameterized Partition of a Tree with Supply and Demand(PPTSD):
Given a directed tree T = (V,E), and a parameter k, V = Vs ∪ Vd,
where Vs ∩ Vd = ∅, find a critical edge set E′ ⊆ E with

∑

e∈E′ c(e) ≤ k,
or report that no such subset exists.

In the paper, we give several polynomial-time data reduction rules, which result
in a kernel of size O(k2) for the PPTSD problem. Based on the analysis of branch-
ing cases of the problem, a parameterized algorithm of running time O∗(2.828k)
is presented.

2 Preliminaries

Let T = (V,E) be a directed tree with |V | = n nodes and |E| = m edges. We
use (u, v) to denote a directed edge in T from u to v. For a node v ∈ V (T), let
N(v)− = {u : (u, v) ∈ E(T), u ∈ V (T)} and N(v)+ = {u : (v, u) ∈ E(T), u ∈
V (T)} be the in-neighbors and out-neighborhs of v, respectively. The neighbors
of v is defined as N(v) = N(v)− ∪ N(v)+. The in-degree and out-degree of
v are defined as |N(v)−| and |N(v)+|, respectively. Thus, the degree of v is
|N(v)−|+ |N(v)+|. If a node v has degree d, then v is called a degree-d node. For
a directed tree T , tree T ′ is called a line tree of T if T ′ is obtained by ignoring
all the directions of the edges in T . By designating one node r in T ′ as root, for
a node u in T ′, the parent of u is the node connected to it on the path to the

182 M. Lin et al.

root r in T ′. For two node u, v in T , let u′, v′ be two corresponding nodes in
T ′, respectively. If u′ is the parent of v′ in T ′, for simplicity, we say that u and
v are the parent-children relationship in T , i.e., u is the parent of v in T . For
directed tree T , a node with degree-1 is called a leaf of T . For an edge e in T , the
contraction of edge e is defined that e is moved and its two incident nodes u and
v are merged into a new node w such that the edges incident to either u or v are
incident to w. In the paper, many edge contraction operations are applied in the
kernelization and branching algorithm. Assume that forest F = {T1, T2, · · · , Tl}
can be obtained by deleting or reversing the edges in a critical edge set of T .
The edges contracted in the kernelization and branching algorithm are still in
some trees of F by reversing the process of contraction.

3 Kernelization for PPTSD

In this section, we study the kernelization for PPTSD problem. Assume that
(T, k) is the given instance of the PPTSD problem. We start with three simple
observations to decide whether (T, k) is a NO-instance.

Rule 1. (1) If there are more than k + 1 supply nodes in T , then return “NO”.
(2) If the sum of in-degrees of all supply nodes in T is larger than k, then return
“NO”. (3) If there are more than k demand nodes in T with in-degrees at least
2, then return “NO”.

Lemma 1. Rule 1 is correct and executable in O(m + n) time.

Proof. Assume that F = {T1, T2, · · · , Tl} is a forest obtained by deleting or
reversing the edges in a critical edge set E′ of T . If there are more than k + 1
supply nodes in T , we need to delete at least k + 1 edges of T to get F . Thus,
the cost of deleting edges is larger than k, and (T, k) is a NO-instance. Since
every edge is directed away from the supply node in each Ti (1 ≤ i ≤ l) of F , in
each Ti, the in-degree of supply node is zero and the in-degree of every demand
node is one. Thus, for Rule 1 (2), if the sum of in-degrees of all supply nodes in
T is larger than k, then (T, k) is a NO-instance. Similarly, for Rule 1(3), if there
are more than k demand nodes in T with in-degrees at least 2, then (T, k) is a
NO-instance. Obviously, Rule 1 can be done in O(m + n) time. �	

Rule 2. Let u be a leaf node of tree T and v be the parent node of u in T . If
u and v are both demand nodes, then for the edge e constructed by u and v:
(1) If e = (v, u), then contract edge (v, u). Let v′ be the new demand node, and
dem(v′) = dem(u) + dem(v); (2) If e = (u, v), then reverse edge e, and contract
e. Let v′ be a new demand node, dem(v′) = dem(u)+ dem(v), and k = k − c(e).

Rule 3. Let u be a leaf of tree T and node v be the parent node of u in T . If u
is a demand node and v is a supply node, then:

(1) If sup(v) < dem(u), then return “NO”.
(2) If sup(v) = dem(u) and node v is adjacent to at least one other demand

leaf except u, then return “NO”.

Parameterized Minimum Cost Partition of a Tree with Supply and Demand 183

(3) If sup(v) > dem(u), then check the direction of edge e constructed by u, v.
(3.1) If e = (v, u), then contract e. Let v′ be the new supply node, and sup(v′) =

sup(v) − dem(u);
(3.2) If e = (u, v), then reverse edge e, and contract e. Let v′ be the new supply

node, sup(v′) = sup(v) − dem(u), and k = k − c(e).

Lemma 2. Rules 2 and 3 are correct and can be done in O(m + n) time.

Proof. Assume that F = {T1, T2, · · · , Tl} is a forest obtained by deleting or
reversing the edges in a critical edge set E′ of T . We first prove that edge (v, u)
must exist in a tree Ti of F if the input instance is a YES-instance. Suppose that
edge e is deleted to get forest F . Then, there exists a tree in F without a supply
node, contradicting the definition of the PPTSD problem. Therefore, edge (v, u)
must exist in a tree Ti of F . In order to guarantee that the node u is away from
the supply node in the forest F , the direction of the edge e should be from v to
u in F .

From the above fact, the correctness of Rule 2 is obvious.
For Rule 3, if sup(v) < dem(u), the demand node u cannot get enough

demand from supply node v, whatever the direction of the edge e between u
and v is in F . Thus, instance (T, k) is a NO-instance. If sup(v) = dem(u) and
node v is adjacent to at least one other demand leaf except u, then at least
one demand node does not obtain its demand. Thus (T, k) is a NO-instance. If
sup(v) > dem(u), from the above fact, the case is correct. It is easy to see that
the Rule 2–3 can be done in O(m + n) time. �	

Lemma 3. After applying Rules 2 and 3, there are at most k + 1 leaves in the
reduced instance.

Proof. Assume that (T ′, k′) is the reduced instance of the PPTSD problem after
applying Rules 2–3. If there still exist demand leaves in (T ′, k′), then the parent
node of every demand leaf is a supply node and each supply node has only one
demand leaf by Rule 2 and Rule 3(2). Therefore, the number of leaves is no more
than that of supply nodes in the instance (T ′, k′). By Rule 1, (T ′, k′) contains
at most k + 1 supply nodes. Thus, there are at most k + 1 leaves in (T ′, k′). �	

Rule 4. Let u be a leaf of tree T , node v be the parent node of u, and node w
be the parent node of v. If u is a supply node, then:

(1) If v is also a supply node, then delete node u and k = k − c(e);
(2) If v is a demand node, then compare sup(u) and dem(v);

(2.1) If sup(u) < dem(v), then delete node u and k = k − c(e).
(2.2) If sup(u) > dem(v), v is a degree-2 node, e = (u, v), and e′ = (v, w), then

contract edge e. Let u′ be the new supply node, and sup(u′) = sup(u) −
dem(v).

(2.3) If sup(u) = dem(v), v is a degree-2 node, e = (u, v), and e′ = (v, w), then
delete node u and v, and k = k − c(e′).

184 M. Lin et al.

Lemma 4. Rule 4 is correct and can be done in O(m + n).

Proof. Assume that F = {T1, T2, · · · , Tl} is a forest obtained by deleting or
reversing the edges in a critical edge set E′ of T . If both u and v are supply
nodes, then u and v are in different trees in F . Thus, edge e must be deleted
in T , and k = k − c(e). If v is a demand node and sup(u) < dem(v), then the
supply node u cannot provide enough demand for node v, and u and v are in
different trees in F . Therefore, node u can be deleted, and k = k − c(e). For
the cases (2.2) and (2.3) of Rule 4, it is clear that the edge (u, v) cannot be
reversed. Suppose that Fmin = {T1, · · · , Ti, · · · , Tj , · · · , Tl} is a forest obtained
by deleting or reversing the edges in a critical edge set Emin with minimum cost
for T , by deleting edge (u, v) ∈ Emin and reversing edge (v, w) ∈ Emin. Assume
that Ti = {u}, and v is in Tj . If edge (v, w) deleted and edge (u, v) is not deleted,
then two new trees T ′

i = {u, v} and T ′
j = Tj \ {v} can be obtained. Thus, a new

forest F ′ = {T1, · · · , T ′
i , · · · , T ′

j , · · · , Tl} can be obtained by replacing Ti and Tj

with T ′
i and T ′

j , respectively. Assume that E′′ is the critical edge set obtaining F ′.
Then, the total cost of E′′ is less than that of Emin, contradicting the assumption
that the cost of Emin is minimum for T . Therefore, case (2.2) and (2.3) of Rule
4 are correct. Obviously, Rule 4 can be done in O(m + n) time. �	

Rule 5. Let l be the number of all supply nodes in T and P = (u1, u2, · · · ,
uh−1, uh) be a directed path in T , where ui (1 ≤ i ≤ h) is degree-2 demand node.
If h > k− l+2, then contract all the edges in {(ui, ui+1)|i = 1, · · · , h−k+ l−2}.
Let u the new demand node obtained, and dem(u) =

∑h−k+l−2
j=1 dem(uj).

Lemma 5. Rule 5 is correct and can be done in O(m + n).

Proof. Assume that F = {T1, T2, · · · , Tl} is a forest obtained by deleting or
reversing the edges in a critical edge set E′ of T . Since each tree Ti (1 ≤ i ≤ l)
has exactly one supply node, l − 1 edges of T must be deleted. Thus the cost of
deleting edges in T is at least l − 1 and the cost of reversing edges is at most
k − l +1. We now prove that no edge in {(ui, ui+1)|i = 1, · · · , h− k + l − 3} of P
can be deleted or reversed. Assume that edge e from {(ui, ui+1)|i = 1, · · · , h −
k + l − 3} is deleted. In order to satisfying all the demands of the nodes in
{uh−k+l−1, · · · , uh}, all the edges in {uj , uj+1|j = h − k + l − 2, · · · , uh−1}
should be reversed with cost at least k − l + 2. Similarly, we can prove that no
edges {(ui, ui+1)|i = 1, · · · , h − k + l − 3} of P can be reversed. Therefore, all
the edges in {(ui, ui+1)|i = 1, · · · , h − k + l − 2} can be contracted. It is easy to
see that Rule 5 can be done in O(m + n) time. �	

Theorem 1. PPTSD problem has a kernel with O(k2) nodes.

Proof. Let (T ′, k′) be the reduced instance obtained by applying Rules 1–5. By
Lemma 3, there are at most k + 1 supply nodes and at most k + 1 leaves in T ′.
Therefore, at most k internal nodes with degree at least three are contained in
T ′. Assume that S is the set of supply nodes in T ′, L is the set of supply leaves in
T ′, and A is the set of demand leaves of T ′. For the internal nodes, assume that
B is the set of degree-2 internal demand nodes whose in-degree or out-degree is

Parameterized Minimum Cost Partition of a Tree with Supply and Demand 185

two, and C is set of degree-2 internal demand nodes whose in-degree and out-
degree are both one. For the internal supply nodes, let D1 be the set of degree-3
supply nodes, each of which has a leaf as neighbor, and D2 be the set of degree-2
supply nodes. Assume that F is the set of internal nodes of degree at least three.
Let D = D1 ∪ D2 and I = F\D1. Clearly, V (T ′) = L ∪ A ∪ I ∪ B ∪ C ∪ D,
and |D| ≤ |S| − |L|. Since every demand node must receive supply from exact
one supply node and the total cost is at most k, for each demand node u in B,
at least one edge incident to u must be deleted or reversed. Thus, |B| ≤ k. By
Rule 2 and Rule 3(2), the parent node of every demand leaf is a supply node
and each supply node has only one demand leaf. Therefore, |L| + |A| ≤ |S| and
|I| ≤ |S| − 1. Let p be the number of the directed paths and t be the number
of nodes in the longest directed path. By Lemma 5, t ≤ k − |S| + 2. At most
|L| + |I| − 1 directed paths are contained in T ′ if T ′ do not contain nodes in
A ∪ B ∪ D, denoted by P. For a directed path P in P, if one node of B ∪ D
is added to P , then the number of directed paths is increased by at most one.
Thus, p ≤ |L| + |I| − 1 + |B| + |D|.

|V (T)| = |L| + |A| + |I| + |B| + |C| + |D|
≤ |S| + |L| + k − 1 + (k − |S| + 2) · (|S| + |L| + k − 2) + |S|

≤ −2(|S| − k + 9
4

)2 +
9k2 + 26k + 41

8

≤ 9k2 + 26k + 41
8

Hence, there are at most O(k2) nodes in the reduced instance. �	

4 A Parameterized Algorithm for PPTSD

In this section, we present a parameterized algorithm for PPTSD based on
branching. Note that in our algorithm, the kernelization algorithm is applied
whenever possible. Let (T, k) be a reduced instance of PPTSD and u be a leaf of
tree T . Assume that the parent node of u is denoted by v. We solve the PPTSD
problem by the following cases.

Case 1: Node u is a demand node.
Since (T, k) be a reduced instance of PPTSD, v is a supply node and sup(v) =

dem(u) by Rule 3(2). Let e be the edge between u and v, and Ev be the edge
set adjacent to v. Then delete u and v, and k = k −

∑

e′∈Ev\e c(e′).

Case 2: Node u is a supply node and node v is adjacent to at least two leaves.
Let w be another leaf of node v, e be the edge between u and v, and e′ be

the edge between v and w. We can have the following two branchings: (1) delete
edge e; (2) delete edge e′. Thus, the branching vector is (1, 1) and the branching
number is α = 2.

Case 3: Node u is a supply node and node v is a degree-2 node adjacent to only
one leaf u.

186 M. Lin et al.

Let w be the parent node of node v, e be the edge between u and v, and e′ be
the edge between v and w. Note that when e = (u, v) and e′ = (v, w), Rule 4 can
be applied. According to the direction of edges e and e′, we have the following
three subcases.

Case 3.1: e = (v, u) and e′ = (w, v).
We can have the following two branchings: (1) delete (v, u); (2) reverse (v, u),

and merge v, u into a new supply node v′, sup(v′) = sup(u)−dem(v). Thus, the
branching vector is (1, 1) and the branching number is α = 2.

Case 3.2: e = (v, u) and e′ = (v, w).
We can have the following two branchings: (1) delete (v, u) and reverse (v, w);

(2) reverse (v, u), and merge v, u into a new supply node v′, sup(v′) = sup(u) −
dem(v). Thus, the branching vector is (2, 1) and the branching number is α =
1.618.

Case 3.3: e = (u, v) and e′ = (w, v).
Let x be the parent of node w. We deal with Case 3.3 by the following

subcases.

Case 3.3.1: Node w is a supply node.
We can have the following two branchings: (1) delete edge (u, v); (2) delete

edge (w, v). Thus, the branching vector is (1, 1) and the branching number is
α = 2.

Case 3.3.2: Node w is a degree-2 demand node, and the edge between w and x
is (x,w).

We can have the following four branchings: (1) delete edge (u, v); (2) delete
edge (w, v); (3) delete edge (x,w) and reverse edge (w, v); (4) reverse edges
(w, v) and (x,w), merge u, v and w into a new supply node w′, sup(w′) =
sup(u) − dem(v) − dem(w). Thus, the branching vector is (1, 1, 2, 2) and the
branching number is α = 2.732.

Case 3.3.3: Node w is a degree-2 demand node, and the edge between w and x
is (w, x).

We can have the following three branchings: (1) delete edge (u, v) and reverse
(w, x); (2) delete edge (w, x) and reverse (w, v); (3) reverse (w, v) and merge u, v
and w into a new supply node w′, sup(w′) = sup(u) − dem(v) − dem(w). Thus,
the branching vector is (2, 2, 1) and the branching number is α = 2.

Case 3.3.4: Node w is a demand node of degree at least three.
We deal with Case 3.3.4 by the following three subcases.

Case 3.3.4.1: Node w is adjacent to a supply leaf y, and the edge between w
and y is (w, y).

We can have the following two branchings: (1) delete edge (w, y); (2) reverse
(w, y), merge nodes w and y into a new supply node w′, sup(w′) = sup(y) −
dem(w). Thus, the branching vector is (1, 1) and the branching number is α = 2.

Case 3.3.4.2: Node w is adjacent to a supply leaf y, and edge (y, w) is an edge
between nodes w and y.

Parameterized Minimum Cost Partition of a Tree with Supply and Demand 187

We can have the following three branchings: (1) delete edge (u, v); (2) delete
edge (w, v); (3) delete edge (y, w) and reverse edge (w, v), merge nodes u, v and w
into a new supply node w′, sup(w′) = sup(u)−dem(v)−dem(w). The branching
vector is (1, 1, 2) and the branching number is α = 2.414.

Case 3.3.4.3: Node w is adjacent to a node y which is a degree-2 demand node
adjacent to a leaf z.

Under this case, the edge between w and y is (w, y) and the edge between z
and y is (z, y). Therefore, we can have the following eight branchings: (1) delete
edges (w, v) and (w, y); (2) delete edge (w, y) and reverse edge (w, v), merge
nodes u, v, w into a new supply node w′, sup(w′) = sup(u) − dem(v) − dem(w);
(3) delete edge (w, v) and reverse edge (w, y), merge nodes w, y, z into a new
supply node w′, sup(w′) = sup(z) − dem(y) − dem(w); (4) delete edges (u, v)
and (z, y); (5) delete edges (w, v) and (z, y); (6) delete edges (w, y) and (u, v);
(7) delete edge (u, v), reverse edge (w, y), and merge nodes v, w, y, z into a new
supply node w′, sup(w′) = sup(z) − dem(y) − dem(w) − dem(v); (8) delete edge
(z, y), reverse edge (w, v), and merge nodes u, v, w, y into a new supply node w′,
sup(w′) = sup(u) − dem(y) − dem(v) − dem(w). Thus, the branching vector is
(2, 2, 2, 2, 2, 2, 2, 2) and the branching number is α = 2.828.

Note that in the above branchings, when we merge some nodes into a new
supply node u, we check its supply sup(u). If sup(u) < 0, then return “NO”. If
sup(u) = 0, then delete node u and decrease k accordingly.

Based on the above branchings, we can obtain the following theorem.

Theorem 2. PPTSD can be solved in O∗(2.828k) time.

Proof. Given an instance (T, k) of the PPTSD problem, if (T, k) is a NO-
instance, after doing Rules 1–5 and Cases 1–3.3.3, no critical edge set with cost
at most k can be found, and“NO” will be returned.

We now assume that (T, k) is a Yes-instance. By applying the reduction rules
in kernelization process until no rule is applicable, T only contains supply leaf
and demand leaf. Particularly, for each demand leaf u in T , its parent is a supply
node and has unique child u, which can be handled correctly by Case 1. Now
we can get that all the leaves of T are supply nodes. For an internal node v,
if N(v) contains at least two leaves of T , then for any two leaves u,w in N(v),
only one of u and w is kept in N(v), which corresponds to the two branchings in
Case 2. After doing the branchings in Case 2 whenever possible, for each supply
leaf node u in T , its parent is a demand node and has unique child u. For a
supply leaf u, its parent v and the parent w of v, based on the degree of node w
and whether w is a supply or demand node, we can get Case 3.1–3.3 and Case
3.3.1–3.3.3. Assume that F ′ = {T1, T2, · · · , Ti} (1 ≤ i ≤ l) is a forest obtained
in the branching process, where Tj (1 ≤ j ≤ i) is a directed tree. If Tj contains
only one supply node, then we can reduce it to a node by Rules 1–5. For a tree
Tj in F ′, if the number of nodes in Tj is larger than one, we now prove that
either some rules from Rules 1–5, or some cases from Cases 1–3.3.4.3 can be
applied. Since Tj has at least two nodes, a leaf node u can be found in Tj . It
is easy to see that if the conditions of Rules 1–5 are satisfied, then Rules 1–5

188 M. Lin et al.

can be applied. Now suppose that no rule of Rules 1–5 is applicable. Let v be
the parent of u. By the above discussion, if u and v satisfies the conditions of
Case 1, or the conditions of Case 2, it can be handled correctly, respectively.
For the parent w of v, if w is a supply node, no matter the degree of w, it can
be handled by Case 3.1, 3.2, or 3.3.1. If w is a demand node, when the degree
of w is two, it can be handled by Case 3.3.2 or 3.3.3. If w is a demand node
with degree larger than two, it can be handled by Case 3.3.4. We now prove that
when no Rules 1–5 and no case from Case 1 to Case 3.3.3 can be applied, if the
number of nodes in Tj is larger than two, there must exist a demand node w
that one of Cases 3.3.4.1–3.3.4.3 can be applied. For a internal demand node w,
let v the child of w, and u be the unique child of v. If v is a degree-2 node and
w is a supply node, then u is called the indirect-leaf of w. For the tree Tj , since
no Rules 1–5 and no case from Case 1 to Case 3.3.3 can be applied, there must
exist a internal demand node w that has at least one leaf and one indirect-leaf,
or has at least two indirect-leaves, which can be handled by 3.3.4.1–3.3.4.2 and
3.3.4.3, respectively. Therefore, if (T, k) is Yes-instance, then by applying Rules
1–5 and Cases 1–3.3.4.3, a forest F = {T1, T2, · · · , Tl} can be obtained such that
each tree in F contains only one supply node.

Now we analyze the complexity of the branching process. From the above
branching, the worst case branching number is α = 2.828. Therefore, PPTSD
problem can be solved in O∗(2.828k) time. �	

5 Conclusion

The minimum cost partition problem is an important optimization problem in
the reconfiguring power delivery networks and the self-adequacy smart micro-
grids. In this paper, we first study the partition of trees problem from parameter-
ized perspective. We preprocess the input instance through some reduction rules
and derive an O(k2) kernel of the problem, and then present a FPT algorithm
to solve the problem in time O∗(2.828k).

References

1. Arefifar, S.A., Mohamed, Y.A.I., El-Fouly, T.H.: Supply-adequacy-based optimal
construction of microgrids in smart distribution systems. IEEE Trans. Smart Grid
3(3), 1491–1502 (2012)

2. Berkhin, P.: A survey of clustering data mining techniques. In: Kogan, J., Nicholas,
C., Teboulle, M. (eds.) Grouping Multidimensional Data, pp. 25–71. Springer,
Heidelberg (2006)

3. Boulaxis, N.G., Papadopoulos, M.P.: Optimal feeder routing in distribution system
planning using dynamic programming technique and gis facilities. IEEE Trans.
Power Delivery 17(1), 242–247 (2002)

4. Hendrickson, B., Kolda, T.G.: Graph partitioning models for parallel computing.
Parallel Comput. 26(12), 1519–1534 (2000)

5. Ito, T., Zhou, X., Nishizeki, T.: Partitioning Trees of Supply and Demand. Int. J.
Found. Comput. Sci. 16(04), 803–827 (2005)

Parameterized Minimum Cost Partition of a Tree with Supply and Demand 189

6. Ito, T., Demaine, E.D., Zhou, X., Nishizeki, T.: Approximability of partitioning
graphs with supply and demand. J. Discrete Algorithms 6(4), 627–650 (2008)

7. Ito, T., Zhou, X., Nishizeki, T.: Partitioning graphs of supply and demand. Discrete
appl. Math. 157(12), 2620–2633 (2009)

8. Ito, T., Hara, T., Zhou, X., Nishizeki, T.: Minimum cost partitions of trees with
supply and demand. Algorithmica 64(3), 400–415 (2012)

9. Jovanovic, R., Bousselham, A.: A greedy method for optimizing the self-adequacy
of microgrids presented as partitioning of graphs with supply and demand. In:
Proceedings of the 2nd International Renewable and Sustainable Energy Confer-
ence(IRSEC 2014), pp. 17–19, Ouarzazate, October 2014

10. Jovanovic, R., Bousselham, A., Voss, S.: A Heuristic Method for Solving the
Problem of Partitioning Graphs with Supply and Demand. arXiv preprint
arXiv:1411.1080 (2014)

11. Kawabata, M., Nishizeki, T.: Partitioning trees with supply, demand and edge-
capacity. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 96(6), 1036–
1043 (2013)

12. Lienig, J., Markov, I.L., Hu, J.: VLSI Physical Design: From Graph Partitioning
to Timing Closure. Springer, The Netherlands (2011)

13. Morishita, S., Nishizeki, T.: Parametric power supply networks. J. Comb. Optim.
29(1), 1–15 (2015)

14. Morton, A.B., Mareels, I.M.: An efficient brute-force solution to the network recon-
figuration problem. IEEE Trans. Power Delivery 15(3), 996–1000 (2000)

15. Narayanaswamy, N.S., Ramakrishna, G.: Tree t-spanners in Outerplanar Graphs
via Supply Demand Partition. arXiv preprint arXiv:1210.7919 (2012)

16. Popa, A.: Modelling the power supply network – hardness and approximation. In:
Chan, T.-H.H., Lau, L.C., Trevisan, L. (eds.) TAMC 2013. LNCS, vol. 7876, pp.
62–71. Springer, Heidelberg (2013)

17. Taoka, S., Watanabe, K., Watanabe, T.: Experimental evaluation of maximum-
supply partitioning algorithms for demand-supply graphs. IEICE Trans. Fundum.
Electron. Commun. Comput. Sci. 89(4), 1049–1057 (2006)

18. Teng, J.H., Lu, C.N.: Feeder-switch relocation for customer interruption cost min-
imization. IEEE Trans. Power Delivery 17(1), 254–259 (2002)

http://arxiv.org/abs/1411.1080
http://arxiv.org/abs/1210.7919

The Online Storage Strategy for Automated
Storage and Retrieval System with Single

Open in One Dimension

Henan Liu1,2(B) and Yinfeng Xu1,2

1 School of Management, Xi’an Jiaotong University, Xi’an 710049, China
boomword@stu.xjtu.edu.cn

2 The State Key Lab for Manufacturing Systems Engineering, Xi’an 710049, China
yfxu@mail.xjtu.edu.cn

Abstract. In this paper, we study the online storage strategy problem
for one-dimensional automated storage and retrieval system with m stor-
age units. The items released online overlist need to be assigned to the
storage units via a picker. The departure time of the item is known at the
moment that it is released. Our goal is to minimize the total travel dis-
tance of the picker. We show that without transposition process, there is
no online strategy with a competitive ratio less than m. We also present
an online strategy that includes transposition process has competitive

ratio (
√
5−1
2

)m. The ratio between the number of sorted units and m is

around 3−√
5

2
.

Keywords: Automated storage and retrieval system · Storage strategy ·
Online algorithm · Competitive analysis

1 Introduction

Automated Storage and Retrieval Systems are warehousing systems that are
widely used for the storage and retrieval of products in both production and
distribution environments. This article studies the online storage strategy for
one-dimensional automated storage and retrieval system. We are asked to assign
the current item to a unit without any information about subsequent items.
Since it is an automated system, an item can always be moved into another idle
unit before its departure via a picker. Our goal is to minimize the total travel
distance of the picker.

There is a rich literature on the storage strategies for automated storage and
retrieval system. Tompkins et al. show that the dominant component of the pick-
ing time is travel time (50 %)[1]. The travel time is closely related to the travel
distance. Bartholdi and Hackman point out that since travel time costs hours
but does not add value, it is wasted [2]. A storage strategy attempts to provide
an effective way of locating products in order to reduce the travel distance of the
picker. Several methods exist for assigning products to storage locations in the
system. Hausman et al. summarize five storage strategies which are often used
for automated storage and retrieval systems [3,4]. These strategies are:
c© Springer International Publishing Switzerland 2015
J. Wang and C. Yap (Eds.): FAW 2015, LNCS 9130, pp. 190–197, 2015.
DOI: 10.1007/978-3-319-19647-3 18

The Online Storage Strategy for Automated Storage and Retrieval System 191

• dedicated storage strategy
• random storage strategy
• closest open location storage strategy
• full-turnover-based storage strategy
• class-based storage strategy

For the dedicated storage strategy each product type is assigned to a fixed loca-
tion. The random storage strategy is widely used in many automated storage and
retrieval system because it is simple to use, often requires less space than other
storage methods, and results in a better level utilization of all units(see Petersen
and Schmenner [5]). If the closest open location storage strategy is applied, the
first empty location that is encountered will be used to store the products. The
full-turnover-based storage strategy determines storage locations for loads based
on their demand frequency. Heskett presents the cube-per-order index (COI)
rule, which is a form of full-turnover storage [6,7]. To reduce space requirements
and periodic repositioning while maintaining most of the efficiency gains, class-
based storage strategy can be used.

As a similar research, Wen et al. study the online traveling salesman problem
that the server is moving in a line, their goal is to minimize the server’s costs
[8,9]. The server can be treated as the picker in our study which is also moving
in a line.

Frazelle and Sharp prove that the offline storage assignment problem is NP-
hard problems [10]. Usually, it is impossible to produce the best solution when
computation occurs online. To gauge the performance of an online strategy A, the
concept of competitive ratio (see Borodin and El-yaniv [11]) is often used, which
is the worst case ratio of the online algorithm’s performance versus that of the
optimal offline algorithm. For this problem, denote by CI(OPT) the performance
of an optimal offline algorithm on an instance I, by CI(A) the performance of
an online approximation algorithm A, where the performance refers to the total
travel distance of the picker. The competitive ratio of an online algorithm A is
defined to be

rA = supI
CI(A)

CI(OPT)

2 Problem Statement and Notations

We consider an automated storage and retrieval system which is rectangular with
a picker and m storage units. The input/output (I/O) point is located at the
left end of the system, as illustrated in Fig. 1. The picker is the fully automated
storage and retrieval machine that can autonomously move, pick up and drop off
loads. An item is delivered by the picker between the I/O point and the assigned
storage unit. The capacity of a picker is just to handle one item in a delivery
tour. And one storage unit could be used to store only one item at one time.

In this problem, the input is a list of items which arrive in an online manner.
Each item is associated with a departure time (when the item will be taken
away). Once a new item arrives, it would get placed on the I/O point if there is

192 H. Liu and Y. Xu

Fig. 1. An automated storage and retrieval system in 1-D

an idle unit in the system. The picker will transport the item to the assigned unit
(storage process). Similarly, the picker would get the item out of the storage unit
and get it back to the I/O point at its departure time (retrieval process). If nec-
essary, the system will adjust the position of some of the items (transposition
process). After the storage or retrieval process of this item is completion, a new
item is released. The system decides whether to perform transposition process
before the storage process of the new item. Since the items released individually,
the first m items will fill the system. And after an item left at its departure
time, a storage unit will be idle to store a new item. The cost of the operations
is the travel distance of the picker. The total number of items is n. Our aim is
to minimize the total travel distance of the picker in this online problem.

In particular, the cost of the operations -pick up and drop off-is ignored. The
operation mode of the picker follows restoration strategy - it is waiting at the
I/O point while idling, and returns back to the I/O point after a storage or a
retrieval process completion. In the storage or retrieval process the picker will
travel a distance which is twice the distance from the I/O point to the assigned
storage unit. In transposition process, the picker will pick up the item to be
transposed and assign it to another idle storage unit, and then return to the I/O
point.

We denote by dj the distance between the I/O point and storage unit j dj
equals to j, j = {1, 2, 3, . . . ,m}. Denoted by τi the departure time of item i,
τi > 0, i = {1, 2, 3, . . . }. Denote by tj the departure time of the item which is
currently stored in the jth storage unit. As items arrive and leave the system tj

is dynamic. When the ith item is stored in the jth storage unit, tj = τi. When
the jth storage unit is idle, tj = 0. We denote by Ci∈[p,q](A) the total travel
distance of the picker to transport from the pth to the qth item in the online
strategy A and CI(A) the total travel distance to transport all the items in the
list I .

3 (3−√
5

2
)m-Sorted Strategy

As items are released overlist, at first the system is to be filled by the first
m items. After the item with the smallest τi in the system is retrieved at its
departure time, the storage unit is idle and a new item will be released.

We consider such a question: once we stored an item into such a system,
should we change its location (i.e., transpose it) during the storage period or
not?

The Online Storage Strategy for Automated Storage and Retrieval System 193

Theorem 1. Without transposition, there is no online strategy with a competi-
tive ratio less than m.

Proof. The theorem is proved by considering a worst case input.
The reasoning behind the proposed worst case is as follows: The picker keeps

transporting items until all the m storage units filled with items. Assume that
the item which is stored in the mth storage unit needs to leave the system. Then
a large number of items released with the same departure time τ∗

i that is smaller
than any of the others stored in the first to the (m−1)th storage units. Since all
the strategies do not include transposition process, the picker should travel the
whole system to retrieve the item which is stored in the mth storage unit and to
store a new one in this storage unit. As all the information is known in advance
by the optimal offline strategy, the offline strategy will let the first storage unit
to store the item which is stored in the mth storage unit by the online strategy.
Then the picker of the optimal offline strategy only needs to take the distance
of 2 to retrieve or store a new item.

The worst case could be as follows. Firstly, m items with distinct departure
times are released one by one. Filling m storage units costs Ci∈[1,m] travel dis-
tance in any arbitrary strategy, Ci∈[1,m](A) = Σm

j=12j = m(m+1). Let A be the
set of τi which is less than tm, A = {τi|τi < tm, 1 ≤ i ≤ m}, |A| = a, Let B be the
set of τi which is greater than tm, B = {τi|τi > tm, 1 ≤ i ≤ m}, |B| = b. Note that
a+b+1 = m. Denote by tmin(B) = min{τi|τi ∈ B}. Secondly, a items are released
with the same departure time τ ′

i > tmin(B), and they will take the place of the
items with the departure times in set A. Ci∈[m+1,m+a](A) = Σ{2dj |τi ∈ A}.
Therefore, the current tm = min{tj}, and all the other items will stay longer
than the one that is stored in the mth storage unit . Thirdly, n items with
τ∗
i (i ≥ m + 1) are released, τ∗

i = tm + iΔ, where i is increasing and the number
Δ is small enough to guarantee τ∗

i < tmin(B). Because that tm is always the
smallest of all the tj(1 ≤ j ≤ m) in the system, the picker in an online strategy
has to go through all the items to store or retrieve every new item with τ∗

i .
Ci∈[m+a+1,m+a+n](A) = 2m ∗n = 2nm. Since the offline player has the informa-
tion of all the items in advance, it can decrease the total travel distance of the
picker through setting the item in the first storage unit which is stored in the
mth storage unit by the online algorithm A. The competitive ratio is

CI(A)
CI(OPT)

=
Ci∈[1,m](A) + Ci∈[m+1,m+a](A) + Ci∈[m+a+1,m+a+n](A)

Ci∈[1,m](OPT) + Ci∈[m+1,m+a](OPT) + Ci∈[m+a+1,m+a+n](OPT)

≥ m(m + 1) + 2am + 2nm

m(m + 1) + 4a + 2n

When n → ∞,
CI(A)

CI(OPT)
≥ m. �

194 H. Liu and Y. Xu

Therefore, the online storage strategies which could transpose the item to
the appropriate storage unit are proposed. The transposition process is to avoid
the item which stays for a long time occupying the storage unit near the I/O
point as the worst case illustrated above. Actually, there is a trade-off between
the strategy that includes transposition process and the one does not. If we take
as much as transposition, the situation is avoidable that the item with a big
departure time occupies the storage unit near the I/O point. The cost is the
increasing travel distance brought by the transposition process. Thus, we try to
find a strategy with appropriate transposition process.

Denote by S the set of τi,the departure times of the items currently in the
system. S contains m numbers. Let the S(x) denote the set that contains the
top x larger τi in S, 0 ≤ x ≤ m.

Algorithm 1. The x–Sorted Strategy
The online strategy that includes transposition process keeps the items with τi ∈ S(x)
into the right-part in the order of tj ≤ tj+1 ≤ tm.
1. Divide the system into two parts—the left-part that contains (m − x) storage units
and the right-part that contains x storage units.
2. A new item i′ gets placed on the I/O point, If τi′ is greater than any τi ∈ S(x),
the system performs sorting for the right-part considering the new item and put the
new item into the right-part(in order) . Otherwise, put the new item into the idle unit
directly.

Theorem 2. The competitive ratio is max {m − x, −x2+2mx+3m+1
m+1 } for a x–

Sorted Strategy.

Proof. Two kinds of cases may happen when the x–Sorted Strategy divides the
system into two parts with different storage rules.

Case 1: Since the x–Sorted Strategy divides the system into two parts and the
left-part does not have to be kept in order, the situation could be as bad as the
example illustrated in the proof of the Theorem1. The special instance is that
the departure time of the item which is stored in the (m − x)th storage unit is
the smallest in the left-part, and n items are released with τ∗

i = tm−x+iΔ which
is always less than any of the others’ stored in the system. Thus, the picker has
to go through all the items to store or retrieve an item. The total travel distance
of the online stratgy is

CI(A) ≤ 2(Σm
j=1dj + (m − x) ∗ n).

The total travel distance of the offline stratgy is

CI(OPT) ≥ 2(Σm
j=1dj + 1 ∗ n).

The competitive ratio of case 1 is

ρ1 =
CI(A)

CI(OPT)
≤ m − x.

The Online Storage Strategy for Automated Storage and Retrieval System 195

Fig. 2. The x–sorted strategy

Fig. 3. The offline optimal strategy

Case 2: Since a x–Sorted Strategy divides the system into two parts and the
right-part should have to be kept in order, the worst case could make it to
transpose the items every time.

Such an instance I∗ = {τi | τi+1 > τi} has been found that the total travel
distance of the optimal offline strategy is the minimal without transposition
process. The x–Sorted Strategy should take the most amount of transpositions
to make sure the order is kept in the right-part. In a sorting process, the system
will perform transpositions no more than x times. The state of storage situation
changing with the items releasing is showed in Figs. 2 and 3.

After item 1 left the system, item (m + 1) is released. From the first row to
the second row in Fig. 2, it means that the departure time of the (m + 1)th
item is greater than the item m. So, in the online strategy, the (m + 1)th item
will occupy the mth unit and all the items stored in the right part should be
transposed. The item (m−x+1) is moved to the first unit. Such that the travel
distance of the picker includes three parts:

(1) the travel distance of the retrieval process equals to 2dj ,
(2) the travel distance of the transposition process equals to 2(Σm

j=m−x+1dj),
(3) the travel distance of the storage process equals to 2m.

After (m − x) items released, the situation is as same as the beginning. Every
(m − x) items is a cycle for the online algorithm. And every m items is a cycle
for the offline algorithm. With no loss of generality, we assume that n equals
to n∗(m − x)m. The other instances which make the online player performing
the transposition process would not take a longer travel distance than the worst
case in Case2. Thus the total travel distance of the x–Sorted Strategy is

CI∗(A) ≤ 2[Σm−x
j=1 dj + (m − x)(Σm

j=m−x+1dj) + (m − x)m)] · mn∗.

The total travel distance of the optimal offline strategy is

CI∗(OPT) = 2(Σm
j=1dj) · (m − x)n∗.

196 H. Liu and Y. Xu

The competitive ratio of case 2 is

ρ2 =
CI∗(A)

CI∗(OPT)
≤ −x2 + 2mx + 3m + 1

m + 1

�

Corollary 1. The minimal competitive ratio of the x–Sorted Strategy is
(

√
5−1
2)m where x is similar to (3−√

5
2)m.

Notice that ρ1 is decreasing with x and ρ2 is increasing, we could get the minimal
competitive ratio of the x–Sorted Strategy when ρ1 = ρ2.

Let F (x) = ρ1 − ρ2, 0 ≤ x ≤ m,x ∈ Z+,m ∈ Z+,

F (x) =
x2 − (3m + 1)x + m2 − 2m − 1

m + 1
,

according to the characters of this quadratic equation, the x∗–sorted strategy
has the minimal competitive ratio where x∗ = 2m + 1 −

√
2m2 + 5m + 2.

When m is increasing, x∗/m → 3−√
5

2 . Actually, x∗ is a positive integer close
to (3−√

5
2)m, and the competitive ratio is (m − x∗) which is around (

√
5−1
2)m.

4 Conclusion

In this paper, we present a strategy for the online storage strategy problem of the
one-dimensional automated storage and retrieval system with single open that
improves the competitive ratio from m to (

√
5−1
2)m. We prove it is beneficial to

do some appropriate adjustment where the departure times of the items have
been known. Although the strategy allows the transposition, we also prove that
it’s not necessary to keep all the items in order. The ratio between the number
of the sorted units and the total units is around to (3−√

5
2).

Next, we will extend this problem to the multidimensional automated storage
and retrieval system. We will also explore how to extend this storage strategy
problem with different information of the items.

Acknowledgments. The authors would like to acknowledge the financial support of
Grants (No.61221063) from NSF of China and (No.IRT1173) from PCSIRT of China.

References

1. Tompkins, J.A., White, J.A., Bozer, Y.A., Frazelle, E.H., Tanchoco, J.M.A.: Facil-
ities Planning. John Wiley, New York (2003)

2. Bartholdi, J.J., Hackman, S.T.: Warehouse & Distribution Science. Georgia Insti-
tute of Technology, Atlanta (2011)

3. Hausman, W.H., Schwarz, L.B., Graves, S.C.: Optimal storage assignment in auto-
matic warehousing systems. Manage. Sci. 22(6), 629–638 (1976)

The Online Storage Strategy for Automated Storage and Retrieval System 197

4. Graves, S.C., Hausman, W.H., Schwarz, L.B.: Storage-retrieval interleaving in
automatic warehousing systems. Manage. Sci. 23(9), 935–945 (1977)

5. Petersen II, C.G., Schmenner, R.W.: An evaluation of routing policies in an order
picking operation. Decis. Sci. 30, 481–501 (1999)

6. Heskett, J.L.: Cube-per-order index-a key to warehouse stock location. Transp.
Distrib. Manage. 3, 27–31 (1963)

7. Heskett, J.L.: Putting the cube-per-order index to work in warehouse layout.
Transp. Distrib. Manage. 4, 23–30 (1964)

8. Wen, X., Xu, Y., Zhang, H.: Online traveling salesman problem with deadline and
advanced information. Comput. Ind. Eng. 63(4), 1048–1053 (2012)

9. Wen, X., Xu, Y., Zhang, H.: Online traveling salesman problem with deadlines and
service flexibility. J. Comb. Optim. 25, 1–18 (2013). (online)

10. Frazelle, E.H., Sharp, G.P.: Correlated assignment strategy can improve any order-
picking operation. Ind. Eng. 21, 33–37 (1989)

11. Borodin, A., El-yaniv, R.: Online computation and competitive analysis. Cam-
bridge University Press, Cambridge (1998)

Union Closed Tree Convex Sets

Tian Liu1(B) and Ke Xu2(B)

1 Key Laboratory of High Confidence Software Technologies, Ministry of Education,
Peking University, Beijing 100871, China

lt@pku.edu.cn
2 National Lab of Software Development Environment,

Beihang University, Beijing 100191, China
kexu@nlsde.buaa.edu.cn

Abstract. We show that the union closed sets conjecture holds for tree
convex sets. The union closed sets conjecture says that in every union
closed set system, there is an element to appear in at least half of the
members of the system. In tree convex set systems, there is a tree on
the elements such that each subset induces a subtree. Our proof relies on
the well known Helly property of hypertrees and an equivalent graph for-
mulation of the union closed sets conjecture given in (Bruhn, H., Charbit,
P. and Telle, J.A.: The graph formulation of the union-closed sets con-
jecture. Proc. of EuroComb 2013, 73–78 (2013)).

Keywords: The union closed sets conjecture · Tree convex sets · Hyper-
tree · Tree convex bipartite graphs · Helly property

1 Introduction

A set system is a family of subsets of a given finite universe. A set system is
called union closed, if the union of any two sets in the system is still a member of
the system. The union closed sets conjecture due to Peter Frankl [6] says that in
every union closed set system, there is an element to appear in at least half of the
members of the system. Although the conjecture dates back to 1979, it is still far
from having a complete proof at this moment [3]. For example, we can not even
show that there is an element to appear in a constant portion of the member
sets. Only some special cases are verified and some equivalent formulations are
given. We refer to [3] for an excellent survey on this conjecture.

Recently, a graph formulation of the conjecture is proposed and the conjec-
ture is shown to hold for some special graph classes [2]. Especially, the conjecture
is equivalent to say that in every finite bipartite graph with at least one edge,
each of the two bipartition classes contains a vertex belonging to at most half of
maximal stable sets, and the conjecture holds for chordal bipartite graphs [2].

A set system is nothing else but a hypergraph [1]. The elements in the universe
are the vertices and the subsets are the hyperedges. In this way, a tree convex

Partially supported by Natural Science Foundation of China (Grant Nos. 61370052
and 61370156).

c© Springer International Publishing Switzerland 2015
J. Wang and C. Yap (Eds.): FAW 2015, LNCS 9130, pp. 198–203, 2015.
DOI: 10.1007/978-3-319-19647-3 19

Union Closed Tree Convex Sets 199

set system is also called a hypertree. In a hypertree, there is a tree associated
with the vertex set, such that each hyperedge induces a subtree. A well known
property of Hypertree is Helly property, that is, if every two hyperedges have a
non-empty intersection, then there is a vertex to appear in every hyperedge.

A set system also has a bipartite incidence graph, where the two bipartition
classes are the universe and the set system respectively, and there is an edge
between an element in the universe and a subset if the element is in the subset.
In this way, a tree convex set system has a tree convex bipartite graph as its
bipartite incidence graph. For some algorithmic aspects of tree convex sets or
tree convex bipartite graphs, we refer to the survey paper [4] and e.g. [8,10–13].

In this paper, we show that the union closed sets conjecture holds for tree
convex set systems. First, we show that the union closed sets conjecture holds
for tree convex set systems without empty set as a member. This part of the
proof is built on the Helly property of hypertrees. Then, we recall the equivalent
graph formulation of the union closed sets conjecture in [2] to show that the
union closed set conjecture also holds for tree convex set systems with empty set
as a member. Putting together, we show that the union closed sets conjecture
holds for tree convex bipartite graphs under the graph formulation in [2].

Since chordal bipartite graphs are a proper subset of tree convex bipartite
graphs [9], our result extends the validity of the union closed set conjecture from
chordal bipartite graphs in [2] to tree convex bipartite graphs. In the language
of hypergraphs, we extends the validity of the union closed set conjecture from
β-acyclic hypergraphs (as shown in [2]) to hypertrees, since a hypergraph is β-
acyclic if and only if its bipartite incidence graph is chordal bipartite, and if and
only if every its subhypergraph is a hypertree, and thus itself is also a hypertree
(Theorem 8.2.1 to Theorem 8.2.5, pages 125–126, [1]).

We note that in [2], besides the result for chordal bipartite graphs, also there
are results for other kinds of bipartite graphs. Their proof for chordal bipartite
graphs depends on a sufficient condition for the union closed sets conjecture and
a characteristics for chordal bipartite graphs, while our proof depends on Helly
property of hypertrees and an equivalent graph formulation of the union closed
sets conjecture developed in [2]. Thanks to the graph formulation in [2], we can
find a simpler proof while get a stronger result.

This paper is structured as follows. After introducing basic notions and facts
(Sect. 2), the union closed sets conjecture is shown to hold for tree convex sets
(Sect. 3), and finally are some concluding remarks (Sect. 4).

2 Preliminaries

In this section, we give some definitions and known results.

Definition 1. A set system (U,F) has a universe U and each member X in F
is a subset of U . F is union closed if for any X,Y in F , X ∪ Y is in F .

Definition 2. A set system (U,F) is also a hypergraph, where U is the vertex
set and and each member X in F is a hyperedge. (U,F) is a hypertree or tree

200 T. Liu and K. Xu

convex, if there is a tree T = (U,E) associated on U , such that each X in F
induces a subtree TX in T .

Definition 3. Given a set system (U,F), if every two subsets X,Y in F have a
non-empty intersection, then

⋂

F = {x|x ∈ X for all X ∈ F} �= ∅, this is called
Helly property. In other words, there is an element w to appear in every member
set of F , if every two member sets have a non-empty intersection.

It is well known that hypertrees have Helly property (pages 23–24 in [1]). In this
paper, we consider the following conjecture [6].

Conjecture 1. For every union closed set system (U,F), there is an element x in
U which appears in at least half of members of F , that is, |{X|x ∈ X}| ≥ |F|/2.

An equivalent conjecture is the following one [2]. A stable set in a graph is a
subset of vertices which induce no edge. A maximal stable set is a stable set
whose proper supersets are not stable sets any more. Stable sets are also called
independent sets, and a maximal stable set is nothing else but an independent
dominating set, where a dominating set is a subset of vertices such that every
vertex outside it has a neighbor in it.

Conjecture 2. For every finite bipartite graph with at least one edge, each of the
two bipartition classes contains a vertex belonging to at most half of maximal
stable sets.

We will call both conjectures as the union closed sets conjecture in this paper.
All remaining undefined notions mentioned in this paper, such as chordal

bipartite graphs and β-acyclic hypergraphs, can be found in [1].

3 Main Results

In this section, we show our main result that the union closed sets conjecture
holds for tree convex sets, or equivalently for tree convex bipartite graphs.

We first show that the union closed sets conjecture holds for tree convex sets
without empty set as a member, by using Helly property of hypertrees.

Theorem 1. The union closed sets conjecture holds for tree convex sets without
empty set as a member.

Proof. Assume that we have a set system (U,F), where ∅ �∈ F and F is tree
convex. We have a tree T = (U,E) such that for each X in F , X induce a subtree
TX in T . We will build a new tree T ′ and a new set system (U ′,F ′) as follows.

First, we build T ′ and U ′. For each edge (u, v) in T , we replace it by two
edges (u, uv), (uv, v), where uv is a new vertex inserted between u and v, and we
treat uv and vu as the same vertex. In this way, we get a new tree T ′ = (U ′, E′),
where U ′ = U ∪ {uv|(u, v) ∈ E} and E′ = {(u, uv), (uv, v)|(u, v) ∈ E}. An
example of tree T and tree T ′ is given in Fig. 1.

Union Closed Tree Convex Sets 201

Fig. 1. An example of tree T and tree T ′.

Fig. 2. An example of subsets X,Y and subsets X ′, Y ′.

Second, we build F ′. For each X in F , we replace it by X ′ = X ∪ {uv|u ∈
X or v ∈ X}. In this way, we get a new set system (U ′,F ′), where F ′ = {X ′|X ∈
F}. Clearly, F ′ is still tree convex, or in other words, it is a hypertree. Indeed,
each X ′ in F ′ induces a subtree T ′

X′ in T ′, where T ′
X′ = (X ′, E′

X′) and E′
X′ =

{(uv, u)|u ∈ X}. An example of subsets X,Y and subsets X ′, Y ′ is given in
Fig. 2.

Now the union closed property and the tree convex property of F will trans-
late to the Helly property of F ′. That is, for all X ′, Y ′ ∈ F ′, we have that
X ′ ∩ Y ′ �= ∅. Indeed, for any X,Y ∈ F , we have that X ∪ Y ∈ F and X ∪ Y
induces a subtree TX∪Y in T , since F is union closed and tree convex. But X ∪Y
induces a subtree TX∪Y in T if and only if either there is w in X ∩ Y or there is
u in X and v in Y and (u, v) in E. In the first case, w is in X ′ ∩ Y ′, and in the
second case, uv is in X ′ ∩ Y ′. Thus, X ′ ∩ Y ′ is non-empty for all X ′, Y ′ in F ′.

Then by Helly property of hypertrees (pages 23–24 in [1]), all members of F ′

have a non-empty intersection. Thus, there is a w or uv in
⋂

F ′. If w is in
⋂

F ′,
then w is also in

⋂

F , by the construction of F ′. In this case, F also has the
Helly property and the union closed sets conjecture holds for F . If uv is in

⋂

F ′,
then each member X ′ in F ′ contains uv. By the construction of F ′, each member
X in F either contains u or v or both. Therefore, either u or v will appear in at
least half of members of F . Say u appears in at least half of members in F . In
this case, the union closed sets conjecture also holds for F . �	

We next show that the union closed sets conjecture holds for tree convex sets
with empty set as a member. To this end, we need the graph formulation of the
union closed sets conjecture (Conjecture 2) and the equivalence of Conjectures 1
and 2 in [2].

202 T. Liu and K. Xu

Theorem 2. The union closed sets conjecture holds for tree convex sets with
empty set as a member.

Proof. If a union closed tree convex set system (U,F) has empty set as a member,
that is, ∅ ∈ F , then its bipartite incidence graph B = (U,F , {(u,X)|u ∈ X})
is a tree convex bipartite graph with an isolated vertex ∅ (the empty set, and
we think that the empty set also induces a subtree, the null tree without any
vertex).

An isolated vertex will appear in every maximal stable sets. Thus, if we
remove this isolated vertex from the bipartite incidence graph B to get a new
bipartite graph B′ = (U,F \{∅}, {(u,X)|u ∈ X}), the number of maximal stable
sets will not change, and D′ is a maximal stable set of B′ if and only if D ∪ {∅}
is a maximal stable set of B.

But the set system with B′ as its bipartite incidence graph is a union closed
tree convex set system without the empty set as a member. By our above result
Theorem 1, the union closed sets conjecture (Conjecture 1) holds for this set
system. By the equivalence of Conjectures 1 and 2, we known that the union
closed sets conjecture (Conjecture 2) holds for B′. Since B′ and B have the same
number of maximal stable sets, we known that the union closed sets conjecture
(Conjecture 2) holds for B. Again, by the equivalence of Conjectures 1 and 2, we
known that the union closed sets conjecture (Conjecture 1) holds for F . �	
Now we have the following two theorems by Theorems 1 and 2.

Theorem 3. The union closed sets conjecture (Conjecture 1) holds for tree con-
vex sets.

Theorem 4. The union closed sets conjecture (Conjecture 2) holds for tree con-
vex bipartite graphs.

4 Conclusions

We have shown that the union closed sets conjecture holds for tree convex set
systems or tree convex bipartite graphs. Thus under the graph formulation in
[2], the validity of the union closed sets conjecture can be extended from chordal
bipartite graphs to tree convex bipartite graphs, or equivalently, form β-acyclic
hypergraphs to hypertrees.

Another proper superset of chordal bipartite graphs is the so-called per-
fect elimination bipartite graphs [1,7], which are incomparable with tree convex
bipartite graphs [9]. A proper superset of β-acyclic hypergraphs is the so-called
α-acyclic hypergraphs [1,5]. Thus the validity of the union closed conjecture for
perfect elimination bipartite graphs and for α-acyclic hypergraphs are interesting
open problems.

Finally, can our techniques be refined to show that there is an element to
appear in a constant portion of the member sets for union closed sets?

Acknowledgments. The help of anonymous reviewers has improved our presentation
greatly.

Union Closed Tree Convex Sets 203

References

1. Brandstad, A., Le, V.B., Spinrad, J.P.: Graph Classes - A Survey. Society for
Industrial and Applied Mathematics, Philadelphia (1999)

2. Bruhn, H., Charbit, P., Telle, J.A.: The graph formulation of the union-closed sets
conjecture. In: Nesetril, J., Pellegrini, M. (eds.) EuroComb 2013. CRM, pp. 73–78.
Scuola Normale Superiore, Pisa (2013)

3. Bruhn, H. and Schaudt, O.: The journey of the union-closed sets conjecture. ArXiv
1212.4175v2 (2012)

4. Bao, F.S., Zhang, Y.: A review of tree convex sets test. Comput. Intell. 28(3),
358–372 (2012)

5. Fagin, R.: Degrees of acyclicity for hypergraphs and relational database schemes.
J. ACM 30, 514–550 (1983)

6. Frankl, P.: Handbook of Combinatorics, vol. 2, pp. 1293–1329. MIT Press, Cam-
bridge (1995)

7. Golumbic, M.C., Goss, C.F.: Perfect elimination and chordal bipartite graphs. J.
Graph Theory 2, 155–163 (1978)

8. Jiang, W., Liu, T., Ren, T., Xu, K.: Two hardness results on feedback vertex sets.
In: Atallah, M., Li, X.-Y., Zhu, B. (eds.) FAW-AAIM 2011. LNCS, vol. 6681, pp.
233–243. Springer, Heidelberg (2011)

9. Liu, T.: Restricted bipartite graphs: comparison and hardness results. In: Gu, Q.,
Hell, P., Yang, B. (eds.) AAIM 2014. LNCS, vol. 8546, pp. 241–252. Springer,
Heidelberg (2014)

10. Lu, M., Liu, T., Xu, K.: Independent domination: reductions from circular- and
triad-convex bipartite graphs to convex bipartite graphs. In: Fellows, M., Tan, X.,
Zhu, B. (eds.) FAW-AAIM 2013. LNCS, vol. 7924, pp. 142–152. Springer, Heidel-
berg (2013)

11. Lu, M., Liu, T., Tong, W., Lin, G., Xu, K.: Set cover, set packing and hitting set for
tree convex and tree-like set systems. In: Gopal, T.V., Agrawal, M., Li, A., Cooper,
S.B. (eds.) TAMC 2014. LNCS, vol. 8402, pp. 248–258. Springer, Heidelberg (2014)

12. Song, Y., Liu, T., Xu, K.: Independent domination on tree convex bipartite graphs.
In: Snoeyink, J., Lu, P., Su, K., Wang, L. (eds.) AAIM 2012 and FAW 2012. LNCS,
vol. 7285, pp. 129–138. Springer, Heidelberg (2012)

13. Wang, C., Chen, H., Lei, Z., Tang, Z., Liu, T., Xu, K.: Tree convex bipartite graphs:
calNP -complete domination, hamiltonicity and treewidth. In: Proceedings of FAW
(2014)

Fast Quantum Algorithms for Least Squares
Regression and Statistic Leverage Scores

Yang Liu and Shengyu Zhang(B)

Department of Computer Science and Engineering, The Institute of Theoretical
Computer Science and Communications, The Chinese University of Hong Kong,

Sha Tin, Hong Kong
{yliu,syzhang}@cse.cuhk.edu.hk

Abstract. Least squares regression is the simplest and most widely used
technique for solving overdetermined systems of linear equations Ax = b,
where A ∈ R

n×p has full column rank and b ∈ R
n. Though there is

a well known unique solution x∗ ∈ R
p to minimize the squared error

‖Ax−b‖2
2, the best known classical algorithm to find x∗ takes time Ω(n),

even for sparse and well-conditioned matrices A, a fairly large class of
input instances commonly seen in practice. In this paper, we design an
efficient quantum algorithm to generate a quantum state proportional
to |x∗〉. The algorithm takes only O(log n) time for sparse and well-
conditioned A. When the condition number of A is large, a canonical
solution is to use regularization. We give efficient quantum algorithms
for two regularized regression problems, including ridge regression and
δ-truncated SVD, with similar costs and solution approximation.

Given a matrix A ∈ R
n×p of rank r with SVD A = UΣV T where

U ∈ R
n×r, Σ ∈ R

r×r and V ∈ R
p×r, the statistical leverage scores of A

are the squared row norms of U , defined as si = ‖Ui‖2
2, for i = 1, ..., n.

The matrix coherence is the largest statistic leverage score. These quan-
tities play an important role in many machine learning algorithms. The
best known classical algorithm to approximate these values runs in time
Ω(np). In this work, we introduce an efficient quantum algorithm to
approximate si in time O(log n) when A is sparse and the ratio between
A’s largest singular value and smallest non-zero singular value is con-
stant. This gives an exponential speedup over the best known classical
algorithms. Different than previous examples which are mainly modern
algebraic or number theoretic, this problem is linear algebraic. It is also
different than previous quantum algorithms for solving linear equations
and least squares regression, whose outputs compress the p-dimensional
solution to a log(p)-qubit quantum state.

1 Introduction

Quantum Algorithms for Solving Linear Systems, and the Contro-
versy. The past two decades witnessed the development of quantum algorithms
[Mos09], and one recent discovery is quantum speedup for solving linear sys-
tems Ax = b for sparse and well-conditioned matrices A ∈ R

n×p. Solving linear
c© Springer International Publishing Switzerland 2015
J. Wang and C. Yap (Eds.): FAW 2015, LNCS 9130, pp. 204–216, 2015.
DOI: 10.1007/978-3-319-19647-3 20

Fast Quantum Algorithms for Least Squares Regression 205

systems is a ubiquitous computational task, and sparse and well-conditioned
matrices form a fairly large class of inputs frequently arising in many practi-
cal applications, especially in recommendation systems where the data set can
be very sparse [ZWSP08]. The best known classical algorithm for solving lin-
ear systems for this class of matrices runs in time O(

√
κsn) [She94], where κ

is the condition number of A (i.e. the ratio between A’s largest and smallest
singular values), and the sparseness parameter s is the maximum number of
non-zero entries in each row of A. Harrow, Hassidim and Lloyd [HHL09] intro-
duced an efficient quantum algorithm, thereafter referred to as HHL algorithm,
for the linear system problem, and the algorithm runs in time O(s2κ2 log n). The
dependence on κ is later improved by Ambainis [Amb12] and the algorithm was
used for solving least squares regression (defined next) by Wiebe, Braun and
Lloyd [WBL12]. HHL algorithm was also extended in [CJS13] to more general
problem specifications.

Though the costs of these quantum algorithms are exponentially smaller
than those of the best known classical algorithms, there is a catch that these
quantum algorithms do not output the entire solution x∗, but compress x∗ ∈ R

n

(assuming n = p) into a log n-qubit quantum state. More precisely, the output
is a quantum state |x∗〉 proportional to

∑n
i=1 x∗

i |i〉. This important distinction
between outputs of classical and quantum algorithms caused some controversy
for these quantum algorithms. After all, one cannot read out the values x∗

i from
|x∗〉. Indeed, if outputting all x∗

i is required as classical algorithms, then any
quantum algorithm needs Ω(n) time even for just writing down the answer, thus
no exponential speedup is possible.

Despite this drawback, the quantum output |x∗〉 can be potentially useful in
certain context where only global information of x∗ is needed. For instance, some-
times only the expectation value of some operator associated with x∗, namely
x∗T Mx∗ for some matrix M is needed [HHL09]. Another example is when one
desires to compute only the weighted sum

∑

cix
∗
i , then SWAP test can be used

on |c〉 =
∑

i
ci

‖c‖2
|i〉 and |x∗〉 to get a good estimate of

∑

cix
∗
i in time O(log n).

As argued in [Amb12], this is impossible for classical algorithms unless P = BQP.
In this paper, we give new quantum algorithms, which also address the con-

troversial issue on two levels. First, we design an efficient quantum algorithm
for least squares regression, which runs in time O(log n) for sparse and well-
conditioned A. Same as the one in [WBL12], our quantum algorithm outputs a
quantum sketch |x∗〉 only, but our algorithm is simpler, and more efficient with
a better dependence on s and κ.

In addition, we consider the case that A is ill-conditioned, or even not full-rank.
Classical resolutions for such cases use regularization. We give efficient quantum
algorithms for two popular regularized regression problems, including ridge regres-
sion and δ-truncated SVD, based on our algorithm for least squares regression.

Second, we also design new efficient quantum algorithms for calculating
statistic leverage scores (SLS) and matrix coherence (MC), two quantities
playing important roles in many machine learning algorithms [Sar06,DMM08,
MD09,BMD09,DMMS11]. Our algorithm has cost O(log n) for approximately
calculating the k-th statistic leverage score sk for any index k ∈ [n], exponentially

206 Y. Liu and S. Zhang

faster than the best known classical algorithms. Repeatedly applying this allows
us to approximately calculate all the statistic leverage scores in time O(n log n)
and to calculate matrix coherence in time O(

√
n log n), which has a polynomial

speedup to their classical counterparts of cost O(n2) [DMIMW12]. Note that
different than all aforementioned quantum algorithm that outputs a quantum
sketch only, our algorithms for calculating SLS and MC indeed produce the
requested values, same as their classical counterpart algorithms’ output. Our
algorithms are based on the phase estimation idea as in the HHL algorithm, and
the results showcase the usefulness of the HHL algorithm even in the standard
computational context without controversial issue any more.

Next we explain our results in more details.

Least Squares Regression. Least squares regression (LSR) is the simplest
and most widely used technique for solving overdetermined systems. In its most
important application – data fitting, it finds a hyperplane through a set of data
points while minimizing the sum of squared errors. The formal definition of LSR
is as follows. Given an n × p matrix A (n ≥ p) together with an n-dimensional
vector b, the goal of LSR is to compute a p-dimensional vector

x∗ = arg min
x∈Rp

‖Ax − b‖22 . (1)

For well-conditioned problems, i.e. those with the condition number of A
being small (which in particular implies that A has full column rank), it is well
known that Eq. (1) has a unique and closed-form solution

x∗ = A+b, (2)

where A+ is the Moore-Penrose pseudoinverse of A. If one computes x∗ naively
by first computing A+ and then the product A+b, then the cost is O(p2n +
n2p), which is prohibitively slow in the big data era1. Therefore, finding fast
approximation algorithms which output a vector x̃ ≈ x∗ is of great interest.
Classically, there are known algorithms that output an x̃ with a relative error
bound ‖x̃ − x∗‖2 ≤ ε ‖x∗‖2 for any constant error 0 < ε < 1, and run in time
Õ(nnz(A) + nr) [CW13,NN13], where nnz(A) is the number of non-zero entries
in A, r is the rank of A and the Õ notation hides a logarithmic factor. These
algorithms are much faster than the naive ones for the special case of sparse
or low rank matrices, but remain linear in size of A for general cases. Given
that it is impossible to have classical approximation algorithms to run in time
o(np) for general cases, it would be great if there exist much faster quantum
algorithms for LSR. Similar to [HHL09], one can only hope to produce a quantum
state close to |x∗〉 fast. [WBL12] gives a quantum algorithm which outputs a
quantum state close to |x∗〉 in time O(log(n + p)s3κ6). Their algorithm is based

1 Though theoretically more efficient algorithms for matrix multiplication exist
[Sto10], in practice they are seldom used due to the complication in implement-
ing, parallelization and non-robustness. Thus in machine learning algorithms matrix
multiplication Am×nBn×k is assumed to take time O(mnk). In any case it is just a
polynomial saving, in contrast to the exponential gap to the quantum algorithm cost.

Fast Quantum Algorithms for Least Squares Regression 207

on the observation that x∗ = A+b = (AT A)−1AT b when A has full column
rank, and their main idea is to construct the quantum state |x∗〉 by apply the
operator (AT A)−1 to the state |AT b〉. In this paper, we propose another quantum
algorithm that outputs a quantum state close to |x∗〉 in time O(log(n+ p)s2κ3).

We highlight four advantages of our algorithm compared to [WBL12]. First,
our algorithm is much simpler since we directly apply the operator A+ to the
state |b〉, while they first applied AT to |b〉 to get |AT b〉, then prepared (AT A)−1

and applied it to |AT b〉. Second, the simplicity also leads to a better dependence
on s and κ in our algorithm. Third, [WBL12] assumes that A is Hermitian, which
is usually not the case for typical machine learning applications2. Our algorithm
works for non-Hermitian matrices as well, for which we need to work on singular
Hermitian matrices A. Fourth, note that |x∗〉 misses one important information
of x∗, namely its �2 norm, which is actually crucially needed when we want to
compute

∑

i cixi by SWAP test. Our algorithm also gives a good estimate to
‖x∗‖22 without introducing much extra running time.

The more precise description of the performance of our algorithm is stated
in the next theorem. As in [HHL09], we assume that the vector b is in a nice
form in the sense that each bi and

∑i2
i1

|bi|2 can be efficiently computed, which
enables us to prepare |b〉 efficiently [GR02].

Theorem 1. Let A ∈ R
n×p and b ∈ R

n be the input of the least squares regres-
sion problem and suppose that x∗ is its optimal solution. Assume that each row of
A has at most s non-zero entries, and all the non-zero singular values of A are in
the range [1κ , 1]. Then there exists a quantum algorithm that outputs a quantum
state proportional to x̃ satisfying ‖x̃ − x∗‖2 ≤ ε · max{‖x∗‖2 , ‖b‖2}, and outputs
a value l satisfying |l − ‖x∗‖22| ≤ ε(‖x∗‖22 + ‖b‖22), in time O(log(n + p)s2κ3/ε2).

Ridge Regression and Truncated SVD. For ill-conditioned problems, i.e.
when the condition number of A is large, the solution given by Eq. (2) becomes
very sensitive to errors in A and b. A prevailing solution in practice is to use
regularization. Two of the most commonly used regularization methods are ridge
regression [GHO99] (a.k.a Tikhonov regularization) and truncated singular value
decomposition [Han87].

For ridge regression (RR) problem, we are given an n × p matrix A, an n-
dimensional vector b together with a parameter λ > 0, and we want to compute

x∗ = arg min
x∈Rp

‖Ax − b‖22 + λ ‖x‖22 . (3)

The unique minimizer of Eq. (3) is x∗ = (AT A+λIp)−1AT b [Tik63], which takes
O(np2 + p3) time to compute in the naive way. An alternative solution uses the
dual space approach by computing an equivalent expression x∗ = AT (AAT +
λIn)−1b [SGV98], which takes O(n2p + n3) time to compute in the naive way,

2 Although they mentioned a standard pre-processing technique to deal with the
non-Hermitian case, but they seem to have overlooked the fact that after the pre-
processing, the new input matrix is not full (column) rank (unless n = p, which is
hardly the case in machine learning settings).

208 Y. Liu and S. Zhang

and is faster than the original one when p 	 n. When approximation is allowed,
the best known classical algorithm for ridge regression outputs an approximation
solution x̃ satisfying ‖x̃ − x∗‖2 ≤ ε ‖x∗‖2 in time Õ(nnz(A) + n2r) [CLL+14].
This algorithm has an significant speedup over the previous algorithms when A
is sparse or of low rank, but still slow for general cases. Based on the algorithm
in Theorem 1, we design a quantum algorithm to solve ridge regression problem
efficiently (in the sense of generating quantum sketch of the solution).

Theorem 2. Let A ∈ R
n×p, b ∈ R

n and λ be the input of the ridge regression
problem and suppose that x∗ is its optimal solution. Assume that each row of A
has at most s non-zero entries, and all the non-zero singular values of A are in
the range [1κ , 1]. Then there exists a quantum algorithm that generates a quantum
state proportional to |x̃〉 satisfying ‖x̃ − x∗‖2 ≤ ε·max{‖x∗‖2 , ‖b‖2}, and outputs
a value l satisfying |l − ‖x∗‖22| ≤ ε(‖x∗‖22 + ‖b‖22), in time O(log(n + p)s2κ′3/ε2),

for κ′ = max{1,
√

λ}
min{ 1

κ ,
√

λ} .

Next we discuss truncated singular value decomposition (truncated SVD). In
this problem we are given an n×p matrix A, an n-dimensional vector b together
with a parameter k < rank(A), and we want to compute

x∗ = arg min
x∈Rp

‖Akx − b‖22 , (4)

where Ak is the best rank-k approximation of A obtained through SVD. More
specifically, let A =

∑r
i λiuiv

T
i be the SVD of A, where r is the rank of A, λi is

the i-th largest singular value of A, and ui ∈ R
n, vi ∈ R

p are the corresponding
left and right singular vectors for i = 1, ..., r. Then Ak is defined to be Ak =
∑k

i=1 λiuiv
T
i .

The basic idea of truncated SVD is to impose an additional requirement that
the �2 norm of the solution x∗ should be small by removing the large influence
from the small non-zero singular values of A. If the number k is chosen properly,
the ratio between λ1 and λk is small and then the solution x∗ = A+

k b to Eq. (4)
becomes not sensitive to errors in A and b. A more direct way to remove the influ-
ence by the small non-zero singular values of A is to set a gap δ on the singular
values and neglect all those singular values smaller than δ. Define the δ-truncated
singular value decomposition (δ-TSVD) problem as follows.

Given an n×p matrix A, an n-dimensional vector b together with a parameter
δ > 0 and we want to find

x∗ = arg min
x∈Rp

‖Aδx − b‖22 , (5)

where Aδ =
∑

i:λi≥δ λiuiv
T
i , assuming A =

∑r
i λiuiv

T
i is the SVD of A.

A naive algorithm to solve δ-TSVD needs to first compute the matrix Aδ

and then solve the least squares regression problem with the new input Aδ and
b in O(n2p + np2) time. Our algorithm in Theorem 1 can be also adapted to
solve δ-TSVD efficiently (again in the sense of generating quantum sketch of the
optimal solution).

Fast Quantum Algorithms for Least Squares Regression 209

Theorem 3. Let A ∈ R
n×p, b ∈ R

n and δ be the input of the δ-truncated
singular value decomposition problem and let x∗ be the optimal solution of this
problem. Assume that each row of A has at most s non-zero entries, and that
the largest singular value of A is at most 1. Let Λ1 = max{λi : λi < δ, i ∈ [n]},
Λ2 = min{λi : λi ≥ δ, i ∈ [n]} where λi is the i-th largest singular value of
A. Let Λ = Λ2 − Λ1. Then there exists a quantum algorithm that generates a
quantum state proportional to |x̃〉 satisfying ‖x̃ − x∗‖2 ≤ ε · max{‖x∗‖2 , ‖b‖2},
and outputs a value l satisfying |l −‖x∗‖22| ≤ ε(‖x∗‖22 + ‖b‖22), in time O(log(n+
p)s2/(min{Λ, δε}δ2ε)).

Calculating Statistic Leverage Scores and Matrix Coherence. The defin-
ition of statistic leverage scores (SLS) and matrix coherence (MC) are as follows.
Though the definition uses A’s SVD, which is not necessarily unique, it is not
hard to see that each si depends on A only, not on any specific SVD decompo-
sition of A.

Definition 1. Given an n × p matrix A of rank r with SVD A = UΣV T where
U ∈ R

n×r, Σ ∈ R
r×r and V ∈ R

p×r, the statistic leverage scores of A are defined
as si = ‖Ui‖22, i ∈ {1, ..., n}, where Ui is the i-th row of U . The matrix coherence
of A is defined as c = maxi∈{1,...,n} si, the largest statistic leverage score of A.

Statistic leverage scores measure the correlation between the singular vectors of a
matrix and the standard basis and they are very useful in large-scale data analysis
and randomized matrix algorithms [MD09,DMM08]. These quantities have been
used in statistical data analysis since a long time ago. Actually they are equal
to the diagonal entries of the “hat-matrix” which interprets the influence associ-
ated with the data points and so they are widely used to indicate possible out-
liers in regression diagnostics [HW78,CH+86]. They have also been found useful
in many theoretical computer science and machine learning problems. Many ran-
dom sampling algorithms for matrix problems like least-squares regression [Sar06,
DMMS11] and low-rank matrix approximation [Sar06,DMM08,MD09,BMD09]
use them as an important indicator to design the sampling distribution which are
used to sample the input data matrix.

The related parameter, matrix coherence, has also been of interest recently in
problems like Nystrom-based low-rank matrix approximation [TR10] and matrix
completion [CR09].

A naive algorithm to compute the statistic leverage scores and matrix coher-
ence first performs SVD or QR decomposition to get an orthogonal basis of A,
and then calculates the squared �2 norm of the rows of the basis matrix to get
the statistic leverage scores. This takes O(np2) time (assuming n ≥ p), which is
extremely slow when n and p are large. The best known classical approximation
algorithm for the problem of calculating statistic leverage scores runs in time
O((np + p3) log n) [DMIMW12], which is much faster than the naive algorithm
for the case when n >> p >> 1. This algorithm is also the best for calculating
matrix coherence for now.

An important difference of calculating SLS/MC than previously mentioned
LSR related problems is that each SLS si (and the MC c) is a scalar instead of
a vector. Thus the previous barrier of outputting a vector does not exist, which

210 Y. Liu and S. Zhang

makes it possible to design efficient quantum algorithm for complete solution to
the problem rather than generating a quantum sketch as before. In this work,
we design a fast quantum algorithm to approximate the statistic leverage score
si for any index i ∈ {1, ..., n} in time O(log n) when A is sparse and the ratio
between A’s largest singular value and smallest non-zero singular value is small.
And thus we can approximate all the statistic leverage scores in time O(n log n)
by running the algorithm for index i = 1, ..., n. And we can approximate the
matrix coherence in time O(

√
n log n) by using amplitude amplification. More

specifically, we have the following theorem and corollary.

Theorem 4. Let A ∈ R
n×p, let si be the i-th statistic leverage score of A for

i = 1, ..., n. Assume that each row of A has at most s non-zero entries, and all the
non-zero singular values of A are in the range [1κ , 1]. Then there exists a quantum
algorithm that, on any requested i ∈ [n], returns s̃i satisfying |s̃i −si| ≤ ε in time
O(log(n + p)s2κ/ε).

Corollary 5. Let A ∈ R
n×p, let c be the coherence of A. Assume that each row

of A has at most s non-zero entries, and all the non-zero singular values of A
are in the range [1κ , 1]. Then there exists a quantum algorithm that returns c̃
satisfying |c̃ − c| ≤ ε in time O(

√
n log(n + p)s2κ/ε).

2 Preliminaries

Given a matrix A ∈ R
n×p with rank r ≤ min{n, p}, let Ai denote the transpose

of the i-th row of A, namely take the i-th row and view it as a column vector
∈ R

p. Let nnz(A) denote the number of non-zero entries of A. Let λi denote the
i-th largest singular value of A, and let λmax denote the largest singular value
of A, unless specified otherwise. Let Ir denote the identity matrix of dimension
r × r, ei the unite vector with the i-th coordinate being 1 and all the rest being
0, and 0n the zero vector of dimension n.

For a rank-r matrix A ∈ R
n×p, its thin SVD is A = UΣV T where U ∈ R

n×r,
V ∈ R

p×r satisfy UT U = V T V = Ir, and Σ = diag(λ1, ..., λr) with the λi’s being
the singular values of A. The Moore-Penrose pseudoinverse of A is defined to be
A+ = V Σ−1UT . The full SVD of A is A = UF ΣF V T

F where UF ∈ R
n×n,ΣF ∈

R
n×p, V ∈ R

p×p and UT U = UUT = In, V T V = V V T = Ip. When a matrix
A ∈ R

n×n is full rank, the thin SVD and full SVD are the same.
Quantum phase estimation [Kit95,CEMM97,BDM99] or quantum eigenvalue

estimation allows one to estimate the eigenphase of an eigenvector of a unitary
operator. It has been widely used as subroutine in other algorithms. In the
Phase Estimation problem, we are given a unitary matrix U by black-boxes
of controlled-U , controlled-U2, controlled-U22 , · · · , controlled-U2t−1

operations,
and an eigenvector |u〉 of U with eigenvalue e2πiϕ with the value of ϕ ∈ [0, 1)
unknown. The task is to output an n-bit estimation of ϕ.

Theorem 6. There is a quantum algorithm that, on input |0t〉|u〉 where t =
log 1

εδ + O(1), output |ϕ̃〉|u〉 in time O(t) using each controlled-U2i

once, and
|ϕ − ϕ′| ≤ δ with probability at least 1 − ε.

Fast Quantum Algorithms for Least Squares Regression 211

Two comments are in order. First, if we do not have controlled-U2i

, and need to
implement them, then the total time becomes O(1δ log 1

ε) assuming that imple-
menting controlled-U takes unit time. Second, when the input is |0t〉|b〉 where
b =

∑

i βi|ui〉, then the output is b =
∑

i βi|ϕ̃i〉|ui〉 where each ϕ̃i approxi-
mates ϕi.

The next Amplitude Estimation theorem estimates the success probability
of an algorithm.

Theorem 7 [BHMT00]. Suppose that an algorithm A has success probability
p < 1 − Ω(1), then there exists an algorithm B running A exactly M times to
output a number p′ satisfying that

|p′ − p| ≤ O
(

√
p

M
+

1
M2

)

.

Algorithm QLSR
Input: A ∈ R

n×n, b ∈ R
n. A is Hermitian with spectral decomposition A =∑n

i=1 λi|vi〉〈vi|, where all the eigenvalues λ1, ..., λn satisfy 1
κ

≤ |λi| ≤ 1 for i =
1, ..., r for some known value κ and λi = 0 for i = r + 1, ..., n. Suppose that
b =
∑n

i=1 βi|vi〉.
Output: A quantum state proportional to |x̃〉 where x̃ ≈ x∗ def

= A+b, and a value
� ≈ ‖x∗‖2

2.
Algorithm:

1. Prepare the quantum state |b〉 = 1
‖b‖2

∑n
i=1 βi|vi〉.

2. Perform phase estimation to create the state 1
‖b‖2

∑n
i=1 βi|vi〉|λ̃i〉, where λ̃i is

the estimated value of λi satisfying |λ̃i − λi| ≤ δPE
def
= ε

2κ
for i = 1, . . . , n.

3. Add a qubit |0〉 to the state and perform a controlled rotation as follows. If

λ̃i ≥ 1
2κ

, rotate the qubit to (1

2κλ̃i
|1〉 +

√
1 − 1

4κ2λ̃2
i

|0〉); otherwise do nothing.

The resulting state is

1

‖b‖2

r∑
i=1

βi|vi〉|λ̃i〉
(

1

2κλ̃i

|1〉 +

√
1 − 1

4κ2λ̃2
i

|0〉
)

+
1

‖b‖2

n∑
i=r+1

βi|vi〉|λ̃i〉|0〉.

(6)
4. Use amplitude amplification (by repeating the previous steps O(κ2/ε) times)

to boost the amplitude squared for |1〉 (in the last qubit) to be at least 0.99.
5. Measure the last qubit.
6. if we observe |1〉,

(a) The remaining state is proportional to
∑r

i=1
βi

λ̃i
|vi〉|λ̃i〉.

(b) Reverse the phase estimation process and get the state proportional to∑r
i=1

βi

λ̃i
|vi〉 = |x̃〉 as our output.

else output 0 as an estimate to |x∗〉.
7. Use amplitude estimation to get an estimate p′ to the probability p of observing

|1〉 when measuring the state in Eq. (6), to precision δ = ε/(4κ2) and with
success probability 0.99. Output � = p′ · 4‖b‖2

2κ
2.

212 Y. Liu and S. Zhang

3 Quantum Algorithm for LSR

In this section, we present our quantum approximation algorithm QLSR for
Least Squares Regression, then analyze its error rate and running time.

Without loss of generality, we can assume that A ∈ R
n×n with rank r is

Hermitian and b ∈ R
n. See the full version of this paper for discussions on

how to deal with the non-Hermitian case. Recall that our goal is to compute
x∗ = A+b. Now we will analyze the precision, error probability and the cost. For
convenience, we summarize the parameters here: δPE = ε

2κ and δ = ε
4κ2 . We first

analyze the quality of the solution |x̃〉.

Lemma 8. With probability at least 0.99, the outputted vector x̃ satisfies

‖x̃ − x∗‖2 ≤ ε · max{‖x∗‖2 , ‖b‖2}.

Proof. First we will show that if we observe |1〉 in Step 6, then the outputted
state (normalized) |x̃〉 satisfies ‖x̃ − x∗‖2 ≤ ε ‖x∗‖2. Indeed, if we observe |1〉,
then the remaining state is proportional to |x̃〉 =

∑r
i=1

βi

λ̃i
|vi〉. Recall that |x∗〉 =

∑r
i=1

βi

λi
|vi〉. Thus

‖x̃ − x∗‖22 =
r

∑

i=1

(

βi

λ̃i

− βi

λi

)2

=
r

∑

i=1

β2
i

λ2
i

(

1 − λi

λ̃i

)2

=
r

∑

i=1

β2
i

λ2
i

(λ̃i − λi)2

λ̃2
i

≤
(δPE

1
κ − δPE

)2

‖x∗‖22 ≤ ε2 ‖x∗‖22 .

(7)

Next we show that if we do not observe |1〉, then the outputted 0 vector is
still a good estimation to |x∗〉, because |x∗〉 itself is too short. More precisely,
define ρ = 1

‖b‖2
2

∑r
i=1 β2

i , the fraction of |b〉 falling into the non-zero eigenspace
of A. Note that the probability of observing |1〉 in Step 6 is

p =
1

‖b‖22

r
∑

i=1

β2
i

4κ2λ̃2
i

=
1

4κ2‖b‖22

r
∑

i=1

β2
i

λ̃2
i

≥ 1
4κ2‖b‖22

r
∑

i=1

β2
i =

1
4κ2

ρ.

If ρ ≥ ε2/κ2, then p ≥ ε2/(4κ4), thus the amplitude amplification already boosts
the probability to 0.99 with O(κ2/ε) repetitions, enabling us to observe |1〉 almost
for sure. When ρ < ε2/κ2, if we observe |1〉, then Eq. (7) still holds. If we observe
|0〉 and output 0 as an estimate to x∗, then the error is

‖0 − x∗‖22 = ‖x∗‖22 =
r

∑

i=1

β2
i

λ2
i

≤ κ2ρ‖b‖22 < ε2‖b‖22.

Next we analyze the estimated norm.
�

Lemma 9. With probability at least 0.99, the outputted value � satisfies
∣

∣� − ‖x∗‖22
∣

∣ ≤ ε
(

‖x∗‖22 + ‖b‖22
)

.

Fast Quantum Algorithms for Least Squares Regression 213

Proof. Recall that � = p′ · 4‖b‖22κ2, and |p − p′| ≤ δ.
∣

∣� − ‖x∗‖22
∣

∣ ≤
∣

∣p · 4‖b‖22κ2 − ‖x∗‖22
∣

∣ + δ · 4‖b‖22κ2

=
∣

∣

∣

r
∑

i=1

(β2
i

λ̃2
i

− β2
i

λ2
i

)∣

∣

∣ + δ · 4‖b‖22κ2

Using the fact that λi ≥ 1/κ and that |λi − λ̃i| ≤ δPE, it is not hard to see that

∣

∣

∣

r
∑

i=1

(β2
i

λ̃2
i

− β2
i

λ2
i

)∣

∣

∣ ≤ 2κδPE

r
∑

i=1

β2
i

λ2
i

= 2κδPE‖x∗‖22 = ε‖x∗‖22.

Since δ = ε/4κ2, we have δ · 4‖b‖22κ2 = ε‖b‖22. Thus
∣

∣� − ‖x∗‖22
∣

∣ ≤ ε
(

‖x∗‖22 +
‖b‖22

)

.
�

The error probability is a small constant as guaranteed by the error rate of
phase estimation, amplitude amplification, and amplitude estimation. Finally
let us analyze the cost. For Step 1, we can efficiently prepare |b〉 in time O(log n)
provided that bi (i = 1, ..., n) and

∑i2
i1

|bi|2(1 ≤ i1 < i2 ≤ n) are efficiently
computable by using the procedure of [GR02].

For Step 2, we perform quantum phase estimation by simulating eiAt, which
takes time O((log n)s2) if A has at most s non-zero entries each row and is effi-
ciently row computable by the results in [BACS07]. In order that the eigenvalue
estimation has error at most δPE = ε

2κ , the phase estimation algorithm needs
O(κ/ε) time.

For Step 4, the original probability of seeing |1〉 is p = 1
‖b‖2

2

∑r
i=1

β2
i

4κ2λ̃2
i

. Recall

that p ≥ ρ/(4κ2). To boost this probability to a constant (say, 0.99) it needs
to repeat the previous procedure

√

1/p ≤
√

4κ2/ρ = O(κ2/ε) when ρ ≥ ε2/κ2.
Therefore, if we do not need to estimate the norm ‖x∗‖2, then the algorithm
can just stop before Step 7. The total time cost is O((log n) · s2 · κ

ε · κ2

ε) =
O((log n)s2κ3/ε2).

To estimate the norm ‖x∗‖2, the Amplitude Estimation needs to repeat Steps
1 to 3 at most O(1/δ) = O(κ2/ε) times. So the total cost is O((log n)·s2 · κ

ε · κ2

ε) =
O((log n)s2κ3/ε2).

This completes the proof of Theorem 1.

Our quantum algorithms for the two extensions, Ridge Regression and Trun-
cated SVD problem can be found in the full version of the paper.

4 Quantum Algorithm for Calculating Statistic Leverage
Scores and Matrix Coherence

In this section, we present quantum algorithms for calculating statistic leverage
scores and matrix coherence, and analyze their performance. Given an n × p
matrix A of rank r with SVD A = UΣV T where U ∈ R

n×r, Σ ∈ R
r×r

214 Y. Liu and S. Zhang

and V ∈ R
p×r, the statistic leverage scores of A are defined as si = ‖Ui‖22,

i ∈ {1, ..., n}, and the matrix coherence c is the largest statistic leverage
score of A.

Without loss of generality, we assume that A is Hermitian. (See the full
version of this paper for the detailed technique to deal with the non-Hermitian
case.) We have the following quantum algorithm for calculating the k-th statistic
leverage score of A, sk for any index k ∈ [n]. Denote the k-th computational
basis by |ek〉, which has the form ek =

∑n
i=1 βi|vi〉 as a decomposition into A’s

eigenvectors |vi〉.

Algorithm QSLS
Input: A ∈ R

n×n, k ∈ [n]. A is Hermitian with rank r and spectral decomposition
A =

∑n
i=1 λi|vi〉〈vi|. The eigenvalues λ1, ..., λn satisfy 1

κ
≤ |λi| ≤ 1 for i ≤ r and

λi = 0 for i > r. Suppose that ek =
∑n

i=1 βi|vi〉. Output: A value s̃k ≈ sk.
Algorithm:

1. Prepare the quantum state proportional to ek =
∑n

i=1 βi|vi〉.
2. Perform phase estimation to create the state proportional to

∑n
i=1 βi|vi〉|λ̃i〉,

where λ̃i is the estimated value of λi satisfying |λ̃i − λi| ≤ εPE
def
= 1

3κ
for

i = 1, . . . , n.
3. Add one qubit |0〉 to the state and perform a controlled rotation as follows. If

λ̃i ≥ 1
2κ

, rotate the qubit to |1〉; otherwise do nothing. The resulting state is
proportional to

r∑
i=1

βi|vi〉|λ̃i〉|1〉 +

n∑
i=r+1

βi|vi〉|λ̃i〉|0〉. (8)

4. Measure the last qubit.
5. Use Amplitude Estimation to get an estimate p′ to the probability p of observ-

ing |1〉 when measuring the state in Eq. (8) to precision ε. Output s̃k = p′.

Now we analyze the running time and performance. For Step 1, the state
needed is now |ek〉 which is trivially easy to prepare. For Step 2, we perform
quantum phase estimation by simulating eiAt, which takes time O((log n)s2) if
A has at most s non-zero entries each row and is efficiently row computable
by the results in [BACS07]. In order that the eigenvalue estimation has error
≤ εPE = 1

3κ , i.e. |λ̃i −λi| ≤ εPE,∀i = 1, ..., n, we need to run the procedure O(κ)
times.

To estimate the value p, the Amplitude Estimation needs to repeat Steps 1
to 4 at most O(1/ε) times. So the total cost is O((log n)s2) × O(κ) × O(1ε) =
O(log(n)s2κ/ε).

The probability of seeing |1〉 in Step 4 of Algorithm QSLS is p =
∑r

i=1 β2
i ,

and we have that

sk = ‖Uk‖22 =
∥

∥eT
k U

∥

∥

2

2
= eT

k UUT ek = eT
k AA†ek =

r
∑

i=1

β2
i = p.

Since s̃k = p′, and |p′ − p| ≤ ε, we have that |s̃k − sk| ≤ ε. This proves
Theorem 4. Using a simple amplitude amplification, we easily get Corollary 5.

Fast Quantum Algorithms for Least Squares Regression 215

References

[Amb12] Ambainis, A.: Variable time amplitude amplification and quantum algo-
rithms for linear algebra problems. In: Proceedings of the 29th Inter-
national Symposium on Theoretical Aspects of Computer Science, pp.
636–647 (2012)

[BACS07] Berry, D.W., Ahokas, G., Cleve, R., Sanders, B.C.: Efficient quantum
algorithms for simulating sparse hamiltonians. Commun. Math. Phys.
270(2), 359–371 (2007)

[BDM99] Bužek, V., Derka, R., Massar, S.: Optimal quantum clocks. Phys. Rev.
Lett. 82(10), 2207 (1999)

[BHMT00] Brassard, G., Hoyer, P., Mosca, M., Tapp, A.: Quantum amplitude ampli-
fication and estimation. arXiv preprint quant-ph/0005055 (2000)

[BMD09] Boutsidis, C., Mahoney, M.W., Drineas, P.: An improved approximation
algorithm for the column subset selection problem. In: Proceedings of
the twentieth Annual ACM-SIAM Symposium on Discrete Algorithms,
pp. 968–977. Society for Industrial and Applied Mathematics (2009)

[CEMM97] Cleve, R., Ekert, A., Macchiavello, C., Mosca, M.: Quantum algorithms
revisited (1997). arXiv preprint quant-ph//9708016

[CH+86] Chatterjee, S., Hadi, A.S., et al.: Influential observations, high leverage
points, and outliers in linear regression. Stat. Sci. 1(3), 379–393 (1986)

[CJS13] Clader, B.D., Jacobs, B.C., Sprouse, C.R.: Preconditioned quantum lin-
ear system algorithm. Phys. Rev. Lett. 110, 250–504 (2013)

[CLL+14] Chen, S., Liu, Y., Lyu, M., King, I., Zhang, S.: Fast relative-error approx-
imation algorithm for ridge regression. (Submitted 2014)

[CR09] Candès, E.J., Recht, B.: Exact matrix completion via convex optimiza-
tion. Found. Comput. Math. 9(6), 717–772 (2009)

[CW13] Clarkson, K.L., Woodruff, D.P.: Low rank approximation and regression
in input sparsity time. In: Proceedings of the 45th Annual ACM Sympo-
sium on Symposium on Theory of Computing, pp. 81–90. ACM (2013)

[DMIMW12] Drineas, P., Magdon-Ismail, M., Mahoney, M.W., Woodruff, D.P.: Fast
approximation of matrix coherence and statistical leverage. J. Mach.
Learn. Res. 13(1), 3475–3506 (2012)

[DMM08] Drineas, P., Mahoney, M.W., Muthukrishnan, S.: Relative-error cur
matrix decompositions. SIAM J. Matrix Anal. Appl. 30(2), 844–881
(2008)

[DMMS11] Drineas, P., Mahoney, M.W., Muthukrishnan, S., Sarlós, T.: Faster least
squares approximation. Numer. Math. 117(2), 219–249 (2011)

[GHO99] Golub, G.H., Hansen, P.C., O’Leary, D.P.: Tikhonov regularization and
total least squares. SIAM J. Matrix Anal. Appl. 21(1), 185–194 (1999)

[GR02] Grover, L., Rudolph, T.: Creating superpositions that correspond
to efficiently integrable probability distributions. arXiv preprint
quant-ph/0208112 (2002)

[Han87] Hansen, P.C.: The truncated SVD as a method for regularization. BIT
Numer. Math. 27(4), 534–553 (1987)

[HHL09] Harrow, A.W., Hassidim, A., Lloyd, S.: Quantum algorithm for linear
systems of equations. Phys. Rev. Lett. 103(15), 150502 (2009)

[HW78] Hoaglin, D.C., Welsch, R.E.: The hat matrix in regression and anova.
Am. Stat. 32(1), 17–22 (1978)

http://arxiv.org/abs/quant-ph/0005055
http://arxiv.org/abs/quant-ph/0208112

216 Y. Liu and S. Zhang

[Kit95] Kitaev, A.Y.: Quantum measurements and the abelian stabilizer prob-
lem. arXiv preprint quant-ph/9511026 (1995)

[MD09] Mahoney, M.W., Drineas, P.: CUR matrix decompositions for improved
data analysis. Proc. Nat. Acad. Sci. 106(3), 697–702 (2009)

[Mos09] Mosca, M.: Quantum algorithms. In: Meyers, R.A. (ed.) Encyclopedia of
Complexity and Systems Science. Springer, New York (2009)

[NN13] Nelson, J., Nguyên, H.L.: Osnap: Faster numerical linear algebra algo-
rithms via sparser subspace embeddings. In: 2013 IEEE 54th Annual
Symposium on Foundations of Computer Science (FOCS), pp. 117–126.
IEEE (2013)

[Sar06] Sarlos, T.: Improved approximation algorithms for large matrices via
random projections. In: 47th Annual IEEE Symposium on Foundations
of Computer Science, FOCS 2006, pp. 143–152. IEEE (2006)

[SGV98] Saunders, C., Gammerman, A., Vovk, V.: Ridge regression learning algo-
rithm in dual variables. In: (ICML-1998) Proceedings of the 15th Interna-
tional Conference on Machine Learning, pp. 515–521. Morgan Kaufmann
(1998)

[She94] Shewchuk, J.R.: An introduction to the conjugate gradient method with-
out the agonizing pain (1994)

[Sto10] Stothers, A.J.: On the complexity of matrix multiplication (2010)
[Tik63] Tikhonov, A.: Solution of incorrectly formulated problems and the regu-

larization method. Soviet Math. Dokl. 5, 1035–1038 (1963)
[TR10] Talwalkar, A., Rostamizadeh, A.: Matrix coherence and the nystrom

method. arXiv preprint arXiv:1004.2008 (2010)
[WBL12] Wiebe, N., Braun, D., Lloyd, S.: Quantum algorithm for data fitting.

Phys. Rev. Lett. 109, 050505 (2012)
[ZWSP08] Zhou, Y., Wilkinson, D., Schreiber, R., Pan, R.: Large-scale parallel col-

laborative filtering for the netflix prize. In: Fleischer, R., Xu, J. (eds.)
AAIM 2008. LNCS, vol. 5034, pp. 337–348. Springer, Heidelberg (2008)

http://arxiv.org/abs/quant-ph/9511026
http://arxiv.org/abs/1004.2008

A New Distributed Algorithm for Computing
a Dominating Set on Grids

Photchchara Pisantechakool1(B) and Xuehou Tan2

1 School of Science and Technology, Tokai University, 4-1-1 Kitakaname,
Hiratsuka 259-1292, Japan
3btad008@mail.tokai-u.jp

2 School of Information Science and Technology, Tokai University, 4-1-1 Kitakaname,
Hiratsuka 259-1292, Japan

Abstract. This paper presents a new distributed algorithm that com-
putes a dominating set of size � (m+2)(n+2)

5
�−3 on an m×n grid, m, n ≥ 8.

This improves upon the previous distributed algorithm of Fata et al. by 4
on the size of the found dominating set. Our result is obtained by explor-
ing new distributed techniques for corner handling. Also, we point out an
error in the termination stage of Fata et al.’s algorithm and give a cor-
rected termination method. Our algorithm finds applications in robotics
and sensor networks.

Keywords: Grid domination problem · Dominating set · Distributed
grid domination problem · Sensor network

1 Introduction

The problem of finding a dominating set for a graph is a well-studied problem in
graph theory, and has many potential applications in sensor networks and swarm
robots, as well as routing problems in mobile networks. The dominating set prob-
lem [6] is a graph problem where every vertex of a given graph G = (V,E) must be
either in a dominating set U ⊆ V or adjacent to a member of the dominating set,
and the goal is to find a smallest set U in the graph G. For path graphs and trees,
a linear-time algorithm to find a dominating set has been given [3].

Finding a domination number (i.e., the size of a smallest dominating set) of
an arbitary graph is NP-hard [6], and planar graph is also proven to be NP-hard.
Grid graphs, which lie in a class of planar graph, have a special structure that
allows their domination number to be determined optimally. For m×n grid, the
size of the optimal dominating set was unknown until recently, but the upper
bound of � (m+2)(n+2)

5 � − 4 was shown in [4]. It has also been shown that the
lower bound of domination number is equal to the upper bound for m,n ≥ 16,
thus characterizing the domination number of grids [7].

This work was partially supported by the Grant-in-Aid (MEXT/JSPS KAKENHI
15K00023).

c© Springer International Publishing Switzerland 2015
J. Wang and C. Yap (Eds.): FAW 2015, LNCS 9130, pp. 217–228, 2015.
DOI: 10.1007/978-3-319-19647-3 21

218 P. Pisantechakool and X. Tan

Previous efforts were focused on the problem of computing the dominating
numbers for grids [1,4,6,7]. Two previous works for computing a dominating set
were Chang’s doctoral thesis [4] and Fata et al.’s conference paper [5]. Chang’s
method is constructive, and one can simply derive from his method to give a
centralized algorithm so as to find a dominating set of optimal size � (m+2)(n+2)

5 �−
4. A distributed algorithm was given in [5], which computes a dominating set of
size � (m+2)(n+2)

5 �.
It should be pointed out that the algorithm of Fata et al. [5] is incomplete

in its termination stage. A set of agents is initially located at vertices of the
grid. The number of agents may be larger than � (m+2)(n+2)

5 �, and some agents
may even be at the same grid vertex. The agents have three modes: (a) sleep,
(b) active, and (c) settled. All the agents, in the sleep mode at the beginning, will
activate in a randomized or previously scheduled manner. The very first agent
becomes settled just at its original vertex. Each active agent can communicate
with the settled agents so as to find the place (vertex) where it becomes settled.
As soon as settled agents no longer have to communicate, each settled agent goes
back to sleep mode. The remaining non-activated agents are required to leave
the grid afterwards, but the final operation is NOT a distributed one (see page 5
of [5]). Following their algorithm, the agent being active after the dominating set
is found will simply restart the algorithm again, due to the fact that she cannot
know whether the dominating set has already been found.

The goal of this paper is to give a new algorithm to compute a dominating
set on grids in a distributed manner (that can terminate correctly). We first
define a distributed system model. In particular, each agent is equipped with an
answering machine that can record a broadcast message at a time, which is the
most updated message. This makes it possible to let the remaining non-activated
agents leave the grid. Next, we explore the techniques of Chang’s corner handling
so that they can work in the distributed system. Our distributed algorithm can
produce a dominating set of size � (m+2)(n+2)

5 � − 3, which improves upon the
previous result [5] by 4. This is the best result to our knowledge.

Distributed grid domination algorithms can be adopted by distributed
systems for many applications. For example, swarm robots equipped with short-
ranged landmine detection devices can be deployed from an airplane into a des-
ignated area (considered as a grid). These robots can move to align themselves
in optimized formation to maximize the coverage on their own without having
to manually control them or using the centralized system.

In Sect. 2 of this paper, we introduce the essential definitions and notation for
the dominating set problem on grids. In Sect. 3 we briefly revisit Chang’s central-
ized constructive method. The tools in Sect. 3 are explored in Sect. 4 to give a
distributed algorithm. Finally, Sect. 5 concludes the paper and poses some open
problems.

2 Preliminaries

A graph G = (V,E) is defined as a set of vertices V connected by a set of edges
E ⊆ V × V . We assume the graph is undirected, i.e., (v, u) ∈ E ↔ (u, v) ∈
E,∀v, u ∈ V .

A New Distributed Algorithm for Computing a Dominating Set on Grids 219

A vertex u ∈ V is defined as a neighbour of vertex v ∈ V , if (u, v) ∈ E. The
set of all neighbours of vertex v is denoted by N(v). For a subset U ⊆ V , we
define N(U) as

⋃

u∈U N(u). For a subset U ⊆ V , we say the vertices in N(U)
are dominated by the vertices in U . For graph G, a set of vertices S ⊆ V is a
dominating set if each vertex v ∈ V is either in S or is dominated by S.

A dominating set with minimum cardinality is called an optimal dominating
set of a graph G; its cardinality is called the domination number of G and is
denoted by γ(G). Note that although the domination number of a graph, γ(G), is
unique, there may be different optimal dominating sets [1]. An m×n grid graph
G = (V,E) is defined as a graph with vertex set V = {vi,j |1 ≤ i ≤ m, 1 ≤ j ≤ n}
and edge set E = {(vi,j , vi,j′)||j − j′| = 1}

⋃

{(vi,j , vi′,j)||i− i′| = 1} [2]. For ease
of presentation, we will fix an orientation and labelling of the vertices, so that
vertex v0,0 is the lower-left vertex and vertex vm−1,n−1 is the upper-right vertex
of the grid. In this paper we will include super-grid in grid indices. We denote
the domination number of an m × n grid G by γm,n = γ(G).

Theorem 1 (Gonçalves et al., [7]). For an m×n grid with 16 ≤ m ≤ n, γm,n =
� (m+2)(n+2)

5 � − 4

Definition 1 (Grid Boundary). For an m × n grid G = (V,E), we define the
boundary of G, denoted by B(G), as the set of vertices with less than 4 neigh-
bours.

Definition 2 (Sub-Grids and Super-Grids). An m×n grid G = (V,E) is called
a sub-grid of an m′ × n′ grid G′ = (V ′, E′) if G is induced by vertices v′

i,j ∈ V ′,
where 1 ≤ i ≤ m′ − 2 and 1 ≤ j ≤ n′ − 2. If G is a sub-grid of G′, G′ is called
the super-grid of G (see Fig. 1).

Definition 3 (Optimal Grid Pattern). A subset U ⊆ V constitutes an optimal
grid pattern on grid G = (V,E) if there exists a fixed r ∈ 0, 1, 2, 3, 4 such that
for any vertex vx,y ∈ U we have x − 2y ≡ r(mod 5).

One can also define an optimal grid pattern as a set of vertices whose (x, y)
coordinates satisfy y − 2x ≡ r(mod 5), for some fixed r. This corresponds to
swapping the x and y axes. For the proofs we only analyze the case mentioned
above; the other case can be treated similarly.

Definition 4 (Grid Optimization). A subset U ⊆ V optimizes grid G = (V,E)
if it constitutes an optimal grid pattern and there exists no vertex v ∈ V \U that
can be added to U so that U remains an optimal grid pattern. See Fig. 1(a).

Definition 5 (Orphans). Let U ⊆ V be a set of vertices that optimizes grid
G = (V,E). A vertex v ∈ V that has no neighbour in U is called an orphan (see
Fig. 1(a)).

Definition 6 (Projection). Consider a grid G = (V,E) and its super-grid G′ =
(V ′, E′). For a set U ′ ⊆ V ′, its projection is defined as the set U ′′ = (N(U ′ \
V) ∪ U ′) ∩ V . Similarly, we say a vertex v ∈ U ′ \ V is projected if it is mapped
to its neighbour in V . See Fig. 1.

220 P. Pisantechakool and X. Tan

(a () b)

Fig. 1. In (a), a 15×10 grid G′ is demonstrated and its 13×8 sub-grid G is highlighted
in dashed square. Orphans are shown in grey vertices. G′ is optimized by a set of U ′

of 30 vertices. In (b), vertices in U ′ \ V are projected onto their neighbors in G

Definition 7 (Slot). Given a m × n grid G = (V,E), let vi,j ∈ V be
a vertex occupied by a settled agent. The four vertices {vi+2,j+1, vi−1,j+2,
vi−2,j−1, vi+1,j−2} from vi,j within the boundary of G are called slots of the
settled agent occupying vi,j.

Definition 8 (Pseudo-Slot). When an agent settles at corner points, the agent
may assign a vertex as pseudo-slot. Pseudo-slots have the same priority as slots
when an active agent seeks a location to occupy, but the agent who settles there
will not calculate its slots and instead go into sleep mode. See Fig. 6.

3 Chang’s Centralized Constructive Method Revisited

In this section we revisit Chang’s centralized constructive method that can pro-
duce a dominating set of size � (m+2)(n+2)

5 � − 4 for an m × n grid, m,n ≥ 8.
Chang’s constructive method consists of the following three main ideas:

(i) Initialization: At this step, a subset U ′ ⊆ V ′ that optimizes the super-grid
G′ is provided. Basically, it can select the smaller between two permutations
(of super-grid) of the optimal grid pattern. See Fig. 1(a).

(ii) Corner Handling: Each corner (i.e., a 5 × 5 portion) of the super-grid has
one vertex removed from U ′, and the vertices around four corners of the
super-grid are moved into the original grid. See Fig. 3.

(iii) Projection: Using a process called projection, the vertices in U ′ \ V except
for four corners are characterized and put into the original grid G.

Initialization: As stated in Definition 3 and proven in [4], for a given m×n grid
graph, there exist some r in x − 2y ≡ r(mod 5) such that |S| ≤ � (m+2)(n+2)

5 �.
Careful observation showed that the optimal grid pattern repeats itself every
5 × 5 block. It is known that when the pattern is shifted around in one super-
grid, it produces different number of the dominating vertices. There are five
disjoint permutations of the pattern, based on r ∈ {0, 1, 2, 3, 4} in Definition 3.
For one grid size, some permutations produce smaller number of dominating
vertices, but when the size changed, others may produce smaller number.

A New Distributed Algorithm for Computing a Dominating Set on Grids 221

Permutation α Permutation β

Fig. 2. Permutation α and Permutation β

For a known size of grid, picking a suitable permutation can further reduce
the number of elements. We can simply use two permutations whose maximum
sizes of produced sets in all possible grid size do not overlap.1 That is, one can
always choose smaller number of dominating vertices between the two and get
the minimum size. We refer to these two permutation as Permutation α and β
(shown in Fig. 2). The derived algorithm uses these two disjoint permutations in
Initialization step.

Corner Handling and Projection: One can further reduce the number of
dominating vertices around the corners of a grid. Recall that using Projec-
tion (Definition 6) from super-grid, we can dominate the orphans (as stated in
Definition 5). For grid with large size, the vertices on the boundary that are not
a part of a corner must be dominated by projected vertices. However, at each
corner, some elements overlap and the placement is not ideal.

BnoitatumrePAnoitatumreP

DnoitatumrePCnoitatumreP

Permutation E

BdeldnaHAdeldnaH

DdeldnaHCdeldnaH

Handled E

Fig. 3. Handling each corner’s permutation

1 Note also that Chang’s constructive method has to choose from five different per-
mutations based on input grid size.

222 P. Pisantechakool and X. Tan

By performing Corner Handling step before Projection step, we can reduce
one vertex at each corner before moving all the vertices at boundary of super-
grid and while doing so, move vertices around the corner to the original grid.
Chang’s case-based handling method considers each corner as a 5 × 5 block and
handles each permutation differently, as shown in Fig. 3.

Lastly, as previously stated in Definition 6, we use projection process to move
the remaining vertices on the boundary of super-grid to its sub-grid (the original
grid), and dominating the remaining orphans.

4 Distributed Grid Domination

In this section, we first introduce the distributed system model. (A prototype
model can be found in [5].) Next, we show that Chang’s centralized constructive
method, especially the Corner Handling Step, can be extended so as to compute
a dominating set of size � (m+2)(n+2)

5 � − 3 for a given m × n grid in a distributed
manner, m,n ≥ 8.

4.1 Model and Notation

Assume that the environment is an m × n grid G = (V,E) with m,n ∈ N. The
goal is to dominate the grid environment in a distributed fashion using several
robots (or agents) without any knowledge of environment size. At the start,
there exist k agents in the environment, where k can be smaller or greater than
the number of agents needed to dominate the grid. The following assumptions
are made for the grid and agents.

Assumption A: Agents can be located only on the vertices of the grid, and can
move between the grid vertices only on the edges of the grid. More than one
agent can be at the same vertex at any given time. We refer to the vertices using
standard Cartesian coordinates defined in Sect. 22.

Assumption B: The agents, denoted by a1, ..., ak are initially located at arbitrary
vertices on the grid. The agents have three modes; (a) sleep, (b) active, and
(c) settled. The sleep mode in this algorithm means that the agent will not
contribute to the distributed algorithm, but can still perform other unrelated
functions, such as detecting intruders or landmines.

Assumption C: Each agent is equipped with an answering machine that can
record a broadcast message at a time when the agent is in sleep mode. At the
beginning of the procedure, all agents are in sleep mode. During each epoch, or
time interval with specific length, one agent goes into active mode. The activation
sequence of agents is arbitrary; it can be scheduled in advance, or randomized,
but each agent will activate at fix length of time after the previous one.

Assumption D: Agents in active mode and settled mode can communicate. The
active agent can communicate with the settled agents to perform the distributed
2 We include vertices of super-grid in labelling for the ease of presentation.

A New Distributed Algorithm for Computing a Dominating Set on Grids 223

dominating set algorithm. Once an agent activates and performs its parts, it goes
into settled mode. After the settled agents form a dominating set, all of them
go back to sleep mode and will not activate again.

Assumption E: Each agent is equipped with suitable bearing sensor (incoming
direction) and range sensor to help computing the location of the sender of signal
it receives from, in its own local coordinates with itself as origin and an arbitrary
orientation. Additionally, agents are equipped with short-ranged proximity sen-
sors to sense the environment boundary. Agents are able to sense the boundary
only if they are on a vertex v whose neighbor is a boundary vertex of the grid.

4.2 Outline of Our Distributed Algorithm

The idea of our algorithm is to implement the optimal grid pattern used in
the centralized algorithm in a distributed manner, using communications among
active and settled agents.

Agents will keep track of surrounding four locations (vertices) that are
correctly aligned in optimal grid pattern. These locations are called slots
(Definition 7), and any new agents becoming active later will communicate and
attempt to occupy these slots to contribute to the optimal grid pattern. If there
exists a slot outside the boundary, an agent will keep a location of neighbor vertex
whose position is on the boundary instead. These locations are called orphans as
defined in Definition 5, and each agent outside the corner area will have at most
one orphan tracked at a time. Orphans are occupied by agents after all slots
are occupied, which allow us to move around some agents in similar manner to
that of centralized grid domination algorithm.

Corollary 1 (Orphan Number). Given a m×n grid G = (V,E), for any vertices
outside 4 corner points (Fig. 5) of each corner, an agent will have at most one
orphan when aligned with optimal grid pattern.

When an agent activates, it checks the most recent message to see whether there
exists a message or not. Initially, there is no message in any agents’ short-memory
storage in message receptor, the agent then concludes that itself is the first agent
to activate. After, the first agent checks for boundary to see whether this initial
location is around the corner or not before settle. If an agent finds itself at the
corner, it moves to ideal location around the corner instead. If there exists a
message but not termination message, the agent then sends a broadcast signal
to find the settled agents on the grid who have slots available, and waits for some
specified time for response. The new active agent then contributes to optimal
grid pattern using information received from settled agents.

We break down the distributed algorithm into three main steps for easier
presentation.

(i) Initialization: How the very first activated agent works.
(ii) Settlement: How active and settled agents communicate, and how an active

agent gets settled.

224 P. Pisantechakool and X. Tan

(iii) Termination: How the algorithm finishes. Particularly, how the termination
condition is verified in the case that the number of agents is larger than
necessary to dominate the grid.

4.3 Initialization

As stated in Assumption C, the algorithm starts with all agents being in sleep
mode. Each agent will activate at certain time apart from one another.

(a () b () c)

(d () e () f)

Fig. 4. (a) The first agent settles with four slots. (b) An agent becomes activate.
(c) The closest slot is computed. (d) The active agent occupies that slot. (e) The lists
of slots are updated. (f) An agent with 4 slots occupied goes into sleep mode.

Each agent acts similarly when it first activates. The first thing each agent
does is checking most recently stored message to see if there exists a termination
message. We will describe about termination message later in Sect. 4.5. Since at
the beginning, no message has been broadcast yet, the agent will not see a single
saved message and then conclude that it is the First Agent to activate in the
system.

(a) Permutation C (b) Permutation D

Fig. 5. (a) If the first agent activates at corner points (black square), it will move to
designated location (black circle). (b) A termination condition with two orphans.

The first agent has special action to take before entering settled mode. First,
the agent must check whether it is at one of the four corner points or not,
using functions described in Assumption E. If it finds itself in one of the four

A New Distributed Algorithm for Computing a Dominating Set on Grids 225

corner points, as illustrated in Fig. 5(a), it will move to the specified location
of that corner. By doing so, we can assume that for any corners, the agents are
forming optimal grid pattern from any locations outside the four corner points,
or starting a Permutation C corner.

If the first agent activates outside corner points, it will enter settled mode
normally. Before an agent enters settled mode, it will make a list of unoccupied
locations around itself that aligned in optimal grid pattern (Fig. 4(a)). After an
agent enters settled mode, the list of unoccupied slots and orphan is updated
when another active agent occupies any of them.

4.4 Settlement

For other agents activating after the first one, they take the following actions;
check the recorded message, broadcast for slots, compute for closest location to
occupy, then move to occupy and settle at computed location.

Since there is at least one settled agent after the first, the active agents
will receive response signal from settled agents. Active agents can contribute
to the algorithm by either settle in unoccupied slots, or settle in pseudo-slots
or orphans. An active agent will compute for closest settled agent among those
that responded and send request for slot list. Chosen settled agent sends out
its whole list to active agent, who then computes for closest location of eligible
slots. After determining the location to settle using L1norm distance, active
agent sends out notification that the location will be taken to all settled agents,
and travels to the location. Settled agents whose lists hold such location in slot
list then remove the location from their own’s list. Once a list is empty and no
orphan in the surrounding, a settled agent will go into sleep mode (Fig. 4(f)).

Once the active agent reaches the chosen location, it will first check whether
it is at corner points or not, in similar fashion to that of the first agent. If an
active agent finds itself in one of the corner point, it will take special action,
called corner settlement, as shown in Fig. 6. This is the step similar to corner
handling in centralized algorithm, but performed in a distributed fashion. For
example, if an active agent chooses a corner point v1,1, shown as Permutation
A in Fig. 6, it will move to new location v1,2 and create a list with only one
location, called pseudo-slot, shown as v3,1 in Fig. 6. A pseudo-slot is considered
as a slot by settled agents when responding to request signal, thus both slots
and pseudo-slots will be occupied before orphans.

If the chosen location for an active agent is not corner point, the active agent
will create a list of slots and orphan normally, similar to that of first agent.

When an active agent receives a location marked as pseudo-slot and chooses
it to settle, it will notify settled agents of its choice then move to the location.
However, it will not create a list of slots and orphan, and instead go directly into
sleep mode.

Eventually all slots and pseudo-slots are occupied, and active agents will not
receive any response signal when requesting for slots. Active agents then send
out request signal for orphans, and settled agents with orphans in their lists will
respond by sending orphan locations. An active agent then computes for closest

226 P. Pisantechakool and X. Tan

BnoitatumrePAnoitatumreP

Permutation C Permutation E

BdeldnaHAdeldnaH

Handled C Handled E

Fig. 6. Distributed algorithm’s case-based method on how to handle each corner point

location then notifies all settled agents of its choice. Like pseudo-slot, active
agents settling at orphans will go directly into sleep mode.

4.5 Termination

Termination of the distributed algorithm normally happens in the following
cases.

Case 1: The number of agents is not enough to dominate the grid. After settled
agents receive no broadcast signal for a fixed amount of time (longer than an
interval of activation sequence), all the settled agents will enter sleep mode,
making themselves a subset of dominating set of the grid.

Case 2: The number of agents in the grid is more than enough to dominate the
grid. The distributed algorithm will produce a complete dominating set for the
grid. In this case, algorithm has three different conditions for last active agent
to check.

(a) Only one settled agent responds to an active agent with only one orphan.
(b) Two settled agents respond to an active agent, but both have the same

orphan.
(c) Two settled agents respond to an active agent, but both orphans are in the

corner (Fig. 6(b)).

If one of the conditions is satisfied, the last active agent will send out the ter-
mination message after notifying settled agents that it will occupy the location,
and then go directly into sleep mode. The termination message will be the last
broadcast message, and stored in answering machine’s memory of every agent,
including agents that have yet to activate.

Any agent activates after the broadcast will see termination message as the
most updated message, and leave the grid without contributing to the distributed
algorithm.

4.6 The Algorithm

We now provide a complete algorithm and prove that it is correct and creates
dominating set for grid correctly according to initializaion step in centralized
algorithm.

A New Distributed Algorithm for Computing a Dominating Set on Grids 227

Algorithm: DistributedGridDomination

Initialization

1. First agent activates.
2. First agent concludes that it is the first agent because there is no stored

message.
3. First agent checks for corner points as described in Sect. 4.3, then moves to

designated location as necessary.
4. First agent settles at its current location.

Settlement

1. Other agents activate one by one in uniformly distributed interval. Activated
agent checks stored message, making sure that it is not a termination message.

2. Active agents communicate with settled agents to find the closest slot to
settle.
(a) Active agent sends out request signal for slots. Settled agent responds if

it has unoccupied slots.
(b) Active agent computes the closest settled agent, then sends request for

a list of all slot locations. Settled agent sends list of unoccupied slots.
(c) Active agent computes the closest slot then notifies other settled agents.

Settled agents remove to-be-occupied location.
(d) Active agent moves to closest slot, then checks for corner points and

proceeds as described in Sect. 4.4.
(e) If active agent is at pseudo-slot location, then it goes directly into sleep

mode.
(f) Active agent settles at current location and becomes settled agent, then

updates its list of slots.
3. During step 2.(a), If active agent receives no response, then it sends out

request signal for orphans and occupy orphan as stated in Sect. 4.4.

Termination

1. During Settlement step 3., If active agent detects any of the following condi-
tions; (i) only one settled agent responds, or (ii) two settled agents respond
with the same orphan or two different orphans which are at corner points,
then it sends out termination message.

2. During Settlement step 2.(a), If settled agents receives no request signal for
a fixed period of time, then the algorithm terminates.

3. During Settlement step 1., If active agent sees termination message, then it
leaves the grid.

Lemma 1. During the algorithm, the agents occupying non-pseudo, non-orphan
slots contribute to the optimal grid pattern correctly.

Proof. An active agent always settles in slots computed by other settled agents.
Since the slots computed by an settled agent are aligned with the settled agent
in optimal grid pattern according to Definition 3, as long as the new active
agent settles at non-pseudo, non-orphan slots of previously settled agents, it will
contribute to the optimal grid pattern correctly.

228 P. Pisantechakool and X. Tan

Theorem 2. The number of agent used to dominate the grid in our algorithm
is bounded to � (m+2)(n+2)

5 � − 3 for any m × n grid such that m,n ≥ 8.

Proof. Our distributed grid domination algorithm computes a dominating set
correctly with the exception that the smaller of two permutations cannot be
chosen in the distributed manner. So, the size of the computed dominating agent
set is upper-bounded to � (m+2)(n+2)

5 � − 3.

Note that agents may perform their tasks such as traversing the grid in at most
m + n steps, and number of agents required to dominate the grid is bounded to
� (m+2)(n+2)

5 � − 3, the running time of algorithm can be upper-bounded polyno-
mial time of O(mn(m + n)) steps to contruct a dominating set algorithm on an
m × n grid.

5 Conclusions

We presented an algorithm to the problem of finding dominating sets on an m×n
grid where m,n ≥ 8 in the distributed manner. First, we briefly revisited Chang’s
centralized algorithm that obtains a dominating set of size � (m+2)(n+2)

5 �−4. We
then presented our distributed algorithm that computes a dominating set of size
� (m+2)(n+2)

5 � − 3 using similar methods under the restrictions of the distributed
system models.

References

1. Alanko, S., Crevals, S., Isopoussu, A., Österg̊ard, P., Pettersson, V.: Computing the
domination number of grid graphs. Electron. J. Comb. 18(1), no. P141 (2011)

2. Bondy, A., Murty, U.: Graph Theory. Series: Graduate Texts in Mathematics.
Springer, London (2008)

3. Chang, G.J.: Algorithmic aspects of domination in graphs. In: Pardalos, P.M., Du,
D.Z., Graham, R.L. (eds.) Handbook of Combinatorial Optimization, pp. 221–282.
Springer, New York (2013)

4. Chang, T.Y.: Domination numbers of grid graphs. Ph.D. Dissertation, University
of South Florida (1992)

5. Fata, E., Smith, S.L., Sundaram, S.: Distributed dominating sets on grids. In: 2013
American Control Conference, pp. 211–216. IEEE Press, New York (2013)

6. Garey, M., Johnson, D.: Computers and intractability: a guide to the theory of NP-
completeness. In: Klee, V. (ed.) A Series of Books in the Mathematical Sciences.
W. H. Freeman and Company, New York (1979)

7. Gonçalves, D., Pinlou, A., Rao, M., Thomassé, S.: The Domination number of grids.
SIAM J. Discrete Math. 25, 1443–1453 (2011). SIAM

Approximate Model Counting
via Extension Rule

Jinyan Wang1,2(B), Minghao Yin3, and Jingli Wu1,2

1 Guangxi Key Lab of Multi-source Information Mining & Security,
Guangxi Normal University, Guilin, China

{wangjy612,wjlhappy}@gxnu.edu.cn
2 College of Computer Science and Information Technology,

Guangxi Normal University, Guilin, China
3 School of Computer Science and Information Technology,

Northeast Normal University, Changchun, China
ymh@nenu.edu.cn

Abstract. Resolution principle is an important rule of inference in the-
orem proving. Model counting using extension rule is considered as a
counterpart to resolution-based methods for model counting. Based on
the exact method, this paper proposes two approximate model counting
algorithms, and proves the time complexity of the algorithms. Experi-
mental results show that they have good performance in the accuracy
and efficiency.

Keywords: Propositional satisfiability · Model counting · Resolution
principle · Extension rule

1 Introduction

In recent years, there are tremendous improvements in the field of propositional
satisfiability (SAT). Many hard combinatorial problems in artificial intelligence
and computer science, such as planning problems, have been compiled into
SAT instances, and solved effectively by SAT solvers [1–3]. On the other hand,
the problem of counting the number of models or satisfying assignments for a
Boolean formula (#SAT), is an important extension of satisfiability testing [4].
Recent researches have also shown that model counting corresponds to numer-
ous #P-complete problems such as performing inference in Bayesian networks,
probabilistic planning and diagnosis [4–9]. Resolution principle is the rule of
inference at the basis of most procedures for both SAT and #SAT [10]. In [11],
Birnbaum and Lozinskii directly extended Davis-Putnam (DP) procedure [12]
to solve #SAT problems, and proposed a model counter CDP. Based on CDP,
Bayardo and Pehoushek introduced the idea of connected component analysis
to enhance Relsat’s model counting ability [13]. Furthermore, the introduction
of component caching and clause learning accelerated greatly the model count-
ing procedure [14]. Since the space requirement was an important concern in
c© Springer International Publishing Switzerland 2015
J. Wang and C. Yap (Eds.): FAW 2015, LNCS 9130, pp. 229–240, 2015.
DOI: 10.1007/978-3-319-19647-3 22

230 J. Wang et al.

implementing component caching, sharpSAT solver employed advanced compo-
nent caching mechanism to make components be stored more succinctly [15]. In
addition, Bacchus et al. [16] utilized backtracking search to solve #SAT problem.
The run time and memory usage of these algorithms often increase exponentially
with problem size. Consequently, they are limited to relatively small formulas.
In 2005, Wei and Selman presented an approximate model counting algorithm
ApproxCount [17] based on SampleSat [18], which sampled from the set of solu-
tions of a Boolean formula near-uniformly. Following the scheme outlined by
Jerrum et al. [19], ApproxCount used an exact model counter like Relsat [13]
or Cachet [14] to count models of the residual formula after some variables had
been set by SampleSat. There are other model counting techniques based on
sample method, such as SampleCount [20], SampleMinisat [21]. Kroc et al. [22]
utilized belief propagation and MiniSat to design approximate model counting
algorithm.

In [23,24], Lin et al. used extension rule to solve SAT problem. The key idea
is to use inclusion-exclusion principle to solve the problem. We proposed a model
counting algorithm using extension rule [25,26]. We compared the method with
resolution-based methods. The more pairs of clauses with complementary liter-
als are, the more efficient the method is, and the less efficient resolution-based
methods are. So the method is considered as a counterpart to resolution-based
methods for model counting. Furthermore, Bennett and Sankaranarayanan [27]
presented a pruning technique to model counting using the inclusion-exclusion
principle. Also, Linial et al. [28,29]considered approximate inclusion-exclusion,
when intersection sizes are known for only some of the subfamilies, or when
these quantities are given to within some error, or both. In this paper, we use
extension rule to present two approximate model counting algorithms: ULBAp-
prox and SampleApprox. For ULBApprox, we firstly analyze that under what
condition a upper or lower bound of S can be viewed as the approximate value
of S (the number of different maximum terms, i.e., the number of unsatisfying
assignments), then count the approximate number of models. SampleApprox is
an approximate algorithm which combines extension rule with SampleSat algo-
rithm. Experimental results indicate the two approximate algorithms have good
performance in the accuracy and efficiency.

The paper is organized as follows. We review the extension rule and describe
the model counting method based on extension rule in the next section. In Sect. 3,
we show how to count the approximate number of models using extension rule.
Some experimental results are reported in Sect. 4. In the last section, we sum-
marize this paper.

2 Model Counting Using Extension Rule

We begin by specifying the notations that will be used in the rest of this paper.
Σ denotes a set of clauses or a Boolean formula in conjunctive normal form
(CNF), C denotes a single clause, V denotes the set of all variables appearing
in Σ , and M(Σ) denotes the number of models of Σ.

Approximate Model Counting via Extension Rule 231

2.1 Extension Rule

We review the extension rule in brief. The readers are referred to [23] for more
details. Given a clause C and a set of variables V , D = {C∨a,C∨¬a|a ∈ V and a
does not appear in C}. The operation proceeding from C to D is called extension
rule on C, and D is the result of extension rule. A clause C is logically equivalent
to the result of extension rule D. So extension rule is a legal inference rule.

A clause is a maximum term on a set V if it contains all variables in V
in either positive form or negative form. For example, given a set of variables
V = {a, b, c}, a ∨ b ∨ c is a maximum term on V , but a ∨ b is not. Given a set of
clauses Σ with its set of variables V (|V | = v), if clauses in Σ are all maximum
terms on V , Σ is unsatisfiable if it contains 2v clauses; otherwise, Σ is satisfiable.
Therefore, we can decide the satisfiability of a set of maximum terms.

2.2 Model Counting Using Extension Rule

According to the definition of maximum terms, we can count the number of
models of a set of maximum terms. Given a set of clauses Σ with its set of
variables V (|V | = v), if the clauses in Σ are all maximum terms on V , the
number of models of Σ is 2v − S if Σ contains S distinct clauses, where S ≤ 2v.

For example, given a set of clauses Σ = {a ∨ b, a ∨ ¬b,¬a ∨ b} with its set
of variables V = {a, b}, the clause ¬a ∨ ¬b does not appear in Σ. It is clear
the assignment, which a is assigned 1 and b is assigned 1, is a model of Σ.
Actually, The number of maximum terms is equal to the number of unsatisfying
assignments in a Boolean formula. Therefore, if we want to count models of a
set of clauses, we should proceed by finding an equivalent set of clauses such
that all the clauses in it are maximum terms by using extension rule. Then,
we can know how many models there are. For example, given a set of clauses
Σ = {a∨¬b,¬a,¬b∨c} with its set of variables V = {a, b, c}, the sets of maximum
terms {a∨¬b∨ c, a∨¬b∨¬c}, {¬a∨ b∨ c,¬a∨ b∨¬c,¬a∨¬b∨ c,¬a∨¬b∨¬c}
and {a∨¬b∨c,¬a∨¬b∨c} are the extended results of the clauses a∨¬b,¬a and
¬b∨ c by using extension rule, respectively. Consequently, the union of the three
maximum terms {a ∨ ¬b ∨ c, a ∨ ¬b ∨ ¬c,¬a ∨ b ∨ c,¬a ∨ b ∨ ¬c,¬a ∨ ¬b ∨ c,¬a ∨
¬b∨¬c} is the set of maximum terms generated from Σ by using extension rule.
Therefore, we can get the number of models of Σ is 23 − 6 = 2.

In fact, it is sufficient to count the number of all the maximum terms gener-
ated by Σ rather than to list them. We can use inclusion-exclusion principle to
compute the sum of maximum terms, which generate from Σ by using extension
rule. Given a set of clauses Σ = {C1, C2, . . . , Cn}, let V be the set of variables
which appear in Σ (|V | = v), Pi be the set of all the maximum terms generated
from Ci by using extension rule, and S be the sum of all different maximum
terms generated from Σ, then we have

S =
n

∑

i=1

|Pi| −
∑

1≤i<j≤n

|Pi ∩ Pj | +
∑

1≤i<j<l≤n

|Pi ∩ Pj ∩ Pl| − . . .

+(−1)n+1|P1 ∩ P2 ∩ . . . ∩ Pn|. (1)

232 J. Wang et al.

where |Pi| = 2v−|Ci|, and |Pi ∩ Pj | = 0, if there are complementary literals
in Ci ∪ Cj ; otherwise, |Pi ∩ Pj | = 2v−|Ci∪Cj |. |Ci ∩ Cj | denotes the number of
variables appearing in Ci∪Cj . In Eq. (1), we call the computation for an absolute
value as a term, and the computation for a continuous sum as a sum term.

For example, we count the number of models of the set of clauses Σ =
{a ∨ ¬b,¬a,¬b ∨ c}. The number of distinct maximum terms generated from Σ
is S = 21 + 22 + 21 − 0 − 20 − 20 + 0 = 6, so the number of models of Σ is
23 − 6 = 2. This process is called model counting using extension rule (MCER)
[25,26].

Clearly, the higher the complementary factor is, the more efficient MCER
algorithm is. However, the worst-case time complexity of the algorithm is
exponential. Furthermore, we note that the value of the first 2k − 1(k =
1, 2, . . . , �(n + 1)/2�) sum terms, denoted by S2k−1, is an upper bound of S,
and the value of the first 2k(k = 1, 2, . . . , �n/2�) sum terms, denote by S2k, is
a lower bound of S in Eq. (1). In this sense, 2v − S2k−1 acts as a lower bound
of the result; 2v − S2k acts as an upper bound of the result. This enables us to
design an approximate model counting algorithm. In the next section, we give
the detailed description.

3 Approximate Model Counting Using Extension Rule

In this section, we present two approximate model counting algorithms based on
extension rule. At first, we give a method to measure the dispersion between the
approximate and exact value, so it is a benchmark to measure the approximate
model counting algorithms.

Definition 1. Let Saccur, Sappr be the exact and approximate value, respec-
tively. We call σ = |Saccur−Sappr|

Saccur
approximate dispersion1.

The smaller approximate dispersion σ is, the nearer Sappr is to Saccur.
Otherwise, the farther Sappr is to Saccur.

3.1 ULBApprox

We analyze firstly in what condition the value of the first 2k−1 or 2k sum terms
in Eq. (1) can be viewed as the approximate value of S. Then we present the
approximate model counting algorithm ULBApprox.

1 If σ is very small, then Saccur ≈ Sappr. Consequently, σ ≈ σ′ =
|Saccur−Sappr|

Sappr
. So

σ′ is also considered as approximate dispersion. In this paper, we use σ′ to get the
approximate number of unsatisfying assignments of Σ, because it is difficult to use σ
in the condition that we do not know the exact number of unsatisfying assignments of
Σ. However, in the experimental results, we obtain the approximate value of models
and know the exact number of models, so we use σ to measure the two approximate
algorithms.

Approximate Model Counting via Extension Rule 233

Theorem 1. Given a set of clauses Σ = {C1, C2, . . . , Cn} and a threshold r
of approximate dispersion, let Pi be the set of all the maximum terms gener-
ated from Ci by using extension rule, where i = 1, 2, . . . , n, S be the number
of distinct maximum terms generated from Σ, S2k−1 and S2k be the value of
the first 2k − 1(k = 1, 2, . . . , �(n + 1)/2�) sum terms and the value of the first
2k(k = 1, 2, . . . , �n/2�) sum terms in Eq. (1), respectively. Then we have that

(1) if

∑

1≤i<j<...<l<o≤n

2k
︷ ︸︸ ︷

|Pi ∩ Pj ∩ . . . Pl ∩ Po|
S2k−1

≤ r, then S
S2k−1

∈ [1 − r, 1];

(2) if

∑

1≤i<j<...<o<q≤n

2k+1
︷ ︸︸ ︷

|Pi ∩ Pj ∩ . . . Po ∩ Pq|
S2k

≤ r, then S
S2k

∈ [1, 1 + r].

Proof. We prove only (1). The proof of (2) is similar.
S

S2k−1
= 1 − S2k−1−S

S2k−1
= 1 − σ′

= 1 − [
∑

1≤i<j<...<l<o≤n

2k
︷ ︸︸ ︷

|Pi ∩ Pj ∩ . . . Pl ∩ Po| −

(
∑

1≤i<j<...<o<q≤n

2k+1
︷ ︸︸ ︷

|Pi ∩ Pj ∩ . . . Po ∩ Pq| − . . .

+(−1)n+1|P1 ∩ P2 ∩ . . . ∩ Pn|)]/S2k−1.
Since S2k is a lower of S, we have

S − S2k =
∑

1≤i<j<...<o<q≤n

2k+1
︷ ︸︸ ︷

|Pi ∩ Pj ∩ . . . Po ∩ Pq| − . . .

+(−1)n+1|P1 ∩ P2 ∩ . . . ∩ Pn|) ≥ 0.

Furthermore, by

∑

1≤i<j<...<l<o≤n

2k
︷ ︸︸ ︷

|Pi ∩ Pj ∩ . . . Pl ∩ Po|
S2k−1

≤ r, we obtain σ′ ≤ r.
Consequently, S

S2k−1
≥ 1 − r; S2k−1 is a upper of S, that is, S

S2k−1
≤ 1. So we

get S
S2k−1

∈ [1 − r, 1].

From Theorem 1, it is evident that if we consider S2k−1 or S2k as the approx-
imate value of S, we have to judge whether its condition is true. This leads to
the ULBApprox algorithm described in algorithm 1. Let Σ = {C1, C2, · · · , Cn}
be a set of clauses, V (|V | = v) be its set of variables, and r is a threshold of
approximate dispersion.

We use number, svalue and sumterm to denote the value of a term, an
impermanent value about S during process of computation, and the value of
a sum term, respectively. From line 3 to 11, we get the value sumterm of a
sum term. If sumterm = 0, the algorithm turns to 24 line to get the exact
number of models; however, if sumterm

svalue <= r, it turns to 24 line to get the

234 J. Wang et al.

approximate number of models2; otherwise, we update svalue according to
Eq. (1), and continue to count the value of next sum term.

In the worst case, the run time of ULBApprox algorithm is the same as
the exact model counting algorithm MCER, but it returns the exact number of
models. In other words, the algorithm is equivalent with the MCER algorithm
in the worst case. Therefore, we analyze only the complexity of ULBApprox
algorithm when it returns an approximate value.

Algorithm 1. ULBApprox (CNF: Σ, r)
1: i = 1; number = 0; svalue = 0; sumterm = 0;
2: while i <= n do
3: for every sets L that contains i clauses do
4: union= the union of all the clauses in L;
5: if there are no complementary literals in union then
6: number = 2v−|union|;
7: else
8: number = 0;
9: end if

10: sumterm = sumterm + number;
11: end for
12: if sumterm = 0 then
13: printf (“Exact value!”); skip to 24;
14: else if i >= 2&& sumterm

svalue
<= r&&svalue < 2v then

15: printf (“Approximate value!”); skip to 24;
16: else if i mod 2 = 1 then
17: svalue = svalue + sumterm;
18: else
19: svalue = svalue − sumterm;
20: end if
21: sumterm = 0;
22: i = i + 1;
23: end while
24: return 2v − svalue;

Theorem 2. Given a set of clauses Σ = {C1, C2, . . . , Cn}, if ULBApprox algo-
rithm returns an approximate value and svalue is the value of first l sum terms
(1 ≤ l < n), then the time complexity of ULBApprox algorithm is O(nl+1).

Proof. For the set of clauses Σ, if ULBApprox algorithm returns an approximate
value, we know that the result of the value of the l + 1th sum term divided by
2 When sumterm is the value of the first sum term, svalue = 0. In this case, we

can not run the division operator, so we restrict i ≥ 2; because model counting
is generally to count the number of models of a Boolean formula, the number of
unsatisfying assignments is less than 2v. So we restrict its approximate value is less
than 2v.

Approximate Model Counting via Extension Rule 235

the value of the first l sum terms, is not more than r according to Theorem 1. So
it counts C1

n + C2
n + . . . + Cl

n + Cl+1
n times, and the time complexity is O(nl+1).

ULBApprox algorithm firstly counts the approximate number of unsatisfying
assignments, and then counts the approximate number of models. It is necessary
to analyze that the proportion covered by the number of models in the total
assignments is how to affect the approximate number of models. We use Snum

to denote the number of assignments, Sfalse and Sfappro to denote the exact
and approximate value of the unsatisfying assignments, respectively, Strue and
Stappro to denote the exact and approximate value of the satisfying assignments,
respectively. Clearly, Sfalse + Strue = Snum, Sfappro + Stappro = Snum, and the
dispersion Sdiv = |Sfalse − Sfappro| = |Strue − Stappro|. When the approximate
dispersion of the number of unsatisfying assignments σ′ = Sdiv/Sfappro ≤ r, we
analyze the change about the approximate dispersion of the number of satisfying
assignments σ = Sdiv/Strue. If Strue ≥ Sfappro, then σ ≤ r; otherwise, σ > r.
In other words, when Strue > Sfalse, ULBApprox algorithm can get better
approximate value of the number of models.

3.2 SampleApprox

In this subsection, we propose the other approximate model counting algorithm
SampleApprox. Firstly, we give a sub-algorithm SubMCER to count the number
of models of a restricted subspace. Given a set of clauses Σ with its set of
variables V (|V | = v), when we use inclusion-exclusion principle to compute the
sum of all different maximum terms generated from Σ, we are actually searching
through the entire space of maximum terms, and the size is 2v. The entire space
can be divided into two subspaces: one contains all maximum terms in which
a appears, and the other contains all maximum terms in which ¬a appears,
where a ∈ V . Also, the entire space can be divided into four subspaces: the first
one contains all maximum terms in which a and b appear, and the second one
contains all maximum terms in which a and ¬b appear, the three one contains
all maximum terms in which ¬a and b appear, and the fourth one contains all
maximum terms in which ¬a and ¬b appear,where a, b ∈ V . When the restricted
clause C is given, we restrict the subspace of all maximum terms, in which the
literals of C are all appearing. Then we use algorithm SubMCER to count the
number of maximum terms in the subspace, which are not generated from Σ.
That is the number of models of the restricted subspace.

The SubMCER algorithm is given in algorithm 2. The input of the algorithm
is a set of clauses Σ with its set of variables V (|V | = v) and any clause C defined
in V . c is the number of variables included by C.

In 4 line, we eliminate the clauses, which do not generate any maximum
terms in the restricted subspace by clause C. In 6 line, in order to use the
MCER algorithm, if L = Literal(C ′)∩Literal(C)
= ∅, we eliminate the literals
L from C ′, where Literal(C) is the set of literals of clause C. For example, if C
is a∨¬b, we are actually searching through the space of all the maximum terms
in which a appears positively and b appears negatively. Namely, we are searching

236 J. Wang et al.

Algorithm 2. SubMCER (CNF: Σ,C)
1: Σ1 = Σ;
2: for every clause C′ in Σ1 do
3: if C′ and C have complementary literals then
4: eliminate C′ from Σ1;
5: else if L = Literal(C′) ∩ Literal(C) �= ∅ then
6: eliminate the literals L from C′;
7: end if
8: end for
9: return MCER(Σ1); // Σ1 contains n1 clauses; the number of variables in Σ1 is

v − c.

through the assignment space in which a is assigned 0 and b is assigned 1 to get
the number of models of the subspace.

Theorem 3. Given the set of clauses Σ = {C1, C2, . . . , Cn} with its set of vari-
ables V (|V | = v) and any clause C defined in V , the best time complexity is
O(n1) and the worst time complexity is O(2n1) for algorithm SubCER, where n1

denotes the number of residual clauses after Σ is filtrated by C, and n1 < n.

Proof. We assume that the set of residual clauses is Σ1 after Σ is filtrated by C,
and the number of clauses in Σ1 is n1. In the best case, each pair of clauses in
Σ1 contains complementary literals, so we only need to compute the value of the
first sum term in Eq. (1), namely, compute C1

n1
times, and time complexity is

O(n1). In the worst case, SubMCER computes all sum terms, namely, computes
C1

n1
+ C2

n1
+ . . . + Cnl

n1
times, and time complexity is O(2n1).

Like Approxcount algorithm, SampleApprox algorithm uses also SampleSat
algorithm to get the approximate value of the total number of models divided
by the number of models of the restricted subspace. SampleSat algorithm is
based on Walksat [30] widely used in solving SAT problems, and is injected with
MCMC (Markov Chain Monte Carlo) moves to make it sample from the set of
solutions of a Boolean formula near-uniformly. We describe the SampleApprox
algorithm in detail as follows.

Given a set of clauses Σ, we can obtain the approximate value of M(Σ) by
taking the ratio β, that is the ratio of the number of samples, in which vari-
able x is assigned true (or false), in the total sample size. Namely, M(Σ) ≈
(1/β) · M(Σ|x=true) (or M(Σ) ≈ (1/β) · M(Σ|x=false)), where M(Σ|x=true) (or
M(Σ|x=false)) can be counted by using SubMCER algorithm. We can reduce
further the subspace. If we choose q variables and assign randomly to every vari-
able xi denoted by ti (i = 1, 2, . . . , q), then M(Σ) ≈ (1/β′) ·M(Σ|x1=t1∧...xq=tq),
where β′ is the ratio of the number of samples, in which variable xi is assigned
ti (i = 1, 2, . . . , q), in the total sample size. SampleApprox algorithm is given in
algorithm 3. Let Σ = {C1, C2, . . . , Cn} be a set of clauses, V (|V | = v) be its set
of variables, and K be the sample size.

From 3 to 6 lines, we call SampleSat algorithm to get K models of Σ and put
them into Modelsamples. From 7 to 11 lines, we count the number of models

Approximate Model Counting via Extension Rule 237

Algorithm 3. SampleApprox (CNF: Σ)
1: Choose q variables from V and assign randomly to every variable xi denoted by

ti(i = 1, 2, . . . , q);
2: j = 1; Sq = 0;
3: while j <= K do
4: Modelsamples ← SampleSat(Σ);
5: j = j + 1;
6: end while
7: for every sample in Modelsamples do
8: if x1 = t1 ∧ . . . ∧ xq = tq then
9: Sq = Sq + 1;

10: end if
11: end for
12: Multiplier = K/Sq;
13: S′

q ← SubMCER (Σ, Cq);
14: M(Σ) = Multiplier ∗ S′

q;
15: return M(Σ);

Sq in the sample set in which variable xi is assigned ti (i = 1, 2, . . . , q). In 13
line, we call SubMCER(Σ,Cq) to compute M(Σ|x1=t1∧...∧xq=tq), where Cq is the
clause composed with these literals, which are negative forms of assignments of q
variables (e.g., provided that variable xi is assigned true, Cq contains the literal
¬xi). So we can get the approximate value of M(Σ) by taking Multiplier ∗ S′

q.

4 Experimental Results

We utilize Microsoft Visual C++ 6.0 to achieve MCER, ULBApprox and Sam-
pleApprox algorithms, and all experiments are conducted on a computer with
a four-core 2.10 GHz CPU and 1.95 GB RAM. Experimental purpose is to show
the accuracy and efficiency of the two approximate algorithms. The instances
are obtained by a random generator [23]. It takes three parameters < v, n, k >
as input, where v is the number of variables, n is the number of clauses, k is
the length of each clause, and each clause is obtained by choosing randomly k
variables from the set of m variables and by determining the polarity of each
literal with probability p = 0.5.

We test these instances: < 30, n, 7 > and < v, 150, 7 >, where n lies between
100 and 150, and v lies between 24 and 29. The results given from Figs. 1, 2, 3
and 4 are mean values on 50 experiments for each point. The abscissa denotes
the number of clauses or the number of variables, and the ordinate denotes the
approximate dispersion σ or run time. For ULBApprox algorithm, we give two
different values of r, i.e., 0.05 and 0.01, in order to show that it is how to influence
the performance of ULBApprox algorithm.

From Figs. 1 and 3, we can see that ULBApprox algorithm has good perfor-
mance in the accuracy. For these instances, their approximate dispersions are
almost all less than the given threshold r. The smaller r is, the higher accuracy

238 J. Wang et al.

Fig. 1. The approximate dispersion for
< 30, n, 7 >

Fig. 2. The run time for < 30, n, 7 >

Fig. 3. The approximate dispersion for
< v, 150, 7 >

Fig. 4. The run time for < v, 150, 7 >

of ULBApprox algorithm is. Namely, the smaller σ is. However, the more time is
used. On the whole, the run time of ULBApprox algorithm is less than MCER
algorithm. When r = 0.05, for the instances < 30, 110, 7 >, the efficiency of
ULBApprox algorithm is 4.98 times that of MCER algorithm.

For SampleApprox algorithm, their approximate dispersions of these
instances are almost all larger than that got by ULBApprox algorithm (r = 0.05).
For these instances, the maximum approximate dispersion is 0.072. The run time
of SampleApprox algorithm increases slowly as the number of clauses or vari-
ables become larger. Namely, the larger the number of clauses or variables is, the
higher the efficiency of SampleApprox is. For the instances < 30, 150, 7 >, the
efficiency of SampleApprox algorithm is 6.02 times that of MCER algorithm.

5 Conclusions

This paper proposes two approximate model counting algorithms by using exten-
sion rule. The key characteristic of ULBApprox algorithm is that it firstly counts
the approximate number of unsatisfying assignments, then counts the approx-
imate number of models. And SampleApprox is an approximate algorithm by
combining extension rule with SampleSat. Experiment results indicate the two
approximate algorithms have good performance in the efficiency and accuracy.

Approximate Model Counting via Extension Rule 239

Acknowledgments. This paper was supported by the National Key Basic Research
Program of China (973 Program, No. 2012CB326403), National Natural Science Foun-
dation of China (Nos. 61272535, 61370156, 61363035, 61165009), Guangxi “Bagui
Scholar” Teams for Innovation and Research Project, Guangxi Natural Science Foun-
dation (No. 2013GXNSFBA019263), Science and Technology Research Projects of
Guangxi Higher Education (Nos. 2013YB028, 2013YB029), Scientific Research Founda-
tion of Guangxi Normal University for Doctors, and Guangxi Collaborative Innovation
Center of Multisource Information Integration and Intelligent Processing.

References

1. Rintanen, J.: Planning as satisfiability: heuristics. Artif. Intell. 193, 45–86 (2012)
2. Cai, D., Yin, M.: On the utility of landmarks in SAT based planning. Knowl.-Based

Syst. 36, 146–154 (2012)
3. Nakhost, H., Mller, M.: Towards a theory of random walk planning: regress fac-

tors. fair homogeneous graphs and extensions. AI Communications 27(4), 329–344
(2014)

4. Bacchus, F., Dalmao, S., Pitassi, T.: Algorithms and complexity results for # SAT
and bayesian inference. In: 44th Symposium on Foundations of Computer Science
(FOCS), pp. 340–351 (2003)

5. Li, W., Poupart, P., Beek, P.V.: Exploiting structure in weighted model counting
approaches to probabilistic inference. J. Artif. Intell. Res. 40, 729–765 (2011)

6. Domshlak, C., Hoffmann, J.: Probabilistic planning via heuristic forward search
and weighted model counting. J. Artif. Intell. Res. 30, 565–620 (2007)

7. Satish Kumar, T.K.: A model counting characterization of diagnoses. In: 13th
International Workshop on Principles of Diagnosis, pp. 70–76 (2002)

8. Zhang, S., Zhang, C., Yan, X.: Post-mining: maintenance of association rules by
weighting. Inf. Syst. 28(7), 691–707 (2003)

9. Wu, X., Zhang, S.: Synthesizing high-frequency rules from different data sources.
IEEE Trans. Knowl. Data Eng. 15(2), 353–367 (2003)

10. Gomes, C.P., Sabharwal, A., Selman, B.: Model counting, handbook of satisfiabil-
ity. In: Biere, A., et al. (eds.) Frontiers in Artificial Intelligence and Applications,
vol. 185, pp. 633–654. IOS Press, Amsterdam (2009)

11. Birnbaum, E., Lozinskii, E.: The good old davis-putnam procedure helps counting
models. J. Artif. Intell. Res. 10, 457–477 (1999)

12. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving.
Commun. ACM 5(7), 394–397 (1962)

13. Bayardo Jr., R.J., Pehoushek, J.D.: Counting models using connected components.
In: Seventeenth National Conference on Artificial Intelligence (AAAI), pp. 157–162
(2000)

14. Sang, T., Bacchus, F., Beame, P., Kautz, H., Pitassi, T.: Combining component
caching and clause learning for effective model counting. In: Seventh International
Conference on Theory and Applications of Satisfiability Testing (SAT), pp. 20–28
(2004)

15. Thurley, M.: SharpSAT – counting models with advanced component caching and
implicit bcp. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp.
424–429. Springer, Heidelberg (2006)

16. Bacchus, F., Dalmao, S., Pitassi, T.: Solving # SAT and bayesian inference with
backtracking search. J. Artif. Intell. Res. 34, 391–442 (2009)

240 J. Wang et al.

17. Wei, W., Selman, B.: A new approach to model counting. In: Bacchus, F., Walsh,
T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 324–339. Springer, Heidelberg (2005)

18. Wei, W., Erenrich, J., Selman, B.: Towards efficient sampling: exploiting ran-
dom walk strategies. In: Nineteenth National Conference on Artificial Intelligence
(AAAI), pp. 670–676 (2004)

19. Jweeum, M.R., Valiant, L.G., Vazirani, V.V.: Random generation of combinatorial
structures from a uniform distribution. Theoret. Comput. Sci. 43, 169–188 (1986)

20. Gomes, C.P., Hoffmann, J., Sabharwal, A., Selman, B.: From sampling to model
counting. In: Twentieth International Joint Conference on Artificial Intelligence
(IJCAI), pp. 2293–2299 (2007)

21. Gogate, V., Dechter, R.: Approximate counting by sampling the backtrackfree
search space. In: Twenty-Second National Conference on Artificial Intelligence
(AAAI), pp. 198–203 (2007)

22. Kroc, L., Sabharwal, A., Selman, B.: Leveraging belief propagation, backtrack
search, and statistics for model counting. Ann. Oper. Res. 184(1), 209–231 (2011)

23. Lin, H., Sun, J.: Zhang, Y.: Theorem proving based on extension rule. J. Autom.
Reasoning 31(1), 11–21 (2003)

24. Iwama, K.: CNF satisfiability test by counting and polynomial average time. SIAM
J. Comput. 18(2), 385–391 (1989)

25. Yin, M., Sun, J.: Counting models using extension rules. In: Twenty-Second
National Conference on Artificial Intelligence (AAAI), pp. 1916–1917 (2007)

26. Yin, M., Lin, H., Sun, J.: Solving # SAT using extension rules. J. Softw. 20(7),
1714–1725 (2009)

27. Bennett, H., Sankaranarayanan, S.: Model counting using the inclusion-exclusion
principle. In: Sakallah, K.A., Simon, L. (eds.) SAT 2011. LNCS, vol. 6695, pp.
362–363. Springer, Heidelberg (2011)

28. Linial, N., Nisan, N.: Approximate inclusion-exclusion. Combinatorica 10(4), 349–
365 (1990)

29. Kahn, J., Linial, N., Samorodnitsky, A.: Inclusion-exclusion: exact and approxi-
mate. Combinatorica 16(4), 465–477 (1996)

30. Selman, B., Kautz, H., Cohen, B.: Local search strategies for satisfiability testing.
In: Trick, M., Johnson, D.S (eds.) Second DIMACS Challenge on Cliques, Coloring
and Satisfiability, pp. 521–532 (1993)

Improved Information Set Decoding
for Code-Based Cryptosystems

with Constrained Memory

Maoning Wang1(B) and Mingjie Liu2

1 Key Laboratory of Cryptologic Technology and Information Security, Ministry
of Education, School of Mathematics, Shandong University, Jinan 250100, China

wangmaoning@mail.sdu.edu.cn
2 Beijing International Center for Mathematical Research, Peking University,

Beijing 100871, China
liumj9705@gmail.com

Abstract. The decoding of random linear codes is one of the most
fundamental problems in both computational complexity theory and
algorithmic cryptanalysis. Specifically, the best attacks known against
existing code-based cryptosystems, such as McEliece, are unstructural,
i.e., these attacks directly use generic decoding algorithms that treat the
hidden binary codes as random linear codes. This topic is also attract-
ing increasing interest in a post-quantum context as this area becomes
increasingly active. In an attempt to solve this problem, several algo-
rithms and their variants have recently been proposed, with increasingly
lower time complexities. However, their memory complexities, which are
even more important in practice for real attacks, are neglected.

In this paper, we consider the performance of information set decod-
ing (ISD) algorithms for the problem of syndrome decoding for random
binary linear codes with restricted memory. Using Finiasz and Sendrier’s
standard framework for ISD algorithms, we propose an exact algorithm
that performs better when the memory is constrained; also this improve-
ment can be mathematically proven. From a practical standpoint, our
approach can yield good time complexities for any given space bound,
hence providing a good measure of the effectiveness of a cryptanalytic
attack on code-based cryptosystems. Our method can also be seen as an
extended application of the dissection technique proposed by Dinur et al.
at CRYPTO 2012 [11].

Keywords: Random linear codes · Syndrome decoding · Information
set decoding · McEliece · Constrained memory · Dissection technique

This work was supported by National Natural Science Foundation of China (Grant
No. 61133013), China’s 973 Program (Grant No. 2013CB834205), China Postdoc-
toral Science Foundation (Grant No. 2013M540786) and Nature Science Foundation
of Shandong Province (Grant No. ZR2012FM005).

c© Springer International Publishing Switzerland 2015
J. Wang and C. Yap (Eds.): FAW 2015, LNCS 9130, pp. 241–258, 2015.
DOI: 10.1007/978-3-319-19647-3 23

242 M. Wang and M. Liu

1 Introduction

We first introduce the following problem, which is essentially intrinsic to all
existing code-based cryptosystems:

The set C = {mT G : m ∈ F
k
2} is called a linear code of length n and

dimension k, specifically, the linear code generated by G ∈ F
k×n
2 . Here, m is a

column vector and mT represents the transpose of m . The matrix G is called
a generator matrix for this code. The elements of C are called codewords. If the
linear code C is equal to {c ∈ F

n
2 : Hc = 0}, then the matrix H ∈ F

(n−k)×n
2 is

called a parity-check matrix for the code. The number of non-zero elements in a
vector is its so-called Hamming weight.

Now, our task is to solve the following.

Problem 1 (Syndrome Decoding Problem for Binary Linear Codes). Find an
error vector e ∈ F

n
2 whose Hamming weight is equal to w (w is prescribed)

given the matrix H and x = c + e for an unknown codeword c.

Equivalently, we know He ∈ F
n−k
2 , the so-called syndrome of e , because He =

H(x −c) = Hx −0 = Hx ∈ F
n−k
2 , which can be immediately obtained from the

inputs. In addition, this problem can be understood as the attempt to discover
the w of n columns of H that sum to s = Hx ∈ F

n−k
2 .

Throughout this paper, we consider only random linear codes, namely, codes
whose parity-check matrices H are random over F(n−k)×n

2 . Under this condition,
the distance d of code C, which is defined as the minimum Hamming weight of
its non-zero codewords, asymptotically satisfies

k

n
= 1 − h(

d

n
) (1)

(the proverbial Gilbert-Varshamov bound) when n becomes large. Here, the
function h is the binary entropy function

h(x) = −x log2(x) − (1 − x) log2(1 − x). (2)

In addition, for relevancy to the case of public-key encryption schemes or identi-
fication schemes, we focus on the problem when the weight w of e is set to �d−1

2 �
(the error correction capacity of C), which is the largest value that guarantees
the uniqueness of the decoding.

Theoretically, this problem is known to be NP-hard [2,5], and thus, its diffi-
culty can serve as a foundation for cryptographic constructions. It continues to
attract increasing interest because to date, it has remained hard even when quan-
tum computing algorithms are considered. From another viewpoint, for certain
existing code-based cryptosystems, the best attacks appear to be unstructural,
i.e., to directly use generic decoding algorithms [7,12]. Taking McEliece [23] as
an example, an attacker who merely knows the public-key matrix G, which is
indistinguishable from a random one (and similarly for H), may succeed in recov-
ering a message vector m after receiving its ciphertext x = c+e = (mT G)T +e
if he can utilize an algorithm that is sufficiently efficient to complete the task of

Improved Information Set Decoding for Code-Based Cryptosystems 243

syndrome decoding. This approach also has several potential variants that are
useful in algorithmic cryptanalysis [10,14,20,25]. Therefore, a series of studies
has appeared in the literature, proposing algorithms to solve this problem with
increasingly lower time complexities [3,4,6,13,15,18,21,22,26].

As the results of such studies have become increasingly advanced, they have
primarily focused on time complexity. However, in practice, the memory com-
plexity also plays an important role. Specifically, all the records reported in
real-world problem solving in cryptanalysis, such as integer factorization [19],
collision-seeking [28] and other types of problems, as summarized in [16,27],
use parallelization methods because these attacks must be performed on either
a large number of workstations or a large number of inexpensive, specialized
processors. Because a smaller-space algorithm can make better use of fast cache
memories and, in particular, because a smaller-space algorithm often enables
easier and more efficient large-scale parallelization, as mentioned in [1], we must
focus on memory-constrained algorithms when considering real attacks.

It is therefore not very reasonable to simply ignore the storage constraints
when devising or analyzing actual algorithms. When we wish to run an algorithm,
we are obliged to provide a cost estimation, which requires considering questions
such as “what is the concrete number of PCs and workstations that we need to
access if the budget is $1 million?” or “do we have sufficient funds to construct
some type of fixed-scale fast cache memories for specialized processors?” Hence,
the true measure of the effectiveness of a cryptanalytic attack is the time required
to complete the attack given certain resource limitations, as discussed in [27].
Therefore, it is important to develop an algorithm that is feasible in practice, i.e.,
given the typical processing speed and memory resources of modern computers,
and to analyze its efficiency.

Moreover, from a theoretical point of view, a high memory complexity might
be considered to be a serious drawback for any exact algorithms using exponen-
tial memory. Therefore, in recent years, numerous papers in the field of computer
science and information theory have discussed better time-memory tradeoffs and
low-memory algorithms applied to various problems, especially those concerning
NP-hard problems [1,8,9,11,17,29]. It is the lack of such research on coding-
theoretical problems that inspired us to write this paper.

The contribution of this paper is the proposal of a more efficient ISD algo-
rithm under memory-restricted conditions. As shown in Table 1, this algorithm
offers an improved time complexity for any prescribed space bound. Our app-
roach substantially benefits from the new type of algorithm proposed by Dinur
et al., which they call dissection [11], for composite problems such as the
cryptanalysis of multiple-encryption schemes. Furthermore, the improvements
achieved using our algorithm can be confirmed through a formal mathematical
proof. Hence, our method is valuable in both theory and practice.

2 FS-ISD

We describe the FS-ISD framework [13], where the abbreviation “FS-ISD”
denotes the ISD algorithm used by Finiasz and Sendrier. We choose this

244 M. Wang and M. Liu

Table 1. Comparison of worst-case time complexities under different memory con-
straints

algorithm as our starting point because it is the most efficient algorithm that is
guaranteed to find a solution and it serves as a general structure for subsequent
proposals, including our method.

Recall that our objective is to recover the weight w (column) vector e ∈ F
n
2

given the random matrix H ∈ F
(n−k)×n
2 and the syndrome of e , s = He ∈ F

n−k
2 .

The FS-ISD algorithm sequentially executes the following two steps until the
solution e is found: First, a random permutation of n columns of H together
with the corresponding elements of e is performed. Second, a partial match-
seeking within certain columns of the matrix transformed from the rearranged H
is performed, followed naturally by a compensation of the bits that are different
from the current syndrome.

Specifically, the changes to the column order in the first phase can be per-
formed through multiplication by a random permutation matrix P ∈ F

n×n
2 . Let

us denote the resulting matrix by H̃ = HP ∈ F
(n−k)×n
2 . This also transforms

the target solution to ẽ, which has the same weight as the original e , but its 1s
and 0s are arranged in a different order. It follows that ẽ = eP .

Next, we transform H̃ into the form
[

Q
0

In−k−l

]

by applying elementary

row operations or, equivalently, by multiplying it by an invertible matrix C ∈
F
(n−k)×(n−k)
2 , where 0 is an l×(n−k−l) zero matrix, In−k−l is an (n−k−l)×(n−

k − l) identity matrix, and Q is in F
(n−k)×(k+l)
2 . This form is always achievable

because H (or, likewise, H̃) is of full rank with probability exponentially close to
1 in the case that H is random. In addition, the corresponding processing must
also be performed for s, which then becomes s ′.

We introduce p as a parameter to optimize the final complexity expressions.
Then, it is sufficient to find, in k+l columns of Q, those p that sum up to s ′ in the
first l coordinates and to then complete the remaining n−k−l positions by select-

ing w−p columns of
[

0
In−k−l

]

. A simple method of accomplishing this is to check

each of the
(

k+l
p

)

linear combinations of p columns of Q to determine whether that

Improved Information Set Decoding for Code-Based Cryptosystems 245

combination satisfies the condition on the first l rows and whether its difference
from s ′ has a weight of w−p because we can only choose columns from a partial
identity matrix to eliminate this difference. However, [13] applies the birthday
algorithm to decrease the time complexity. Specifically, we search for collisions
on the elements’ first l of n−k bits in two lists, one of which contains all possible
sums of p

2 columns taken from the first k+l
2 columns of Q and the other of which

contains all the s ′s subtracting a sum of p
2 columns taken from the remaining k+l

2
columns of Q. These lists (stored in L1 or L2) can be computed by multiplying all
the length-(k+ l) binary vectors with p

2 1s in the first or last k+l
2 positions by the

matrix Q respectively. If a collision of this type satisfies the weight requirements,
then adding the other w−p columns will yield the solution following reverse per-
mutation. Therefore, the running time cost in the searching step is TFS-ISD =

Õ(max{|L1|, |L2|, |L1|·|L2|
2l }) = Õ(max{

(

(k+l)/2
p/2

)

,
(

(k+l)/2
p/2

)

,
((k+l)/2

p/2)2
2l }),1 and the

memory cost is SFS-ISD = O(min{|L1|, |L2|}) = O(
(

(k+l)/2
p/2

)

).
It remains to estimate the expected number of repetitions of the procedures

above, where one repetition refers to the act discussed above of retrieving ẽ ∈ F
n
2

divided into two components, ẽ = [ẽ1, ẽ2] ∈ F
k+l
2 ×F

n−k−l
2 , where ẽ1 is obtained

via the birthday algorithm and ẽ2 is collected thereafter. This process succeeds
as long as the weight distribution of ẽ is as desired, i.e., ẽ1 is of weight p and
ẽ2 is of weight w − p; then, we can obtain the original solution e via inverse
permutation. Moreover, the probability that an ẽ with this type of distribution

will appear is P =
((k+l)/2

p/2)2·(n−k−l
w−p)

(n
w) because of the randomness of the initial

permutation. Hence, it is anticipated that the solution will be reached within
P−1 repetitions.

In conclusion, the entire algorithm runs in time TFS-ISD ·P−1 and with mem-
ory SFS-ISD, where p and l are parameters. Minimizing the expression for the
time complexity requires solving the following optimization problem (OPT1)
under the quite natural specified constraint conditions:

min TFS-ISD(ck, cl, cp) − P (ck, cw, cl, cp) (3)

s.t.
{

0 ≤ cl ≤ 1 − ck (4)
max{0, ck + cl + cw − 1} ≤ cp ≤ min{ck + cl, cw}, (5)

where ck, cw, cl and cp denote k
n , w

n , l
n and p

n , respectively, and TFS-ISD(ck, cl, cp)
is a term such that TFS-ISD = Õ(2TFS-ISD(ck,cl,cp)n) (and, likewise, P =

1 The polynomial factors hidden by the notation Õ originate from the operations of
merging the two lists to obtain collisions that are described in Algorithm 2, such
as computing the indexes and sorting, and their concrete coefficients and powers
are determined by the data structures. In addition, later in this paper, we will often
omit the notations Õ and O for simplicity of presentation when there is no ambiguity
arising from the context.

246 M. Wang and M. Liu

Õ(2P (ck,cw,cl,cp)n)); the latter can be calculated using the expressions obtained
above and Stirling’s formula

(

An

Bn

)

= Õ(2Ah(B/A)n), (6)

where h(x) is the binary entropy function (2). In addition, note that the con-
straint inequalities (4) and (5) originate from the fact that we must choose each
submatrix or vector to be of non-negative dimension. In this manner, we find
that for ck ∈ [0, 1], the worst-case time complexity for solving Problem 1 using
the FS-ISD algorithm is Õ(20.05558n) with memory of O(20.0147n).

We use the following pseudo-codes to summarize the entire flow. Note that
the abbreviation “MitM” in the title of Algorithm 2 stands for Meet-in-the-
Middle. Here, the notation |t denotes either the first t bits of some vector of
length greater than t or the first t rows of a matrix, depending on the context.

Algorithm 1. FS-ISD

Input: parity check matrix H ∈ F
(n−k)×n
2 , syndrome s = He, parameters p and l

Output: error vector e ∈ F
n
2 of known weight w

1: loop
2: generate a random permutation matrix P ;
3: H̃ ← HP ;

4:

[
Q

0
In−k−l

s′
]

← C
[
H̃ s
]
; // perform row operations to obtain the desired

shape
5: set t = l;
6: L ← FS-MitM(Q|t, s′|t, k + l, t, p); // see Algorithm 2
7: for all ẽ1 such that ẽ1 ∈ L do
8: if wt(s′ − Qẽ1) = w − p then
9: ẽ2 ← s′ − Qẽ1;

10: ẽ ← [ẽ1,0] + [0, ẽ2];
11: eT ← ẽT P −1;
12: output e and terminate the program;
13: end if
14: end for
15: end loop

A note about Algorithm 2: when it is called by Algorithm 1 (the FS-ISD), the
output L is constructed on the fly, which causes the memory complexity to
become |L1| (or |L2|) instead of max{|L1|, |L|}; similarly, this also holds for
the generation of L2, where the memory complexity becomes |L1| instead of
max{|L1|, |L2|}.

Considered to be a universal model for analyzing ISD-type algorithms, FS-
ISD has been carefully and extensively examined by numerous researchers,
among whom the author of [24] provides very clear insight into the parame-
ters. Concretely, he rigorously proved that for a given code rate ck, the para-
meters c∗

l and c∗
p that minimize TFS-ISD(ck, cw, cl, cp) − P (ck, cw, cl, cp) satisfy

Improved Information Set Decoding for Code-Based Cryptosystems 247

Algorithm 2. FS-MitM

Input: matrix Q ∈ F
t×(k+l)
2 ; vector s ∈ F

t
2; parameters k + l, t and p

Output: list L
1: // first, initialize the lists
2: L ← empty list;
3: L1 ← {xi}, where {xi} denotes all vectors of length (k + l) with p

2
1s in the first

k+l
2

positions;
4: L2 ← {yi}, where {yi} denotes all vectors of length (k + l) with p

2
1s in the last

k+l
2

positions;
5: // next, search for collisions
6: // put L1 into some data structure (possible choices: hash table or multimap) DS
7: for i = 1 to |L1| do
8: a ← first t bits of Qxi; // in fact, Qxi is of length t; however, for consistency

with the following algorithms, we write “first t bits” here
9: DS[a] ← xi; // store xi in DS at index a

10: end for
11: // then, for each element in L2, search for the matching elements in DS
12: for j = 1 to |L2| do
13: b ← first t bits of s − Qyj ;
14: L′ ← {DS[b]} = {xi1 , · · · ,xi|L′|}; // fetch all elements in DS at index b and

put them in list L′

15: for m = 1 to |L′| do
16: insert element xim + yj into L;
17: end for
18: end for
19: output L;

0 < c∗
l < 1 − ck, 0 < c∗

p < cw, cw − c∗
p <

1−ck−c∗
l

2 , and c∗
p <

ck+c∗
l

2 . Intuitively,
these conclusions indicate that the optimal parameters c∗

l and c∗
p are not located

at the corners of the parameter space. In addition, as a corollary, the author also
showed the following.

Lemma 1 (Corollary 5.2.23. in [24]). For optimal c∗
l and c∗

p, it holds that
SFS-ISD(c∗

l , c
∗
p) ≤ c∗

l .

Here, SFS-ISD(c∗
l , c

∗
p) is shorthand for SFS-ISD(ck, cw, cl, cp) such that SFS-ISD =

O(2SFS-ISD(ck,cw,cl,cp)n) for a given ck and its corresponding cw that satisfy the
Gilbert-Varshamov bound (1).

Because there is no straightforward literature to follow for the considera-
tion of memory constraints, the only available method of obtaining a memory-
conditioned algorithm is to adjust the parameters. Specifically, when we solve
the optimization problem above, one more restriction should be added:

SFS-ISD(ck, cw, cl, cp) ≤ b, (7)

where 2bn is the memory bound, which depends on the real resources we are
using. The numerical results are presented in Table 1, line 3. This method of

248 M. Wang and M. Liu

addressing the parameters can be regarded as a way to facilitate a time-memory
tradeoff; however, because its focus is not on memory concerns, we might obtain
further improvements if we were to use techniques that do focus on memory.

3 The New Algorithm

3.1 The Motivation

In light of the explanation above, intuitively, we should be able to improve
the memory efficiency of the FS-ISD algorithm by replacing the subroutine FS-
MitM with a better one. Our new algorithm also benefits from the concept
underlying Shamir et al.’s dissection algorithm [11] for composite problems with
memory concerns. However, [11] primarily discuss such algorithms in the context
of analyzing the security of multiple-encryption schemes; therefore, we begin by
introducing the concept in this scenario and then show how to apply it to our
decoding problem.

A multiple-encryption scheme is a concatenation of R perfect N -bit block
ciphers with independent round keys, each of which is also N bits, and the
objective of cryptanalyzing such schemes is to recover all the round keys, given
R plaintext-ciphertext pairs. The dissection concept involves guessing the mid-
dle values, which are “ciphertexts” obtained through sequential encryptions of
the first several block ciphers. This makes it such that in each iteration of the
algorithm, several middle-value blocks are fixed such that non-satisfactory key
candidates are filtered out to avoid unnecessary computation. All possible keys
are enumerated by looping over all possible values of those middle blocks. Fur-
thermore, a more flexible tradeoff between the time and memory costs is obtained
by properly selecting u and m according to the value of R for the current layer.
This makes it feasible to minimize the time complexity given limited memory
resources.

The pseudo-code below represents the process of the algorithm, where each
Xu

i denotes the u-th intermediate value from Pi to Ci, i.e., the “ciphertext” of
the sequential encryptions of Pi obtained using k1, k2, . . . , ku.

For syndrome decoding, or, more specifically, to search for vectors whose
products with the matrix Q match a certain vector s within the first l bits,
namely for the task performed by FS-MitM, we modify the scenario such that the
dissection procedures discussed above still function. The desired vector e ∈ F

k+l
2

ensures that 0+Qe = s holds for at least the first l bits; therefore, informally, we
can regard 0 as the plaintexts; s, the vector input to FS-MitM, as the ciphertexts;
and e as the sum of the R round keys to be determined, i.e., e = k1+k2+· · ·+kR.
Each of the R initial candidate key lists contains all vectors of some desired shape
consistent with ki. Moreover, we define encryption as the addition of vectors in
F2 and decryption as the inverse.

In addition, the smallest units into which the “key” e can be divided are
bits instead of integral multiples of fixed-length blocks, which provides greater
flexibility. Therefore, similar to splitting the R round keys k1, k2, . . . , kR into
two sets k1, k2, . . . , ku and ku+1, ku+2, . . . , kR for a single middle-value guess in

Improved Information Set Decoding for Code-Based Cryptosystems 249

Algorithm 3. Dissection for Mult-Enc
Input: R plaintext-ciphertext pairs (P1, C1), (P2, C2), . . . , (PR, CR), parameters

u and m
Output: round keys k1, k2, . . . , kR

1: for all possible values of Xu
1 , Xu

2 , . . . , Xu
u−m do

2: obtain the 2mN candidate keys for k1, k2, . . . , ku given the plaintext-“ciphertext”
pairs (P1, X

u
1), (P2, X

u
2), . . . , (Pu−m, Xu

u−m);
3: for all such candidate keys do
4: compute the u-th intermediate values of Pu−m+1, Pu−m+2, . . . , PR and store

the outputs in a table as the index of their candidate keys;
5: end for
6: obtain the 2(R−u−(u−m))N candidate keys ku+1, ku+2, . . . , kR given “plaintext”-

ciphertext pairs (Xu
1 , C1), (X

u
2 , C2), . . . , (X

u
u−m, Cu−m);

7: for all such candidates do
8: decrypt Cu−m+1, Cu−m+2, . . . , CR to obtain the u-th intermediate values and

check whether the corresponding values exist in the table;
9: if there is an index that matches then

10: obtain the output round keys by the candidates k1, k2, . . . , ku for this index
together with the candidates ku+1, ku+2, . . . , kR;

11: end if
12: end for
13: end for

Algorithm 3, we divide a (k + l)-bit vector e into an α(k + l)-bit component and
a (1 − α)(k + l)-bit component.

3.2 The New Algorithm

The pseudo-code presented below in Algorithm 4 provides an overview of our
procedures for solving the same problem addressed by FS-MitM (Algorithm 2).

The complete computation is performed recursively, and its depth is a func-
tion of the input value of σ. Specifically, at some inner layer, we guess the t′-bit
middle value, where t′ and namely, β are parameters that affect the complexity,
which are discussed in the next section. In addition, for each guess, we produce
two unequally sized subproblems of smaller scale, solve them by either the next
level of recursion or through Basic Dissection, according to their σs, and then
combine the two solution sets, which are also partial solutions to the problem of
current layer, using operations similar to those of Algorithm 2, namely, checking
the t − t′ bits that have not yet been addressed to diagnose collisions.

At the bottom, we reach Basic Dissection, whose complexity can be sum-
marized as TB-Diss = 2t′ · max{T1, T2,

|L1|·|L2|
2t−t′ }, where T1 and T2 are the times

required for the construction of L1 and L2, respectively, via FS-MitM. Hence,

we have T1 = T2 = max{
(

(k+l)/4
p/4

)

,
((k+l)/4

p/4)2

2t′ }. By Stirling’s formula (6), we

obtain T1 =
(

(k+l)/4
p/4

)

because we set t′ = 1
4 (ck + cl)h(cp

ck+cl
)n, i.e., Õ(2t′

) =
(

(k+l)/4
p/4

)

. We also have |L1| = |L2| =
((k+l)/2

p/2)
2t′ =

(

(k+l)/4
p/4

)

. Thus, when

250 M. Wang and M. Liu

Algorithm 4. Dissection for FS-ISD

Input: matrix Q ∈ F
t×(k+l)
2 ; vector s ∈ F

t
2; parameters k + l, t, p, σ; external para-

meters α, β depending on σ
Output: list L containing all vectors e of length k + l and weight p such that Qe = s
1: L, L1, L2 ← empty lists;
2: if σ ≥ 1/4 then
3: L ← Basic Dissection(Q, s, k + l, t, p);
4: else
5: // set t′ = βn′, where n′ = (ck + cl)h(

cp

ck+cl
)n, i.e., Õ(2n′

) =
(

k+l
p

)
6: for each vector x of length t′ do
7: Ql ← column 1 to α(k + l) of matrix Q;
8: Qr ← column α(k + l) + 1 to k + l of matrix Q;
9: L1 = {zi} ← Dissection for FS-ISD(Ql|t′ ,x, α(k + l), t′, αp, σ

α
);

10: L2 = {yi} ← Dissection for FS-ISD(Qr|t′ , s|t′ − x, (1 − α)(k + l), t′,
(1 − α)p, σ

1−α
);

11: // then, merge L1 and L2

12: for i = 1 to |L1| do
13: a ← last t − t′ bits of Qlzi;
14: DS[a] ← zi;
15: end for
16: for j = 1 to |L2| do
17: b ← last t − t′ bits of s|t − Qryj ;
18: L′ ← {DS[b]} = {zi1 , · · · , zi|L′|};

19: for m = 1 to |L′| do
20: add the concatenation of zim and yj , i.e.

[
zim

yj

]
to L;

21: end for
22: end for
23: end for
24: end if
25: output L;

t satisfies t ≥ 1
2 (ck + cl)h(cp

ck+cl
)n, namely, |L1|·|L2|

2t−t′ is exponentially smaller

than
(

(k+l)/4
p/4

)

, we obtain the following time complexity for Basic Dissection:

TB-Diss = 2t′ · max{T1, T2,
|L1|·|L2|
2t−t′ } =

(

(k+l)/4
p/4

)

·
(

(k+l)/4
p/4

)

=
(

(k+l)/2
p/2

)

, where the
last equality also holds by Stirling’s formula (6) and the memory complexity is
SB-Diss = |L1| =

(

(k+l)/4
p/4

)

because both L2 and L are constructed and applied
on the fly.

3.3 The Complexity

In this subsection, we analyze the entire recursive algorithm and present the time
and memory complexities. First, we recall two theoretically important functions
introduced in [11] and [1]:

Improved Information Set Decoding for Code-Based Cryptosystems 251

Algorithm 5. Basic Dissection

Input: matrix Q ∈ F
t×(k+l)
2 ; vector s ∈ F

t
2; parameters k + l, t and p

Output: list L containing all vectors e of length k + l and weight p such that Qe = s;
1: L, L1, L2 ← empty lists;
2: // set t′ = 1

4
n′, where n′ = (ck + cl)h(

cp

ck+cl
)n, i.e., Õ(2n′

) =
(

k+l
p

)
3: for each vector x of length t′ do
4: Ql ← left k+l

2
columns of matrix Q;

5: Qr ← right k+l
2

columns of matrix Q;
6: L1 = {zi} ← FS-MitM(Ql|t′ ,x, k+l

2
, t′, p

2
);

7: L2 = {yi} ← FS-MitM(Qr|t′ , s|t′ − x, k+l
2

, t′, p
2
);

8: // then, merge L1 and L2

9: for i = 1 to |L1| do
10: a ← last t − t′ bits of Qlzi;
11: DS[a] ← zi;
12: end for
13: for j = 1 to |L2| do
14: b ← last t − t′ bits of s|t − Qryj ;
15: L′ ← {DS[b]} = {zi1 , · · · , zi|L′|};

16: for m = 1 to |L′| do
17: add element

[
zim

yj

]
to L;

18: end for
19: end for
20: end for
21: output L;

Definition 1. For σ ∈ (0, 1/2], let l be the solution to 1/ρl+1 < σ ≤ 1/ρl, where
ρl = 1 + l(l + 1)/2 for l = 1, 2, ... (named the magic sequence in [11]). Then,

τ(σ) = 1 − 1
l + 1

− ρl − 2
l + 1

σ.

If there is no such l, that is, if σ > 1/2, then define τ(σ) = 1/2.

Definition 2. Define F : (0, 1] → (0, 1) by the following recurrence for σ < 1/4:

F (σ) = β + max{αF (
σ

α
), (1 − α)F (

σ

1 − α
)},

where α = 1 − τ(σ) and β = α − σ. The base case is F (σ) = 1/2 for σ ≥ 1/4.

The following lemma, given by [1], which can be verified by induction on each
interval between two adjacent points in the magic sequence, provides the rela-
tionship between the two functions.

Lemma 2. For every σ ∈ (0, 1], it holds that F (σ) = τ(σ).

We now return to our objective of analyzing Algorithm 4. Obviously, according
to the description above, we have

TDiss = 2t′ · max{Tl, Tr,M},

252 M. Wang and M. Liu

where Tl and Tr denote the time cost for the construction of lists L1 and L2,
namely, the time required to solve the left and right subproblems, and M denotes
the time required for the merging of L1 and L2, as shown in lines 12 to 23 of
Algorithm 4.

We first focus on a much easier case such that in each recursive call, M is
not the dominant term of the three in the argument of max{} of TDiss. Thus,
we have TDiss = 2t′ · max{Tl, Tr}, and we can then prove the following lemma,
which shows that although Algorithm 4 has many parameters, such as p, k, l
and t, the expression for the time cost is rather simple.

Lemma 3. In the simple case that the parameters in Algorithm 4 are set to
α = 1 − τ(σ) and β = α − σ, we have

TDiss = Õ(2F (σ)n′
),

where n′ = (ck + cl)h(cp

ck+cl
)n, i.e., Õ(2n′

) =
(

k+l
p

)

.

Proof. The proof can be performed by induction on the value of σ, in which we
use a property of τ(σ): for σ = 1/ρl+1, we have σ/τ(σ) = 1/ρl.

Now, we must address the term M. The time cost of the procedure to merge
lists L1 and L2 is

M = max{|L1|, |L2|,
|L1||L2|

2t−t′ }.

In fact, the sizes of L1 and L2 correspond to the numbers of solutions to the
two subproblems, which are implicitly included in the time costs of the upper
layers, Tl and Tr (not, however, in the easier case discussed above), and the term
|L1||L2|

2t = 2t′ · |L1||L2|
2t−t′ that appears in the expansion of the full expression of

TDiss is the number of solutions of the problem input to the current layer. If,
therefore, in each recursive layer, the number of solutions cannot exceed the time
cost given above for the easier case, then we can resort to the analysis above.
Supported by the following lemma, we can achieve this by appropriately setting
the parameters α, β and t that are input to the top layer.

Lemma 4. Let us set α = 1 − τ(σ), β = α − σ and t ≥ (1 − τ(σ))n′, where n′

denotes (ck + cl)h(cp

ck+cl
)n, i.e., Õ(2n′

) =
(

k+l
p

)

. Then, in each recursive layer,
the number of solutions is no greater than TDiss in Lemma 3.

Proof. See Appendix A. The proof is achieved through induction on both the
left and right subproblems.

Moreover, it is somewhat easier to analyze the memory complexity. We can verify
by induction that the algorithm runs with memory 2σn′

because the costs for
solving the two subproblems are 2σ/α·αn′

= 2σn′
and 2σ/(1−α)·(1−α)n′

= 2σn′
and

the size of the data structure that is used to store L1 corresponds to the number
of solutions of the left subproblem, which is equal to 2αn′

/2βn′
= 2σn′

, given the
chosen parameters α and β.

Improved Information Set Decoding for Code-Based Cryptosystems 253

In summary, we can write the following theorem.

Theorem 1. Algorithm 4 solves an input problem of scale (k + l, t, p) for para-
meter σ in time Õ(2τ(σ)n′

) and with memory O(2σn′
) if t ≥ (1 − τ(σ))n′, where

n′ denotes (ck+cl)h(cp

ck+cl
)n, i.e., Õ(2n′

) =
(

k+l
p

)

, and if, in each recursive layer,
α and β are set to α = 1− τ(σ′) and β = α−σ′, respectively, in accordance with
the σ′ of that layer.

The final part of this subsection describes the entire new version of FS-ISD
obtained by replacing FS-MitM with our Algorithm 4. The following lemma
shows that P, the probability of successfully obtaining an error vector e of the
desired form, remains the same as the original FS-ISD.

Lemma 5. PDiss-ISD = P as regards the exponents.

Proof. This can be proven by using the fact that dividing the problem into two
parts of unequal size and uniform distribution does not affect the probability in
the exponents and that the depth of recursion is polynomial.

To obtain the numerical result of our new ISD algorithm, we must still determine
the optimal parameters c∗

p, c∗
l and σ∗ of the following optimization problem

(OPT2):

min TDiss(ck, cl, cp, σ) − P (ck, cw, cl, cp) (8)

s.t.

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

0 ≤ cl ≤ 1 − ck (9)
max{0, ck + cl + cw − 1} ≤ cp ≤ min{ck + cl, cw} (10)

(1 − τ(σ))(ck + cl)h(
cp

ck + cl
) ≤ cl (11)

0 ≤ SDiss(ck, cl, cp, σ) ≤ b, (12)

where TDiss, SDiss and P are the exponents of TDiss, SDiss and P divided by n, i.e.,
TDiss(ck, cl, cp, σ) = τ(σ)(ck+cl)h(cp

ck+cl
), SDiss(ck, cl, cp, σ) = σ(ck+cl)h(cp

ck+cl
),

and P (ck, cw, cl, cp) = (ck + cl)h(cp

ck+cl
) + (1 − ck − cl)h(cw−cp

1−ck−cl
) − cwh(cw).

The constraint inequalities in OPT2 can be explained as follows: (9) and
(10) are the same as (4) and (5) in OPT1, (11) originates from the condition
t ≥ (1 − τ(σ))n′ in Theorem 1 and the fact that the initial value of t is l, and
(11) is the space complexity constraint.

3.4 Comparison

In view of the discussion of complexities in the previous subsection, we can now
show that when memory is considered, the new algorithm performs better than
plain FS-ISD with the addition of only one more space constraint inequality to
OPT1.

254 M. Wang and M. Liu

First, we present the following lemma.

Lemma 6. If (c∗
l , c

∗
p) is the optimal parameters for OPT1 for FS-ISD plus con-

straint (7) for a given ck and the corresponding cw that satisfy the Gilbert-
Varshamov bound (1), then (c∗

l , c
∗
p) and σ = 1/4 is a group of valid parameters

for OPT2 for the new Diss-ISD.

Proof. This lemma states that when σ = 1/4, the plain FS-ISD can be modified
into a more memory-efficient algorithm by using Basic Dissection instead of
FS-MitM, hence checking the parameters are valid for OPT2 is enough. See
Appendix B.

Moreover, we also have the following.

Lemma 7. Denote F2(σ) by F (σ) when α = 1/2 as a constant. Then, F (σ) <
F2(σ) for all σ < 1/4.

Proof. Computing the concrete formula for F2(σ), as done for F (σ), will yield
the proof. See Appendix C for details.

One conclusion implied by Lemma 7 is that it is better to precisely set the
external parameters α and β based on the σ input to the current layer than to
fix α at 1/2. In other words, splitting into two equally sized subproblems, as in
FS-ISD, or even further [4,21] always produces worse results compared with our
algorithm.

Intuitively, if we were to draw the memory-time curves for FS-ISD and our
algorithm, which requires plotting every possible memory and corresponding
time value, then for each point (SFS-MitM, TFS-MitM −P), there would be a point
(SDiss, TDiss − P) lying strictly to the left. Because these curves are continuous
and non-intersecting, there must be a point on the Diss-ISD curve that lies below
each point on the FS-ISD curve. Thus, our algorithm that outperforms the plain
FS-ISD for every memory constraint. See Table 1, lines 3 and 4 for the numerical
results of the comparisons.

4 Conclusions

In this paper, we consider the performance of information set decoding (ISD)
algorithms for the problem of syndrome decoding for random binary linear codes
under memory restrictions. In the FS-ISD framework, we present an exact algo-
rithm that demonstrates superior performance when the memory is constrained;
this improvement can be proven using Theorem 1. From a practical standpoint,
our algorithm offers good time complexity for any space bounds, thereby provid-
ing a good measure of the effectiveness of a cryptanalytic attack on code-based
cryptosystems. Moreover, our method can also be regarded as an extended appli-
cation of the dissection technique of [11].

Improved Information Set Decoding for Code-Based Cryptosystems 255

A Proof of Lemma 4

Proof (Proof of Lemma 4). To prove this lemma, we use certain properties of
the function τ(σ). First, at the top layer, we have a number of solutions N =
(k+l

p)
2t ≤ 2n′

2(1−τ(σ))n′ = 2τ(σ)n′2 depending on the chosen range of t. By Lemma 2,
the result holds.

Next, we state that the result also holds for both the left and right sub-
problems. Specifically, for the left subproblem, the number of solutions is Nl =
(α(k+l)

αp)
2t′ = 2αn′

2βn′ = 2(α−β)n′
. Definition 1 indicates that τ(σ) = 1 − 1

l+1 − ρl−2
l+1 σ,

and it is easy to verify the middle term 1
l+1 = ρl

l+1 · 1
ρl

= (12 l+
1

l+1) 1
ρl

> (12 l+
1

l+1)σ
because σ ∈ [1/ρl+1, 1/ρl); hence, τ(σ) < 1−(12 l+

1
l+1)σ−(12 l−

1
l+1)σ = 1− lσ ≤

1−2σ. Equivalently, we have 1−τ(σ)−σ > 1
2 (1−τ(σ)), which implies β > 1

2α in
light of the chosen parameters. Thus, Nl = 2(α−β)n′

< 2
1
2αn′

. However, Lemma 3
states that Tl = 2τ(σ

α)αn′ ≥ 2
1
2αn′

because τ(σ′) is not smaller than 1/2 for all
σ′ in its domain. Thus, it is proven that Nl ≤ Tl.

It remains to show that the result holds for the right subproblem. The proof
of Lemma 2, which requires simply computing and simplifying F (σ), implicitly
contains the property that β + (1 − α)τ(σ/(1 − α)) = τ(σ) . Therefore, Nr =
((1−α)(k+l)

(1−α)p)
2βn′ = 2(1−α−β)n′

= 2(τ(σ)−β)n′
= 2(1−α)τ(σ/(1−α))n′

= Tr.
Thus, the expressions for the time complexity in all layers remain the same

as that in the easier case, which completes our proof. �	

B Proof of Lemma 6

Proof (Proof of Lemma 6). Fix σ = 1/4; then, the new Diss-ISD becomes
the original FS-ISD with FS-MitM replaced with Basic Dissection. We
already know that TDiss(ck, cw, cl, cp, 1/4) = TFS-MitM(ck, cw, cl, cp) and
SDiss(ck, cw, cl, cp, 1/4) = 1/2SFS-MitM(ck, cw, cl, cp). In addition, constraints 1,
2 and 4 in OPT2 naturally hold for (c∗

l , c
∗
p). Therefore, only constraint 3 remains

to be checked, i.e., 1/2(ck + cl)h(cp

ck+cl
) ≤ cl.

Recall Lemma 1, which was proved rigorously in [24] without memory con-
ditions (7). The result also holds even when constraint (7) is added because
the main technique the author used was to obtain a contradiction from
(TFS-MitM − P)(c∗

l + ε, c∗
p) − (TFS-MitM − P)(c∗

l , c
∗
p) < 0 and the optimality

of (TFS-MitM − P)(c∗
l , c

∗
p), and in fact, SFS-MitM(cl, cp) is a continuous func-

tion in cl (because h(x) can be expanded using equation (2)), which implies
the existence of an ε such that (c∗

l + ε, c∗
p) is also in the parameter set (i.e.,

SFS-MitM(c∗
l + ε, c∗

p) ≤ b also holds). Hence, from the generalization of Lemma 1,

we have SFS-MitM(c∗
l , c

∗
p) = 1/2(ck + c∗

l)h(c∗
p

ck+c∗
l
) ≤ cl∗, which completes our

proof. �	
2 For convenience and clarity, we continue to use the notations <, >, ≤ and ≥; however,

when they appear in an expression that contains script characters such as N and T ,
these symbols denote that the inequality relations hold for the exponents.

256 M. Wang and M. Liu

C Proof of Lemma 7

Proof (Proof of Lemma 7). According to the definition of F (σ), we have

F2(σ) = (1/2 − σ) + max{1/2F2(2σ)1/2F2(2σ)} = 1/2 − σ + 1/2F2(2σ)

for a constant α = 1/2, which implies β = α − σ = 1/2 − σ. Through inductive
calculations, we can easily obtain

F2(σ) = 1 − 1
2m

− 2m−1 − 1
2m−2

σ

for σ ∈ [1
2m+1 , 1

2m],m = 2, 3, 4, · · · .
A given σ will lie in the interval [1

ρl+1
, 1

ρl
] for some integer l and in the interval

[1
2m+1 , 1

2m] for some m. Then, one of the following two cases will hold:

(1)
1

ρl+1
≤ 1

2m+1
≤ σ ≤ 1

ρl
≤ 1

2m
; (2)

1
2m+1

≤ 1
ρl+1

≤ σ ≤ 1
ρl

≤ 1
2m

because the interval [1
2m+1 , 1

2m] is larger than [1
ρl+1

, 1
ρl

] for any set of m, l ≥ 2,
i.e., for any σ ≤ 1/4. In addition, for l > 4, we have l + 1 < 1/4l(l + 1) <
1/4l(l+1)+1/2 = ρl

2 , and thus, 1
l+1 > 2

ρl
≥ 2

2m+1 = 1
2m holds. Moreover, ρl−2

l+1 =
1/2l(l+1)−1

l+1 = 1/2l − 1
l+1 is monotonically increasing on the integer l and hence

is strictly greater than 2 for l ≥ 5. This also implies that ρl−2
l+1 > 2 > 2− 1

2m−2 =
2m−1−1
2m−2 . This is now sufficient to conclude that 1

l+1 + ρl−2
l+1 σ > 1

2m + 2m−1−1
2m−2 σ for

l ≥ 5. Moreover, the cases of l = 2, 3 and 4 are easy to check for the endpoints
of the intervals of σ, thereby completing our proof of F (σ) < F2(σ). �	

References

1. Austrin, P., Kaski, P., Koivisto, M., Määttä, J.: Space-time tradeoffs for subset
sum: An improved worst case algorithm. CoRR, abs/1303.0609 (2013)

2. Barg, A.: Complexity issues in coding theory. Electron. Colloquium Compu-
tat. Complex (ECCC). 4(46) (1997). http://eccc.hpi-web.de/eccc-reports/1997/
TR97-046/index.html

3. Becker, A., Coron, J.-S., Joux, A.: Improved generic algorithms for hard knap-
sacks. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 364–385.
Springer, Heidelberg (2011)

4. Becker, A., Joux, A., May, A., Meurer, A.: Decoding random binary linear codes
in 2n/20: How 1 + 1 = 0 improves information set decoding. In: Pointcheval, D.,
Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 520–536. Springer,
Heidelberg (2012)

5. Berlekamp, E., McEliece, R., Van Tilborg, H.: On the inherent intractability of
certain coding problems (corresp.). IEEE Trans. Inf. Theory 24(3), 384–386 (1978)

6. Bernstein, D.J., Lange, T., Peters, C.: Smaller decoding exponents: ball-collision
decoding. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 743–760.
Springer, Heidelberg (2011)

http://eccc.hpi-web.de/eccc-reports/1997/TR97-046/index.html
http://eccc.hpi-web.de/eccc-reports/1997/TR97-046/index.html

Improved Information Set Decoding for Code-Based Cryptosystems 257

7. Bernstein, D.J., Lange, T., Peters, C.: Attacking and defending the McEliece cryp-
tosystem. In: Buchmann, J., Ding, J. (eds.) PQCrypto 2008. LNCS, vol. 5299, pp.
31–46. Springer, Heidelberg (2008)

8. Bisson, G., Sutherland, A.V.: A low-memory algorithm for finding short product
representations in finite groups. Des. Codes Crypt. 63(1), 1–13 (2012)

9. Bjorklund, A., Husfeldt, T., Kaski, P., Koivisto, M.: Computing the Tutte poly-
nomial in vertex-exponential time. In: IEEE 49th Annual IEEE Symposium on
Foundations of Computer Science, FOCS 2008, pp. 677–686. IEEE (2008)

10. Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from
(standard) LWE. In: IEEE 52nd Annual Symposium on Foundations of Computer
Science (FOCS), pp. 97–106. IEEE (2011)

11. Dinur, I., Dunkelman, O., Keller, N., Shamir, A.: Efficient dissection of composite
problems, with applications to cryptanalysis, knapsacks, and combinatorial search
problems. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417,
pp. 719–740. Springer, Heidelberg (2012)

12. Faugère, J.-C., Otmani, A., Perret, L., Tillich, J.-P.: Algebraic cryptanalysis of
mceliece variants with compact keys. In: Gilbert, H. (ed.) EUROCRYPT 2010.
LNCS, vol. 6110, pp. 279–298. Springer, Heidelberg (2010)

13. Finiasz, M., Sendrier, N.: Security bounds for the design of code-based cryp-
tosystems. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 88–105.
Springer, Heidelberg (2009)

14. Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: a ring-based public key cryptosys-
tem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 267–288. Springer,
Heidelberg (1998)

15. Howgrave-Graham, N., Joux, A.: New generic algorithms for hard knapsacks. In:
Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 235–256. Springer,
Heidelberg (2010)

16. Joux, A.: A tutorial on high performance computing applied to cryptanalysis. In:
Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
1–7. Springer, Heidelberg (2012)

17. Koivisto, M., Parviainen, P.: A space-time tradeoff for permutation problems.In:
Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete Algo-
rithms, pp. 484–492. Society for Industrial and Applied Mathematics (2010)

18. Lee, P.J., Brickell, E.F.: An observation on the security of McEliece’s public-key
cryptosystem. In: Günther, C.G. (ed.) EUROCRYPT 1988. LNCS, vol. 330, pp.
275–280. Springer, Heidelberg (1988)

19. Lenstra, A.K., Lenstra, H.W., Manasse, M.S., Pollard, J.M.: The factorization of
the ninth Fermat number. Math. Comput. 61(203), 319–349 (1993)

20. Lyubashevsky, V., Micciancio, D., Peikert, C., Rosen, A.: SWIFFT: a modest pro-
posal for FFT hashing. In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp. 54–72.
Springer, Heidelberg (2008)

21. May, A., Meurer, A., Thomae, E.: Decoding random linear codes in Õ(20.054n).
In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 107–124.
Springer, Heidelberg (2011)

22. May, A., Ozerov, I.: On computing nearest neighbors with applications to decoding
of binary linear codes. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015.
LNCS, vol. 9056, pp. 203–228. Springer, Heidelberg (2015)

23. McEliece, R.J.: A public-key cryptosystem based on algebraic coding theory. DSN
Prog. Rep. 42(44), 114–116 (1978)

24. Meurer, A.: A coding-theoretic approach to cryptanalysis. Ph.D. thesis (2013)

258 M. Wang and M. Liu

25. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. J. ACM (JACM) 56(6), 34 (2009)

26. Stern, J.: A method for finding codewords of small weight. In: Cohen, G., Wolf-
mann, J. (eds.) Coding Theory and Applications. LNCS, vol. 388, pp. 106–113.
Springer, Heidelberg (1989)

27. van Oorschot, P.C., Wiener, M.J.: Parallel collision search with cryptanalytic appli-
cations. J. Cryptology 12, 1–28 (1999)

28. Wiener, M.J.: Efficient DES key search. School of Computer Science, Carleton
Univ. (1994)

29. Woeginger, J.G.: Open problems around exact algorithms. Discrete Appl. Math.
156(3), 397–405 (2008)

Truthful Strategy and Resource Integration
for Multi-tenant Data Center Demand Response

Youshi Wang1,4, Fa Zhang2, and Zhiyong Liu1,3(B)

1 Beijing Key Laboratory of Mobile Computing and Pervasive Device,
Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China

{wangyoushi,zyliu}@ict.ac.cn
2 Key Laboratory of Intelligent Information Processing, ICT, CAS, Beijing, China

zhangfa@ict.ac.cn
3 State Key Laboratory for Computer Architecture, ICT, CAS, Beijing, China

4 University of Chinese Academy of Sciences, Beijing, China

Abstract. Data centers’ demand response (DR) program has been paid
more and more attention recently. As an important component of data
centers, multi-tenant data centers (also called “colocation”) play a signif-
icant role in the demand response, especially in the emergency demand
response (EDR). In this paper, we focus on how the colocation can
perform better in the EDR program. We formulate the “uncoordinated
relationship” in the colocation which is the key problem affecting energy
efficiency, and propose a reward system to motivate tenants to join the
EDR program, and a truthful strategy is developed to ensure the authen-
ticity of tenants’ information. For achieving the overall coordination, we
integrate tenants’ resources to increase the colocation’s resource utiliza-
tion and optimize the whole colocation’s energy efficiency, then devise
two algorithms to solve the actual resource migration and integration
problem. We analyze the complexity of allocation model and two algo-
rithms. Experimental results show that our solution is practical and effi-
cient.

Keywords: Colocation · Emergency demand response · Uncoordinated
relationship · Truthful strategy design · Algorithm analysis

1 Introduction

Data center has become an integral part of our everyday lives. As the scale of
the network is continuously extending, more and more data centers have been
established, and consume huge amount of energy. The latest data suggests that
only in 2013 the power consumption of data centers in the United States has
increased to 91 billion kilowatt-hour and the prospective consumption in 2020
will reach 138 billion kilowatt-hour [1]. Because of the huge energy consumption,
the demand response program becomes more important in date centers. Espe-
cially, the emergency demand response, in some extreme cases such as extreme
weather or natural disaster, is for protecting the secure of State Grid by reducing
c© Springer International Publishing Switzerland 2015
J. Wang and C. Yap (Eds.): FAW 2015, LNCS 9130, pp. 259–270, 2015.
DOI: 10.1007/978-3-319-19647-3 24

260 Y. Wang et al.

the energy consumption. As one of the major sources of energy consumption,
the control of data centers’ energy consumption plays an extremely important
role in the emergency demand response.

Generally, the data center can be classified into three types: private data
center, colocation data center and public cloud computing data center. By the
data from National Resource Defense Council (NRDC), the private data center is
still the major part, accounting for 53% of the total, although, the colocation has
developed rapidly in recent years and has occupied for about 40% of the total.
NRDC estimates that in many small office-based organizations with on-premise
server rooms, as much as 30% of their total electricity use may be directed
toward powering and cooling servers running 24 h a day, even when performing
little or no work. The energy wasted by colocation annually is equivalent to the
output of seven medium-sized coal-fired power plants [2].

However, the colocation’s business model is different from other data cen-
ters: the colocation operator is responsible for energy supply and cooling, and all
servers are controlled by tenants. Due to losing the direct control of servers, colo-
cation becomes very weak for the energy consumption management. We call the
dispersion of management as “uncoordinated relationship” and it has become a
serious problem for colocation’s energy-saving. In the colocation, because tenants
pay the bill based on their peak energy, they don’t care the energy consumption
and always keep servers working on high performance. Moreover, due to tenants’
independence and the obstacles of communication between the operator and ten-
ants, even if each tenant wants to optimize his own energy consumption inde-
pendently, it is very difficult to get the global energy consumption optimization
by each tenant’s independent optimization.

Statistic results from large private data centers such as Google and
Amazon [3], show that rack units spend about 80 % of their time using less
than 65 % of their peak power, and for the whole cluster, it never runs above
72 % of its aggregate peak power. Data analysis from “Hotmail”, “MSR” and
“Wikipedia” shows that the average utilization of tenant’s server is only 15% [4].
So low resource utilization has become a critical problem need to be addressed
in the colocation.

The energy-saving problem of the data center has been researched widely,
such as Dynamic Voltage and Frequency Scaling (DVFS) [5], energy-efficient
topologies ([6–8]), virtualization of computer resources ([9–12]), and traffic engi-
neering ([13–17]). However, almost all of these techniques work on a hypothesis
that data centers are collaborative, that is, under the uncoordinated situation
like the colocation, they can’t be used directly to solve the energy consumption
problem.

Facing the problem of the “uncoordinated relationship” and low resource
utilization in the colocation, we propose a framework by combining resource
integration technology and economic incentives. Firstly, we design the reward
system to encourage tenants to join the EDR program actively. We evaluate each
tenant’s resource migration cost and then return the benefits of energy-saving
based on each tenant’s cost. Secondly, for bids of tenants who join the EDR,

Truthful Strategy and Resource Integration for Multi-tenant Data Center 261

we propose a truthful strategy to ensure the authenticity of tenants’ information.
Then we develop two algorithms to integrate tenants’ resources, and reduce the
whole colocation’s energy consumption by increasing resource utilization. Using
the integration of tenants’ resources, we achieve the unified dispatch management
in the colocation, and strengthen the cooperation of the whole colocation.

To summarize, our contributions in this paper are three-fold:

– We formulate the “uncoordinated relationship” problem in the colocation
which is the main reason for the colocation’s energy inefficiency problem.

– To solve the colocation’s “uncoordinated relationship”, we propose the reward
system by combining the economic incentive and the resource migration
method, then design a truthful strategy to ensure the authenticity of informa-
tion from tenants.

– We prove the resource integration model is an NP-complete problem. For
solve it, we develop Priority-based Resource Allocation Algorithm (P-RAA)
and Dynamic Resource Allocation Algorithm (D-RAA), and give the time
complexity of two algorithms.

The rest of paper is organized as follows. We first propose the reward system
and the truthful strategy in Sect. 2. In Sect. 3, we analyze the complexity of the
resource integration model, then propose P-RAA and D-RAA to solve it and
analyze their time complexity. In Sect. 4, we show and analyze our simulation
experimental results. Finally, we summarize and conclude in Sect. 5.

2 Reward System and Truthful Strategy Design

In this section, we first study how to encourage tenants to join the EDR program
actively, and propose a reward system to solve the amotivational problem. Then,
we design a truthful strategy to ensure the authenticity of tenants’ information
including the resource requests and energy-saving targets.

2.1 Rewards System

Firstly, the cost of tenants can be divided into two parts, the switch loss and the
performance degradation. The main source of switch loss is turning servers into
sleep/off mode and bringing them back to normal operation [18]. Because the
switch loss is independent of other external factors, we can use a fixed value η to
denote it in one server. Then, we will focus on how to measure the degradation
of performance.

When allocating resources based on tenants’ requests, a bad situation is that
real-time resource demand is beyond the actual load. From the view of the
computer system, when actual load is beyond capacity limitation, redundant
traffic will queue and wait. We use λi and μi to denote the arrive rate and
processing rate of tenant i’s traffic and use λt and μt to denote the actual
arrive rate and actual processing rate. The theory rate is equivalent to each
tenant’s resource request, meanwhile, every tenant would get resources based on

262 Y. Wang et al.

his request regardless of the actual traffic arrive rate, so the processing rate can
be fixed, expressed as μi = μt. Under the actual situation, λt is fluctuating so we
use λi as standard to estimate λt. An M/M/1 queue model is used to calculate
the theory delay: di = 1

μi−λi
for tenant i. Tenants’ actual delay could be divided

into two parts by the actual traffic arrive rate:
{

d1 = 1
μi−λi

|t t ∈ T (λt ≤ λi)
d2 = 1

μi−λt
|t t ∈ T (λt > λi)

(1)

We set d1 as benchmark. Because μi has been fixed by each tenant’s request, the
main influence on delay d1 is traffic arrive rate λi. So delay d1 can be expressed
as a function only about λi:

d1 =
1

μi − λi
⇔ λi=1 × dbase (2)

where dbase denotes the unit delay benchmark. For d2, we have:

d2 = (λt/λi)dbase (3)

Delay d1 is determined by tenants’ resource requests, so it is set as a part
of performance degeneration. The total performance degeneration cost can be
expressed:

di
′ = ∫t1d2 = ∫t1

λt

λi
dbase

t1 ∈ T (λt > λi)
(4)

For λt, we adopt the gaussian distribution (limiting the data within a certain
range) to simulate its fluctuating. In the actual simulation, we restrict interval
length within 2σ (σ denotes the standard deviation). This can ensure that the
simulation data is closer to the truth.

Synthesizing the switch loss and the performance degradation, we can get a
total delay expression:

di cost = mi × η + ∫t1
λt

λi
dbase

t1 ∈ T (λt > λi)
(5)

where mi is the number of tenant i’s servers.
The reward function, which is used to motivate tenants to join the EDR

program, is based on tenant cost and energy-saving revenue. We can express the
reward function as:

Rdi =
di cost

M ′
∑

i=1

di cost

×
M ′
∑

i=1

(γ × pri) (6)

where γ is determined by operators to measure the tenant’s energy-saving rev-
enue based on the actual energy consumption target pri and M ′ denotes the set
of tenants selected.

Truthful Strategy and Resource Integration for Multi-tenant Data Center 263

2.2 Truthful Strategy

Since tenants lack of enough economic incentives to save energy, and they sel-
dom or never cooperate with each other, operators need to exploit a pattern
to enhance the synergy between tenants. Therefore, we encourage tenants
to submit their resource demands in the form of bids and integrate ten-
ants’ requests by the operator. The bid includes two aspects: resource request
ri j,k(j ∈ (1, R), k ∈ (1,mi)) (R denotes the kinds of resource) and energy-saving
target pri. Here ri j,k means the jth resource demand of tenant i’s kth server.
We get an equivalent relation between the resource request ri j,k and the arrive
rate λi and the processing rate μi:

{

μi = f1(ri j,k)
λi = f2(ri j,k) (7)

f1 and f2 are both proportional functions.
Next, we talk about how to ensure the authenticity of tenants’ bids. We

assume that each tenant is “rational-economic man”, which means that the
tenant always maximizes his own benefit. At the same time, this assumption
also ensures that tenants wouldn’t lie purposely without any benefit. In order to
maximize interests, tenants trend to get more resources and more earnings. So we
need not only to avoid lying about the resource demand, but also to get a truthful
energy-saving target as a constraint for resource integration. Migrating fewer
resources to save more energy is an optimal solution for decreasing the overall
energy consumption. We use a weight function to express this relationship:

ωi =
pri

∑mi

k=1

∑R
j=1 ri j,k

(8)

From the view of operators, they would like to accept bids whose weight
ωi is higher, and from the view of tenants, they want to get higher priority by
submitting higher energy conservation goals or requesting less resource. We use
an optimal model, showed in next section, to calculate tenants’ priorities, and
apply the weight coefficient to adjust the objective function of the model. Less
resource demand, more cost reduction. But the resource demand should have a
lower bound to maintain the system stability and quality of service. So for every
tenant, submitting his real demand is more conducive to get higher priority.
However, if tenants set an excessive energy-saving goal than the actual energy-
saving for getting higher priority, it may cause resource integration scheme ineffi-
ciency even losing efficacy. For avoiding this situation, we firstly define a penalty
function to increase the cost of lying, and then we propose an offline algorithm
P-RAA to allocate the resource based on tenants priorities, and an on-line algo-
rithm to allocate the resource when some tenants lie about their demands.

When finishing tenant i’s resource migration, the operator can get his actual
energy-saving pri true. By it, we can get the penalty function:

f(β) = |β(pri − (1 + pc1)pri true), 0|max

β ∝ pri−(1+pc1)pri true

pri true

(9)

264 Y. Wang et al.

where pc1 is the percentage of maximum permissible error which is used to judge
whether the error is factitious between the actual and the expected energy-
saving, and β is the punishment coefficient which is used to decide gradations of
punishment when tenants submitted inveracious energy-saving targets.

3 Model Analysis and Algorithm Design

Using prr to denote the whole energy-saving demand, we can get the energy-
saving constrain:

∑M
i=1 xipri ≥prr
xi ∈ (0, 1)

(10)

where xi denotes whether tenant i is selected.
Combined with the capacity constrain, we propose the selection model to

determine whose bids can be accepted to join the EDR program:

(P1) min
∑M

i=1 xi(mi × η +
∫

t1
λt

λi
dbase) 1

ωi

s.t.
∑M

i=1 xipri ≥prr
∑M

i=1 (xi

∑mi

k=1

∑R
j=1 ri j,k) ≤ C̄

xi ∈ (0, 1)
t1 ∈ T (λt > λi)

(11)

where C is the operator’s capacity, M is the number of tenants. This is a
mixed integer linear problem. By (P1), we can get a selection result vector
X̄ = (x1, x2,, xM). For ensuring that (P1) has a solution, we need to
make a hypothesis: we can find the solution based on two constraints includ-
ing the energy-saving constraint and the resource capacity constraint in (P1).
This hypothesis is critical to our objective of designing the resource integra-
tion algorithm. After getting X, the next objective is to design algorithms for
optimizing the resources allocation which will be discussed in Subsect. 3.2.

3.1 Complexity Analysis

We now analyze the computational complexity of the optimizing resource allo-
cation problem. Here, this problem is taken analogous to 0–1 multi-knapsack
problem. A recognized result is that this model is also NP-complete, and based
on this result, we propose the following Lemma1. 0–1 multi-knapsack problem
is an extension of 0–1 knapsack problem that considers multi-knapsacks rather
than one knapsack, which is known to be NP-complete.

Lemma 1. Finding the optimal solution of allocation problem based on the selec-
tion model is an NP-complete problem.

Proof. We assume that existing a polynomial time algorithm can solve the opti-
mality of allocation problem. The optimizing model can be seen as a process

Truthful Strategy and Resource Integration for Multi-tenant Data Center 265

of finding minimum n, and this process includes limited attempts to find the
optimal result. For every attempt, we set a value for n and then judge n severs
whether can hold all requests, and we call it a subproblem. In this subproblem,
there are N = (M × mi) resource requests, and for each request, the resource
demand is ri k =

∑

j∈(1,R) ri j,k, which is indivisible. The resource integration
model is to find an optimal solution which can use minimum servers to hold
all selected tenants’ requests. It can be divided into multiple subproblems, and
each of them is to judge whether all requests can be holden when the number of
servers is fixed. We see every request as an item and the resource demand just is
the item’s weight. Meanwhile, operator’s servers are seen as n knapsacks whose
capacity are (k1, k2, , kn). When each request’s value is 1, the resource
integration model can be expressed as:

(P2) max
n
∑

i=1

m
∑

j=1

zijvj

s.t.
m
∑

j=1

zijwj ≤ ki 1 ≤ i ≤ n

n
∑

i=1

zij ≤ 1 1 ≤ j ≤ m

zij ∈ (0, 1)

where zij denotes whether item j is put into knapsack i, and vj is the value
of item j. This is a 0–1 multi-knapsack problem. According to the assumption,
the resource integration problem can be solved within polynomial time, the sub-
problem should also be solved within polynomial time. We get the contradic-
tory result P = NP , so the original assumption is false. Therefore, Lemma 1 is
true. �	

3.2 The Off-line and On-line Algorithms

For solving the resource allocation problem, we adopt the greedy algorithm
to develop an offline algorithm (Priority-based Resource Allocation Algorithm
(P-RAA), see Algorithm 1 and an online algorithm (Dynamic Resource Alloca-
tion Algorithm (D-RAA), see Algorithm 2. When all tenants provide their truth-
ful demands, P-RAA can solve the resource allocation problem offline. We divide
this algorithm into three parts. Firstly, we initialize the tab of each resource
request and its time complexity is O(N). Then in (P1), we calculate each ten-
ant’s value based on the objective function and sort all tenants’ value, and the
corresponding time complexity is O(N + M log2M). Finally, we use the greedy
algorithm to allocate resources and its time complexity is O(M ′2). So the total
time complexity of P-RAA is within O(M ′2 + 2N + M log2M), and this shows
that P-RAA is a polynomial time algorithm.

A specific situation must be considered when the actual energy-saving is
below the energy-saving demand prr. Under this situation, we need to accept
more bids from remaining tenants. For these tenants, we adopt the sequence

266 Y. Wang et al.

Algorithm 1. Priority-based Resource Allocation Algorithm (P-RAA)
1: for all i ∈ M and j ∈ mi do
2: Initialize parameter flagij = 0; as the tab of each resource request
3: end for
4: By (P1), choose s set of tenants who can join in the resource migration process and

get the vector X = (x1,, xM′)
5: Using the greedy algorithm with suitable greed factor
6: for all i ∈ X do
7: Allocate tenant i′s resources to the servers based on the greedy algorithm
8: flagij = 1; set tenant i’s resource request j as unavailable
9: end for

10: Output: The solution of all resource requests allocation

from Algorithm 1 and then use the greedy algorithm to choose bids. Based on the
rank, D-RAA is designed as an online algorithm for accepting bids dynamically.
Because accepting more bids may need more operator’s servers, so our greed aim
is to use fewer servers to satisfy energy-saving constrain. Firstly, we consider to
fill in the servers which has been used in the offline algorithm, and then we would
use more severs to handle remaining resources. We assume that n′ tenants are
selected. We don’t consider the time complexity of sorting, because it has been
consisted in Algorithm 1. So the time complexity of D-RAA can be expressed as
O(n′ × n).

Algorithm 2. Dynamic Resource Allocation Algorithm (D-RAA)
1: Input: The resources allocation information from P-RAA and the servers used is

K = (k1, k2, , kn)
2: Sort tenant i(∀i ∈ M ′′) based on Algorithm 1; M ′′ represents a set of tenants whose

bids aren’t accepted
3: Check K and get each server’s resource information
4: while Energy conservation constraints are not satisfied do
5: if i’s bid can be put into K then
6: Using Greedy strategy to fill K
7: else
8: Put i’s bid into a new server in order
9: end if

10: end while
11: Output: xi(∀i ∈ M ′′)

Using algorithms P-RAA and D-RAA, we achieve a robust model for resource
integration. Combined with the truthful strategy, operators can use the infor-
mation to achieve the overall coordination.

Truthful Strategy and Resource Integration for Multi-tenant Data Center 267

4 Experimental Results

We evaluate the performance of our strategy and algorithms using the simulation
data. In this work, we generate the resource demand of each tenant following
Gaussian distribution under three different resource utilizations (15 %, 20 % and
30 %), and implement two strategies with different greed factors. From the exper-
iments, we want to obtain two objectives: (1) looking for the better greed factor
(Line 5 in Algorithm 1) to solve the multi-knapsack problem, (2) evaluating the
performance of our algorithms in energy-saving, and showing the percentage of
energy-saving of our solution in different conditions.

Firstly, Based on three different resource utilizations, we use the Gaussian
distribution to simulate the actual total resource demand of each tenant. The
main reason why choose the Gaussian distribution is that we need the char-
acteristic of fluctuating around the mean. Since the Gaussian distribution is
unbounded, we limit the value interval for avoiding negative number. Then we
adopt the uniform distribution to divide each tenant’s total resource demand for
getting the CPU and memory demands. Figure 1(a) shows the characters of the
data distribution under the resource utilization of 15 %. Then we express the
feasibility of our solution. Figure 1(b) shows the running time of our solution
in cases of 30, 60, 200 tenants. As shown in Fig. 1(b), the running time will
be increased with the growth of tenants, but even when tenants reach to 200,
the running time of our solution is only 0.2 second. For the EDR program, the
response time is requested to be smallest possible, so our solution is fast enough
for responding the EDR program.

(a)

0

0.05

0.1

0.15

0.2

0.25

30 60 200

R
un

 T
im

e
(s

)

The number of tenants
(b)

Fig. 1. (a) is the data distribution graph for the resource utilization of 15 %, (b) is the
actual running time of the whole solution

Next, we verify the effect of different greed factors on performance of energy-
saving. We use two strategies with different greed factors, one is to consider
the size of resource requirements as the major factor, as shown with the strat-
egy 1 in Fig. 2, the other tends to make resource requests to meet the resource

268 Y. Wang et al.

supply structure of operators, as shown in strategy 2 in Fig. 2. Assuming that
the resource is continuous and separable, the optimal solution can be got based
on traditional linear programming with an absolute lower bound. Figure 2 shows
that strategy 1 is better than strategy 2, and always under different resource
utilizations, and very close to the optimal result.

(a) (b) (c)

Fig. 2. Comparison of two kinds of greedy algorithms and the optimal solution based
on three factors. (a), (b) and (c) signify the different resource utilization 15 %, 20 %
and 30 %.

(a) (b)

Fig. 3. Energy-saving figure: (a) is the comparison of energy-saving effect in three
conditions; (b) shows the relationship between energy-saving and bids accepted

To further analyze the performance of our solution, we compare the energy
consumption of our algorithm with the optimal solution, as shown in Fig. 3.
In the Fig. 3(a), the actual energy consumption is very close to the optimal
energy consumption, under different resource utilizations. However, how much
the energy is saved depends on the accepted number of tenants’ bids. Figure 3(b)
describes the relationship between the accepted number of bids and the percent
of energy-saving. We can find that, with the resource utilization increasing from
40 % to 100 %, our solution can get about 78 % average energy-saving. Also with
the increasing of resources migrated, the energy-saving ratio takes on a growth

Truthful Strategy and Resource Integration for Multi-tenant Data Center 269

trend but is not obvious, the reason is that more resources migrated need to
take up more servers from operators. In this work, 78 % average energy-saving
is relatively stable, which suggests that we can obtain an efficient energy-saving
solution by our algorithms.

5 Conclusion

Because of high energy consumption, the colocation plays an irreplaceable role in
the EDR program. From its characteristics, we discover that the “uncoordinated
relationship” and the low resource utilization problems are the keys for improv-
ing the colocation’s energy efficiency. In this paper, we design a reward system to
encourage tenants to submit their resource demands and energy-saving targets.
The reward system firstly evaluate each tenant’s migration cost and then return
the benefits of energy-saving based on the cost. For ensure the authenticity of
tenants’ bids, we propose a truthful strategy including the design of the weight
parameter and the build of the penalty function. Then we integrate all tenants’
resource demands by two algorithms: an off-line algorithm P-RAA and an on-
line algorithm D-RAA. By resource integration, we achieve the unified dispatch
management in the colocation, and reduce the colocation’s energy consumption
by improving the overall resource utilization. Finally, we analyze the complexity
of the resource integration model, and show the specific time complexity expres-
sion for P-RAA and D-RAA. Experimental results show that our solution is
effective on energy-saving in the colocation and fast enough for responding the
EDR program.

Acknowledgement. This research was supported in part by the National Natural
Science Foundation of China (Grant No. 61221062 and 61202059).

References

1. Multi-tenant data centers need to play bigger energy efficiency role
(2014). http://www.datacenterknowledge.com/archives/2014/08/26/data-center-
energy-efficiency-role

2. Is cloud computing always greener? (2012). http://www.nrdc.org/energy/files/
cloud-computing-efficiency-IB.pdf

3. Barroso, L.A., Hölzle, U.: The datacenter as a computer: an introduction to the
design of warehouse-scale machines. Synth. Lect. Comput. Archit. 4(1), 1–108
(2009)

4. Ren, S., Islam, M.: Colocation demand response: why do i turn off my servers. In:
ICAC (2014)

5. Semeraro, G., Magklis, G., Balasubramonian, R., Albonesi, D.H., Dwarkadas, S.,
Scott, M.L.: Energy-efficient processor design using multiple clock domains with
dynamic voltage and frequency scaling. In: Proceedings of the Eighth International
Symposium on High-Performance Computer Architecture, pp. 29–40. IEEE (2002)

6. Hou, C., Zhang, F., Anta, A.F., Wang, L., Liu, Z.: A hop-by-hop energy efficient
distributed routing scheme. ACM SIGMETRICS Perform. Eval. Rev. 41(3), 101–
106 (2014)

http://www.datacenterknowledge.com/archives/2014/08/26/data-center-energy-efficiency-role
http://www.datacenterknowledge.com/archives/2014/08/26/data-center-energy-efficiency-role
http://www.nrdc.org/energy/files/cloud-computing-efficiency-IB.pdf
http://www.nrdc.org/energy/files/cloud-computing-efficiency-IB.pdf

270 Y. Wang et al.

7. Abts, D., Marty, M.R., Wells, P.M., Klausler, P., Liu, H.: Energy proportional
datacenter networks. ACM SIGARCH Comput. Architect. News 38(3), 338–347
(2010). ACM

8. Huang, L., Jia, Q., Wang, X., Yang, S., Li, B.: Pcube: improving power efficiency in
data center networks. In: 2011 IEEE International Conference on Cloud Computing
(CLOUD), pp. 65–72. IEEE (2011)

9. Jin, X., Zhang, F., Hu, S., Liu, Z.: Risk management for virtual machines consolida-
tion in data centers. In: 2013 IEEE Global Communications Conference (GLOBE-
COM), pp. 2872–2878. IEEE (2013)

10. Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer,
R., Pratt, I., Warfield, A.: Xen and the art of virtualization. ACM SIGOPS Oper.
Syst. Rev. 37(5), 164–177 (2003)

11. Beloglazov, A., Buyya, R.; Energy efficient resource management in virtualized
cloud data centers. In: Proceedings of the 2010 10th IEEE/ACM International
Conference on Cluster, Cloud and Grid Computing, pp. 826–831. IEEE Computer
Society (2010)

12. Mukherjee, T., Banerjee, A., Varsamopoulos, G., Gupta, S.K., Rungta, S.: Spatio-
temporal thermal-aware job scheduling to minimize energy consumption in virtu-
alized heterogeneous data centers. Comput. Netw. 53(17), 2888–2904 (2009)

13. Wang, L., Zhang, F., Arjona Aroca, J., Vasilakos, A.V., Zheng, K., Hou, C., Li,
D., Liu, Z.: Greendcn: a general framework for achieving energy efficiency in data
center networks. IEEE J. Sel. Areas Commun. 32(1), 4–15 (2014)

14. Wang, X., Yao, Y., Wang, X., Lu, K., Cao, Q.: Carpo: correlation-aware power
optimization in data center networks. In: INFOCOM: 2012 Proceedings IEEE, pp.
1125–1133. IEEE (2012)

15. Heller, B., Seetharaman, S., Mahadevan, P., Yiakoumis, Y., Sharma, P., Banerjee,
S., McKeown, N.: Elastictree: saving energy in data center networks. In: NSDI,
vol. 10, pp. 249–264 (2010)

16. Shang, Y., Li, D., Xu, M.: Energy-aware routing in data center network. In: Pro-
ceedings of the First ACM SIGCOMM Workshop on Green Networking, pp. 1–8.
ACM (2010)

17. Zhang, Y., Ansari, N.: Hero: hierarchical energy optimization for data center net-
works. In: 2012 IEEE International Conference on Communications (ICC), pp.
2924–2928. IEEE (2012)

18. Lin, M., Wierman, A., Andrew, L.L., Thereska, E.: Dynamic right-sizing for power-
proportional data centers. IEEE/ACM Trans. Network. (TON) 21(5), 1378–1391
(2013)

Local Search to Approximate Max
NAE-k-Sat Tightly

Aiyong Xian1, Kaiyuan Zhu2, Daming Zhu1(B),
and Lianrong Pu1

1 School of Computer Science and Technology, Shandong University,
Jinan, China

dmzhu@sdu.edu.cn
2 School of Informatics and Computing, Indiana University, Bloomington, USA

Abstract. A clause is not-all-equal satisfied if it has at least one literal
assigned by T and one literal assigned by F . Max NAE-SAT is given
by a set U of boolean variables and a set C of clauses, and asks to
find an assignment of U , such that the not-all-equal satisfied clauses of
C are maximized. Max NAE-SAT turns into Max NAE-k-SAT if each
clause contains just k literals. Max NAE-k-SAT for k = 2, 3 and 4 can
be approximated to 1.139 (1/0.878), 1.10047 (1/0.9087) and 8/7 respec-
tively. When k ≥ 5, little has been done in terms of algorithm design to
approximate Max NAE-k-SAT. In this paper, we propose a local search

algorithm which can approximate Max NAE-k-SAT to 2k−1

2k−1−1
for k≥ 2.

Then we show that Max NAE-k-SAT can not be approximated within
2k−1

2k−1−1
in polynomial time, if P �= NP. Moreover, we extend the algo-

rithm for Max NAE-k-SAT to approximate Max NAE-SAT where each
clause contains at least k literals.

Keywords: Local Search · Algorithm · Complexity · Performance
Ratio · Satisfiability

1 Introduction

The maximum satisfiability problem (abbr. Max-SAT) is the central problem in
theoretical computer science. The maximum not-all-equal satisfiability problem
(abbr. Max NAE-SAT) is regarded as a generalization of Max-SAT [1,11].

As Max-SAT is NP-Hard and in fact Max-SNP -hard [6,20], much attention
has been devoted to approximating it. Johnson [14] first devised an approxima-
tion algorithm for Max-SAT with performance ratio at most 2. Chen, Friesen and
Zheng [5] showed that the performance ratio of Johnson’s algorithm is actually
3
2 . Many years passed before people began to approximate Max-SAT by linear
and semi-definite programming relaxations [8,25]. The best performance ratio
for approximating Max SAT is 1.25502 (1

0.7968) by now [1].
Max NAE-SAT is NP-Hard and Max-SNP -Hard as well [21]. Andersson and

Engerbretsen [2] first investigated this problem and devised a semi-definite pro-
gramming relaxation to approximate it to 1.3812 (1

0.7240) in 1998. Years later,
c© Springer International Publishing Switzerland 2015
J. Wang and C. Yap (Eds.): FAW 2015, LNCS 9130, pp. 271–281, 2015.
DOI: 10.1007/978-3-319-19647-3 25

272 X. Aiyong et al.

Han, Ye and Zhang improved the performance ratio for approximating it to
1.3335 (1

0.7499) [11].
The special versions where each clause contains bounded number of literals

also play important roles in the algorithmic researches of Max-SAT and Max
NAE-SAT. In this paper, Max-SAT is referred to as Max-k-SAT if each clause
contains just k literals; Max-[k]-SAT if each clause contains at most k literals;
and Max-(k)-SAT if each clause contains at least k literals. Likewise, Max NAE-
SAT is referred to as Max NAE-k-SAT if each clause contains just k literals; Max
NAE-[k]-SAT if each clause contains at most k literals; and Max NAE-(k)-SAT
if each clause contains at least k literals.

As early as in 1974, Johnson [14] proposed an algorithm for Max-k-SAT with
performance ratio 2k

2k−1
. The simple assignment of true or false to every variable

with identical probability can also achieve an expected performance ratio 2k

2k−1
for Max-k-SAT [17]. On the other hand, Hastad showed that if P �= NP, then
Max-k -SAT cannot be approximated within 2k

2k−1
for k≥3 [12]. This implies that

either of Max-[k]-SAT and Max-(k)-SAT cannot be approximated within 2k

2k−1
,

if P �= NP.
The semi-definite programming relaxation proves to be powerful to solve both

Max-[k]-SAT [3,7–9] and Max NAE-[k]-SAT [1,2,11,15,26] when k ≤ 4. However,
as mentioned in [26], it seems very difficult to use semi-definite programming
relaxation for solving Max NAE-k-SAT with k ≥ 5.

Local search for Max-SAT, or SAT, the decision version of Max-SAT, is not
uncommon. Many local search based SAT solvers can be found in the literature
[4,10,13,18,19,22–24]. In some sense, those local search SAT solvers seem short
at their unbounded performance ratios, if they are used for Max-SAT. Actually,
Max-k-SAT can be approximated to 2k

2k−1
[16] by anonymous local search. In

terms of local search to approximate Max NAE-k-SAT, Zhu, Ma and Zhang
proposed a local search algorithm with a performance ratio k+1

k . On the com-
plexity of approximation, it is still open for how small a performance ratio Max
NAE-k-SAT can be approximated to in polynomial time.

In this paper, we present an anonymous local search algorithm for Max NAE-
k -SAT, which can achieve a performance ratio 2k−1

2k−1−1
. On the other hand, we

show that, if P �= NP, then for any k ≥ 4, Max NAE-k -SAT cannot be approx-
imated within 2k−1

2k−1−1
. Our algorithm for Max NAE-k -SAT can be extended to

solve Max NAE-(k)-SAT also with performance ratio 2k−1

2k−1−1
.

This paper is organized as follows. In Sect. 2, we present an anonymous local
search algorithm for Max NAE-k-SAT with performance ratio 2k−1

2k−1−1
. In Sect. 3,

we show that Max NAE-k-SAT cannot be approximated within 2k−1

2k−1−1
, if P �=

NP. In Sect. 4, we extend the local search algorithm for Max NAE-k-SAT to
approximate Max NAE-(k)-SAT to 2k−1

2k−1−1
. Section 5 is concluded by summariz-

ing the whole paper and prefigure the future work for this problem.

Local Search to Approximate Max NAE-k-Sat Tightly 273

2 Local Search for Max NAE-k-SAT

Let u be a boolean variable. Its positive and negative literals are represented as
u and u respectively. If u is assigned a value T or F , either of its literals gets a
value. In this paper, we do not distinguish the assignment of a boolean variable
with that of its literals.

A clause is a set of boolean-variable literals. Let Ct = {x[1], x[2], · · · , x[k]} be
a clause of k literals. If an assignment function, say a(•) for x[1], ..., x[k], makes
a(x[1]) ∨ · · · ∨ a(x[k]) = T , then Ct is satisfied under a(•); if a(x[1]) ∨ · · · ∨
a(x[k]) = T and a(x[1]) ∧ · · · ∧ a(x[k]) = T , then Ct is all-equal satisfied under
a(•); if a(x[1]) ∨ · · · ∨ a(x[k]) = T but a(x[1]) ∧ · · · ∧ a(x[k]) = F , then Ct

is not-all-equal satisfied under a(•). The maximum not-all-equal k satisfiability
problem is given by a set of boolean variables and a set of clauses, where each
clause contains k literals, and asks to find an assignment of all the variables,
such that the not-all-equal satisfied clauses are maximized in number. It can be
formalized as,

Instance. A set of boolean variables U = {u1, . . ., un}, a set of clauses C =
{C1, . . ., Cm}, each of which has exactly k literals of the variables in U .

Objective. Find an assignment function a for the boolean variables in U : U →
{T, F}, such that the not-all-equal satisfied clauses in C are maximized.

Usually, this problem is abbreviated as Max NAE-k -SAT. It turns into Max-
k -SAT, if the objective turns to ask for an assignment function of U , such that
the satisfied clauses in C are maximized in number.

In this section, every clause is supposed to have k literals. Moreover, a clause
cannot contain both the positive and the negative literal of a boolean vari-
able, because if otherwise, it will be satisfied and not-all-equal satisfied by any
assignment.

2.1 The Algorithm and Its Performance

Definition 1. Given an assignment function of U , say a(U), a clause is satisfied
(resp. unsatisfied) by a(uj) or uj, if it contains uj with a(uj) = T (resp. F), or
uj with a(uj) = F (resp. T). A clause is i-satisfied under a(U), if it is satisfied
by exactly i literals under a(U).

Note that a clause is not satisfied, if it is 0-satisfied; a clause is all-equal satisfied,
if it is k-satisfied. Under an assignment of U , let Si be the set of i-satisfied clauses
in C; C[i, j] the set of i-satisfied clauses which are also satisfied by uj ; N [i, j] the
set of i-satisfied clauses which are unsatisfied by uj . Moreover, to flip a boolean
variable refers to that the variable is reassigned by the complement of its current
value.

Because a clause does not contain both uj and uj , flipping uj must make
an i-satisfied clause in C[i, j] become (i − 1)-satisfied for 0 < i ≤ k, and an
i-satisfied clause in N [i, j] become (i + 1)-satisfied for 0 ≤ i < k.

Local search asks us to set an objective function which represents how many
clauses are not-all-equal satisfied under an assignment of U . Then it will assign

274 X. Aiyong et al.

the boolean variables in U in the following way: (1)Assign T or F to each boolean
variable randomly; (2)Select a variable and flip it such that the objective function
can increase in quantitative value; (3)Repeat (2) until no boolean variable can
be selected for flipping to increase the objective function in value. This generic
method is referred to as one-bit-flip local search. Given an assignment, say a(U)
of U , then in C, |S1| + · · · + |Sk−1| clauses are not-all-equal satisfied. Other
than directly using |S1| + · · · + |Sk−1| as the objective function of the one-bit-
flip local search, our objective function for Max NAE-k-SAT is a weighted sum
of |S1|, · · · , |Sk|, which can generally be specialized as,

F = α0|S0| + α1|S1| + · · · + αk−1|Sk−1| + αk|Sk|, (1)

where, αi is the coefficient of |Si|, 0 ≤ i ≤ k. We aim to show that if F is used as
the objective function, the one-bit-flip local search can make |S1| + · · · + |Sk−1|
arrive at a value not less than (2k−1 − 1)(|S0| + |Sk|).

Those clauses which are converted from i-satisfied to (i − 1)-satisfied by
flipping uj must lead to an increment (αi−1 −αi)|C[i, j]| (1 ≤ i ≤ k) of F , while
those clauses which are converted from i-satisfied to (i + 1)-satisfied by flipping
uj must lead to an increment (αi+1−αi)|N [i, j]| (0 ≤ i ≤ k−1) of F . Therefore,
the increment of F due to flipping uj can be summarized as,

Δ[F, j] =
k

∑

i=1

(αi−1 − αi)|C[i, j]| +
k−1
∑

i=0

(αi+1 − αi)|N [i, j]|. (2)

If flipping uj leads to Δ[F, j] > 0, the value of F could be improved. Thus
the local search algorithm for Max NAE-k-SAT is given formally in Algorithm1
and named as NAE-k-SAT(U,C). In the description of the algorithm, a(uj)
represents the complement of a(uj), and Rand(•) stands for the subroutine to
generate T or F randomly.

Algorithm 1. NAE-k-SAT(U,C)
1: a(uj) ← Rand(•), uj ∈ U ;
2: While (∃uj , s. t. Δ[F, j] > 0) do
3: a(uj) ← a(uj);
4: End while
5: return a(U)

Those coefficients of F in (1) are in fact the key factors to affect the per-
formance of NAE-k-SAT(U,C). Since the clauses in S0, Sk are not not-all-equal
satisfied, setting α0 and αk with zero seems reasonable. Here, we give the values
of those coefficients αi for 0 ≤ i ≤ k by a recurrent relation as follows.

αi =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0 i = 0

αi−1 +
2k−1 − 1 −

∑i−1
j=1

(

k
j

)

(k − i + 1)
(

k
i−1

) 1 ≤ i ≤ k
(3)

Local Search to Approximate Max NAE-k-Sat Tightly 275

Actually, the coefficients given in (3) are symmetrical in value, from which
αk = 0 follows.

Property 1. If 0 ≤ i ≤ k, then αi = αk−i.

Lemma 1. Let U be assigned arbitrarily. Then
∑n

j=1 |C[i, j]| = i|Si|, and
∑n

j=1 |N [i, j]| = (k − i)|Si|.

Proof. Let a(U) be an arbitrary assignment function of U . Let Ct = {x[t, 1],
x[t, 2], . . ., x[t, k]} ∈ Si be i-satisfied under a(U). Without loss of generality, let
a(x[t, 1]) = a(x[t, 2]) = . . . = a(x[t, i]) = T . Then Ct will become (i−1)-satisfied
through flipping one of x[t, 1], . . ., x[t, i]. If x[t, y] ∈ {ujy , ujy} for 1 ≤ y ≤ i,
then Ct ∈ C[i, jy]. If j /∈ {jy |1 ≤ y ≤ i}, then Ct /∈ C[i, j]. Namely, Ct occurs in
just i sets of C[i, j], 1 ≤ j ≤ k. Finally,

∑n
j=1 |C[i, j]| = i|Si| follows from every

i-satisfied clause occurs in just i sets of C[i, j], 1 ≤ j ≤ k.
Likewise, it can be shown that every i-satisfied clause must occur in just k−i

sets of N [i, j], 1 ≤ j ≤ k. Thus
∑n

j=1 |N [i, j]| = (k − i)|Si|. 	

Lemma 2. Let a(U) be the assignment function of U returned by NAE-k-
SAT(U,C), while Si the set of i-satisfied clauses under a(U), then |S1| + · · · +
|Sk−1| ≥ (2k−1 − 1)(|S0| + |Sk|).

Proof. Since a(U) is returned by NAE-k-SAT(U,C), flipping any variable cannot
increase the value of F for U assigned by a(U). Thus Δ[F, j] ≤ 0 for 1 ≤ j ≤ n.
Namely,

k
∑

i=1

(αi−1 − αi)|C[i, j]| +
k−1
∑

i=0

(αi+1 − αi)|N [i, j]| ≤ 0, (4)

j ∈ {1, ..., n}.

Adding these n inequalities, we have,

n
∑

j=1

Δ[F, j] =
n

∑

j=1

k
∑

i=1

(αi−1 − αi)|C[i, j]| +
n

∑

j=1

k−1
∑

i=0

(αi+1 − αi)|N [i, j]|

=
k

∑

i=1

(αi−1 − αi)
n

∑

j=1

|C[i, j]| +
k−1
∑

i=0

(αi+1 − αi)
n

∑

j=1

|N [i, j]|

≤ 0. (5)

By lemma 1, i|Si| and (k−i)Si can substitute
∑n

j=1 |C[i, j]| and
∑n

j=1 |N [i, j]|
in (9) respectively. These substitutions lead to,

kα1|S0| +
k−1
∑

i=1

[(αi−1 − αi)i + (αi+1 − αi)(k − i)]|Si|

+ kαk−1|Sk| ≤ 0. (6)

276 X. Aiyong et al.

By (3) and property 1, we have, α1 = αk−1 = 2k−1−1
k . Therefore, kα1|S0| +

kαk−1|Sk| = kα1 (|S0| + |Sk|) = (2k−1 − 1) (|S0| + |Sk|). Hence inequality (6)
becomes

−
k−1
∑

i=1

[(αi−1 − αi)i + (αi+1 − αi)(k − i)]|Si|

≥ (2k−1 − 1)(|S0| + |Sk|). (7)

The left side of this inequality is just |S1| + |S2| + . . . + |Sk−1|, because
(αi−1 − αi)i + (αi+1 − αi)(k − i) always equals −1 for 1 ≤ i ≤ k − 1, which
can be verified by substituting (αi−1 −αi) and (αi+1 −αi) with the formulation
in (3). 	

Consequently, Lemma 2 implies that NAE-k-SAT(U,C) can approximate Max
NAE-k-SAT to 2k−1

2k−1−1
for k ≥ 2.

2.2 The Time Complexity

In this subsection, the instances of Max NAE-k-SAT are also represented by U
and C, where |U | = n, and |C| = m. Let a(U) be an assignment function of
U . It takes O(k) time to calculate how many literals in a clause are assigned
true by a(U). Thus, it can take O(km) time to construct the sets C[i, j], N [i, j]
and Si under a(U). Finding a boolean variable uj for 1 ≤ j ≤ n such that
Δ[F, j] > 0 takes O(kn) time. Therefore, the time complexity of a while loop in
NAE-k-SAT(U,C) is O(k(m + n)).

How many times the while loop in NAE-k-SAT(U,C) runs depends on the
values of αi, 1 ≤ i ≤ k − 1.

Note that each coefficient of F is given by a fraction. Exactly, only when every
coefficient of F acts as an integer, can the algorithm always output solutions with
performance ratio no more than 2k−1

2k−1−1
. Thus for implementing the algorithm,

we have to scale αi up into an integer by multiplying it with a positive integer,
say β(k), for 1 ≤ i ≤ k − 1. If we insist that β(k)α1, · · · , β(k)αk−1 should all
be positive integers, β(k)α� k

2 � must be the greatest one among them. Generally,
β(k) can be bounded by the following property.

Property 2. Let β(k) = min{β|βαi is positive integer, 1 ≤ i ≤ k − 1}, where
αi is given by equation (3). Then β(k) ≤ �k

2 �! if k ≥ 6.

Theorem 1. For any Max NAE-k-SAT instance, NAE-k-SAT(U,C) can
achieve a performance ratio no more than 2k−1

2k−1−1
in O(β(k)2k−1k(m + n)m)

time, where n is the number of boolean variables and m is the number of clauses.
If k ≥ 6, β(k) ≤ �k

2 �!.

Local Search to Approximate Max NAE-k-Sat Tightly 277

3 The Complexity of Approximating Max NAE-k-SAT

The following theorem derives from Hastad in [12].

Theorem 2. If P �= NP, then for any k ≥ 3, no polynomial time algorithm can
approximate Max-k-SAT to 2k

2k−1
− ε, ε > 0.

The focus of this section is on showing that Max NAE-k-SAT cannot be approx-
imated within 2k−1

2k−1−1
for k ≥ 4. That is,

Theorem 3. If P �= NP, then for any k ≥ 4, no polynomial time algorithm can
approximate Max NAE-k-SAT to 2k−1

2k−1−1
− ε, ε > 0.

Proof. The proof is a reduction from Max-l-SAT, l ≥ 3. Let U , C as a whole
be an instance of Max-l-SAT. We construct an instance, say U ′ and C ′ of Max
NAE-(l + 1)-SAT, as follows.

Firstly, we add a variable o to U to form U ′. Formally, if U = {u1, . . ., un},
then U ′ = {u1, . . ., un, o}. Then, we add o into every clause in C to form the
clauses of C ′. Formally, let C = {C1, . . ., Cm}, where Ct = (x[t, 1], . . ., x[t, l]).
Then corresponding to Ct for 1 ≤ t ≤ m, we set a clause Dt = (x[t, 1], . . .,
x[t, l], o). Finally, C ′ = {D1, . . ., Dm}. We argue that for any assignment a(U)
of U , U ′ can be assigned to make as many clauses in C ′ as those clauses satisfied
under a(U) in C not-all-equal satisfied, and so works for the contrary side.

Let a(u1), . . ., a(un) be an assignment of U , under which M clauses in C
are satisfied. Assign the literal o by a(o) = F . Then exactly M clauses in C ′

are not-all-equal satisfied under a(u1), . . ., a(un) and a(o). This is because, if
Ct is satisfied under a(u1), . . ., a(un), then Ct must have literals with value T .
Since a(o) = F , Dt is not-all-equal satisfied. If Ct is not satisfied under a(u1),
. . ., a(un), then since a(o) = F , Dt is not not-all-equal satisfied.

On the other hand, let a(u1), . . ., a(un) and a(o) be an assignment of U ′,
under which M clauses in C ′ are not-all-equal satisfied. Then assigning a(u1) ⊕
a(o), . . ., a(un) ⊕ a(o) to u1, ..., un must make M clauses in C satisfied exactly.
This is because,

(1)If a(o) = F , then C ′ contains no all-equal satisfied clauses; and a(ui)⊕a(o)
= a(ui) for 1 ≤ i ≤ n. If Dt is not-all-equal satisfied under a(u1), . . ., a(un) and
a(o), then Dt must have a literal, say x[t, •], with value T . Thus, Ct is satisfied
by a(x[t, •]). If Dt is not satisfied under a(u1), . . ., a(un) and a(o), Ct is not
satisfied under a(u1), . . ., a(un) trivially.

(2)If a(o) = T , then C ′ contains no not-satisfied clause, and a(ui) ⊕ a(o) =
a(ui) for 1 ≤ i ≤ n. If Dt is not-all-equal satisfied under a(u1), . . ., a(un) and
a(o), then a literal, say x[t, •] in Dt is assigned by F . So Ct is satisfied by
a(x[t, •]). If Dt is all-equal satisfied under a(u1), . . ., a(un) and a(o), then Ct is
not satisfied under a(u1), . . ., a(un) trivially.

Let OPT (U,C) be the maximum number of clauses in C which can be sat-
isfied under some assignment of U , while OPT (U ′, C ′) the maximum number
of clauses in C ′ which can be not-all-equal satisfied under an assignment of U ′.
Then by the above mentioned argument, OPT (U,C) = OPT (U ′, C ′).

278 X. Aiyong et al.

If a polynomial time algorithm, which can approximate Max NAE-k-SAT
to 2k−1

2k−1−1
- ε, then for any Max NAE-k-SAT instance, say U ′ and C ′, this

algorithm can always return such an assignment a(U ′) of U ′, that at least
1

2k−1/(2k−1−1)−ε
OPT (U ′, C ′) clauses are not-all-equal satisfied.

Then, at least 1
2k−1/(2k−1−1)−ε

OPT (U ′, C ′) clauses in C are satisfied under
assigning a(u1)⊕a(o), . . ., a(un)⊕a(o) to u1, ..., un respectively. This contradicts
with Theorem 2. 	

4 Local Search for Max NAE-(k)-SAT

In this section, a Max NAE-(k)-SAT instance is given by a set U = {u1, . . . , un}
of boolean variables, and a set C = {C1, . . ., Cm} of clauses, each of which has k
or more literals, and just like the objective of Max NAE-k-SAT, asks to find an
assignment of U such that the not-all-equal satisfied clauses in C are maximized
in number. Since the algorithm in Sect. 2 cannot be used for Max NAE-(k)-SAT
instances to arrive at a substantial performance ratio, we aim to extend the
algorithm NAE-k-SAT(U,C) to solve Max NAE-(k)-SAT in this section.

Under an assignment of U , let S[b, i] be the set of i-satisfied clauses each
of which contains b literals; C[b, i, j] the set of i-satisfied clauses each of which
contains b literals and is satisfied by uj ; N [b, i, j] the set of i-satisfied clauses
each of which contains b literals and is unsatisfied by uj .

Suppose in C, a clause has at most kmax literals. In other words, a clause in
C may contain k, . . ., kmax literals. To increase the number of not-all-equal sat-
isfied clauses in C by anonymous local search, we pay attention to the following
objective function:

G =
kmax
∑

b=k

(αb,1|S[b, 1]| + . . . + αb,b−1|S[b, b − 1]|). (8)

One can notice that Eq. (8) arises from adding those objective functions of
Max NAE-b-SAT for k ≤ b ≤ kmax, where the objective function of Max NAE-b-
SAT has been given by Eq. (1). Following Eq. (3), the coefficients αb,i (0 ≤ i ≤ b)
in G can be specialized as

αb,i =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0 i = 0

αb,i−1 +
2b−1 − 1 −

∑i−1
j=1

(

b
j

)

(b − i + 1)
(

b
i−1

) . 1 ≤ i ≤ b
(9)

It follows from Property 1 that αb,i = αb,b−i, 0 ≤ i ≤ b. Let U be assigned by
a(U). When flipping a variable, an i-satisfied clause in S[b, i] can only move to
S[b, i + 1] or S[b, i − 1]. Similar to Eq. (2), flipping uj will lead to the increment
of G as,

Local Search to Approximate Max NAE-k-Sat Tightly 279

Δ[G, j] =
kmax
∑

b=k

b
∑

i=1

(αb,i−1 − αb,i)|C[b, i, j]|

+
kmax
∑

b=k

b−1
∑

i=0

(αb,i+1 − αb,i)|N [b, i, j]|

=
kmax
∑

b=k

[
b

∑

i=1

(αb,i−1 − αb,i)|C[b, i, j]|

+
b−1
∑

i=0

(αb,i+1 − αb,i)|N [b, i, j]|]. (10)

Therefore, the local search algorithm for Max NAE-(k)-SAT, except replacing
Δ[F, j] > 0 with Δ[G, j] > 0 as the condition for flipping uj , can be formulated
in the same way as NAE-k-SAT(U,C), where Δ[G, j] is specialized by Eq. (10).
Thus the algorithm must end with Δ[G, j] ≤ 0 for 1 ≤ j ≤ n.

For convenience, we rename the algorithm NAE-k-SAT(U,C) in which
Δ[G, j] > 0 substitutes Δ[F, j] > 0 as NAE-(k)-SAT(U,C).

Lemma 3. Let U be assigned arbitrarily. Then
∑n

j=1 |C[b, i, j]| = i|S[b, i]|, and
∑n

j=1 |N [b, i, j]| = (b − i)|S[b, i]|.

Lemma 4. Let NAE-(k)-SAT(U,C) return an assignment a(U) of U . Then
∑kmax

b=k

∑b−1
i=1 |S[b, i]| ≥

∑kmax

b=k (2b−1 − 1)(|S[b, 0]| + |S[b, b]|).

Since C =
⋃kmax

b=k

⋃b
i=0 S[b, i], Lemma 4 implies

∑kmax

b=k

∑b−1
i=1 |S[b, i]| ≥

2k−1

2k−1−1
|C|. Namely, NAE-(k)-SAT(U,C) can always return a solution with a per-

formance ratio 2k−1

2k−1−1
. The running time of NAE-(k)-SAT(U,C) can be bounded

following the analysis for NAE-k-SAT(U,C).

Theorem 4. For every Max NAE-(k)-SAT instance of n variables and m

clauses, the algorithm NAE-(k)-SAT(U,C) can always take O(
∑kmax

b=k β(b)2b−1

b(m + n)m) time to return a solution with a performance ratio no more than
2k−1

2k−1−1
, β(b) ≤ � b

2�!, if b ≥ 6.

5 Conclusion

In this paper, we have proposed a local search algorithm to solve Max NAE-k-
SAT with performance ratio 2k−1

2k−1−1
, then shown that Max NAE-k-SAT cannot

be approximated within 2k−1

2k−1−1
for k ≥ 4. Benefiting from the algorithm for

Max NAE-k-SAT, we have proposed a local search algorithm for Max NAE-(k)-
SAT with performance ratio 2k−1

2k−1−1
. The time complexity of the algorithms in

this paper are still exponential functions of k. Improving the time complexity
of local search for Max NAE-k-SAT to achieve a performance ratio 2k−1

2k−1−1
,

280 X. Aiyong et al.

remains interesting. Moreover, for scaling up the objective function to integer
coefficients, the upper bound of the scaling parameter, β(k) namely, cannot
be estimated tightly in this paper, if k > 8. Obtaining a tighter bound of the
scaling parameter may help analyze the time complexity of our algorithms more
precisely.

Acknowledgements. We are grateful to the reviewers for giving us many suggestions
to enhance the quality of the paper. This paper is supported by: National natural sci-
ence foundation of China: 61472222, Natural science foundation of Shandong Province:
ZR2012FZ002.

References

1. Avidor, A., Berkovitch, I., Zwick, U.: Improved approximation algorithms for
MAX NAE-SAT and MAX SAT. In: Erlebach, T., Persinao, G. (eds.) WAOA
2005. LNCS, vol. 3879, pp. 27–40. Springer, Heidelberg (2006)

2. Andersson, G., Engebretsen, L.: Better approximation algorithms for set splitting
and not-all-equal SAT. Inf. Process. Lett. 65(6), 305–311 (1998)

3. Asano, T., Williamson, D.P.: Improved approximation algorithms for MAX-SAT.
J. Algorithms 42(1), 173–202 (2002)

4. Cai, S., Su, K.: Configuration checking with aspiration in local search for SAT. In:
Proceedings of AAAI 2012, pp. 434–440 (2012)

5. Chen, J., Friesen, D., Zheng, H.: Tight bound on Johnson’s algorithm for maximum
satisfiability. J. comput. syst. sci. 58(3), 622–640 (1999)

6. Cook S A, The complexity of theorem-proving procedures, In: Proceedings of the
3rd Annual ACM Symposium on Theorey of Computing, Shaker Heights, Ohio,
USA, pp. 151–158. ACM, New York (1971)

7. Feige, U., Goemans, M.X.: Approximating the value of two power proof systems,
with applications to MAX-2SAT and MAX-DICUT, In: Proceedings of the 3rd
Israel Symposium on Theorey and Computing Systems, Tel Aviv, Israel, pp. 182–
189. IEEE, Washington DC, USA (1995)

8. Goemans, M.X., Williamson, D.P.: New 3/4-approximation algorithms for the max-
imum satisfiability problem. Siam J. Discrete Math. 7(4), 656–666 (1994)

9. Goemans, M.X., Williamson, D.P.: Improved approximation algorithms for max-
imum cut and satisfiability problems using semi-definite programming. J. ACM
42(6), 1115–1145 (1995)

10. Gu, J.: Efficient Local search for very large-scale satisfiability problem. ACM
SIGART Bull. 3(1), 8–12 (1992)

11. Han, Q., Ye, Y., Zhang, J.: Improved approximation for max set splitting and max
NAE SAT. Discrete Appl. Math. 142(1–3), 133–149 (2004)

12. Hastad, J.: Some optimal inapproximability results. In: Proceedings of the 28th
Annual ACM Symposium on Theorey of Computing, pp. 1–10. El Paso, Texas
(1997)

13. Huang, W., Zhang, D., Wang, H.: An algorithm based on tabu search for satisfia-
bility problem. J. Comput. Sci. Technol. 17(3), 340–346 (2002)

14. Johnson, D.S.: Approximation algorithms for combinatorial problems. J. comput.
syst. sci. 9(3), 256–278 (1974)

Local Search to Approximate Max NAE-k-Sat Tightly 281

15. Karloff, H., Zwick, U.: A 7/8-approximation algorithm for MAX 3SAT, In: Pro-
ceedings of the 38th IEEE Symposium on Foundations of Computer Science, Miami
Beach, Florida. IEEE, Washington DC, USA (1997)

16. Khanna, S., Motwani, R., Madhu, S., Umesh, V.: On syntactic versus computa-
tional views of approximability. SIAM J. Comput. 28(1), 164–191 (1998)

17. Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press,
Cambridge UK (1995)

18. Mazure, B., Sais, L., Gregoire, E.: Tabu search for SAT, In: Proceedings of the
14th national conference on artificial intelligence (AAAI97), pp. 281–285. AAAI
Press, Menlo Park, CA (1997)

19. McAllester, D., Selman, B., Kautz, H.: Evidence for invariants in local search, In:
Proceedings Of AAAI 1997. pp. 321–326. AAAI Press, Menlo Park, CA (1997)

20. Papadimitriou, C.H., Yanakakis, M.: Optimization, approximation, and complexity
classes. J. Comput. Syst. Sci. 43(3), 425–440 (1991)

21. Papadimitirou, C.H.: Computational Complexity. Addison Wesley, Boston (1994)
22. Selman, B., Levesque, H., Mitchell, D.: A new method for solving hard satisfiability

problems, In: Proceedings of the 10th National Conference on Artificial Intelligence.
pp. 440–446. Pasadena, Calefornia, USA (1992)

23. Selman, B., Kautz, H.A., Cohen, B.: Noise strategies for improving local search, In:
Proceedings of the AAAI 1994, pp. 337–343. AAAI Press, Menlo Park, CA (1994)

24. Schurmans, D., Southey, F.: Local search characteristics of incomplete SAT proce-
dures. Artif. Intell. 132(2), 121–150 (2001)

25. Yannakakis, M.: On the approximation of maximum satisfiability. J. Algorithms
17, 475–502 (1994)

26. Zwick, U.: Outward rotations: a tool for rounding solutions of semidefinite pro-
gramming relaxations, with applications to MAX CUT and other problems, In:
Proceedings of the 31th Annual ACM Symposium on Theory of Computing, pp.
679–687. Atlanta, Georgia (1999)

27. Zhu, D., Ma, S., Zhang, P.: Tight bounds on local search to approximate the
maximum satisfiability problems. In: Fu, B., Du, D.-Z. (eds.) COCOON 2011.
LNCS, vol. 6842, pp. 49–61. Springer, Heidelberg (2011)

Faster Computation of the Maximum
Dissociation Set and Minimum 3-Path Vertex

Cover in Graphs

Mingyu Xiao(B) and Shaowei Kou

School of Computer Science and Engineering, University of Electronic Science
and Technology of China, Chengdu 611731, China

myxiao@gmail.com

Abstract. A dissociation set in a graph G = (V,E) is a vertex subset D
such that the subgraph G[D] induced on D has vertex degree at most 1.
A 3-path vertex cover in a graph is a vertex subset C such that every
path of three vertices contains at least one vertex from C. Clearly,
a vertex set D is a dissociation set if and only if V \ D is a 3-path
vertex cover. There are many applications for dissociation sets and 3-
path vertex covers. However, it is NP-hard to compute a dissociation set
of maximum size or a 3-path vertex cover of minimum size in graphs.
Several exact algorithms have been proposed for these two problems
and they can be solved in O∗(1.4658n) time in n-vertex graphs. In this
paper, we reveal some interesting structural properties of the two prob-
lems, which allow us to solve them in O∗(1.4656n) time and polynomial
space or O∗(1.3659n) time and exponential space.

Keywords: Dissociation number · 3-Path Vertex Cover · Exact algo-
rithms · Graph algorithms · Dynamic programming

1 Introduction

A subset of vertices in a graph is called a dissociation set if it induces a subgraph
with vertex degree at most 1. The maximum size of a dissociation set is called
the dissociation number of the graph. To compute a dissociation set of maximum
size or the dissociation number is NP-hard even in bipartite graphs or planar
graphs [23]. The complexity of this problem in more restricted graph classes has
been studied. It remains NP-hard even in C4-free bipartite graphs with vertex
degree at most 3 [3]. But it is polynomially solvable in trees and some other graph
classes [1–3,5,6,9,12,14–16]. Computing the dissociation number can be helpful
in finding a lower bound for the 1-improper chromatic number of a graph; see [11].
In fact, dissociation set generalizes two other important concepts in graphs: inde-
pendent set [20] and induced matching [22]. The Maximum Dissociation Set
problem, to find a maximum dissociation set is also a special case of the Max-
imum Bounded-Degree-d problem [7], in which we are finding a maximum

Supported by NFSC of China under the Grant 61370071.

c© Springer International Publishing Switzerland 2015
J. Wang and C. Yap (Eds.): FAW 2015, LNCS 9130, pp. 282–293, 2015.
DOI: 10.1007/978-3-319-19647-3 26

Faster Computation of the Maximum Dissociation Set 283

induced subgraph with degree bounded by d. The dual problem of Maximum
Dissociation Set is known as the Minimum 3-path Vertex Cover problem.
A vertex subset C is called a 3-path vertex cover if every path of three vertices
in a graph contains at least one vertex from C and Minimum 3-path Vertex
Cover is to find a 3-path vertex cover of minimum size. There are also some
applications for Minimum 3-path Vertex Cover [5,13]. It remains NP-hard
to compute a special 3-path vertex cover C such that the degree of the induced
graph G[C] is bounded by any constant d0 ≥ 0 [21]. A more general problem, to
find a minimum p-path vertex cover has been considered in the literature [4,5].

Maximum Dissociation Set and Minimum 3-path Vertex Cover have
been studied in approximation algorithms, parameterized algorithms and exact
algorithms. For Minimum 3-path Vertex Cover, there is a randomized
approximation algorithm with an expected approximation ratio of 23

11 [13] and
an O∗(2k)-time fixed-parameter tractable algorithm to compute a 3-path vertex
cover of size k [19]. However, it is hard to compute a dissociation set of size
at least k in approximation and parameterized algorithms. No approximation
algorithms with constant ratio are known and it is W[1]-hard with parameter
k [21]. In terms of exact algorithms, it does not make sense to distinguish these
two problems. Kardoš et al. [13] gave an O∗(1.5171n)-time algorithm to compute
a maximum dissociation set in an n-vertex graph. Chang et al. [7] improved the
result to O∗(1.4658n). Their algorithm was analyzed by the measure-and-conquer
method. Although many fastest exact algorithms are obtained via the measure-
and-conquer method, this paper will not use this technique and turn back to a
normal measure. The reason is that if we use the measure-and-conquer method
by setting different weights to vertices, we may not be able to use our dynamic
programming algorithm to further improve the time complexity to O∗(1.3659n).
It is also surprising that our polynomial-space algorithm using normal measure
runs in O∗(1.4656n) time, even faster than the O∗(1.4658n)-time algorithm ana-
lyzed by the measure-and-conquer method [7]. Our improvement relies on some
new structural properties developed in this paper. Due to space limitation, some
proofs and figures are omitted in this version, which can be found in the full
version of this paper.

2 Preliminaries

We let G = (V,E) denote a simple and undirected graph with n = |V | vertices
and m = |E| edges. A singleton {v} may be simply denoted by v. The vertex set
and edge set of a graph G′ are denoted by V (G′) and E(G′), respectively. For a
subgraph (resp., a vertex subset) X, the subgraph induced by V (X) (resp., X)
is simply denoted by G[X], and G[V \ V (X)] (resp., G[V \ X]) is also written
as G \ X. A vertex in a subgraph or a vertex subset X is also called a X-vertex.
For a vertex subset X, let N(X) denote the set of open neighbors of X, i.e.,
the vertices in V \ X adjacent to some vertex in X, and N [X] denote the set of
closed neighbors of X, i.e., N(X)∪X. Let N2(v) denote the set of vertices with
distance exactly 2 from v. The degree of a vertex v in a graph G, denoted by

284 M. Xiao and S. Kou

d(v), is defined to be the number of neighbors of v in G. We also use dX(v) to
denote the number of neighbors of v in a subgraph X. A vertex v is dominated
by a neighbor u of it if v is adjacent to all neighbors of u. A vertex s ∈ N2(v) is
called a satellite of v if there is a neighbor ps of v such that N [ps]−N [v] = {s}.
The vertex ps is also called a parent of the satellite s at v. If there is a neighbor
u of v such that |N [u]−N [v]| = 2, then any vertex in N [u]−N [v] is a tw-satellite
of v, the two tw-satellites in N [u] − N [v] are twins, and u is a parent of the tw-
satellites at v. The set of all tw-satellites of a vertex v is denoted by Tv. A vertex
subset V ′ is called a dissociation set of a graph if the induced graph G[V ′] has
maximum degree 1. In fact, in this paper, we will consider a general version of
Maximum Dissociation Set Problem, in which a specified vertex subset S
is given and we are going to find a maximum dissociation set containing S. See
the following definition.

Generalized Maximum Dissociation Set Problem (MDS)
Input: A undirected graph G = (V,E) and a vertex subset S ⊂ V .
Output: A vertex set D ⊇ S of maximum cardinality such that D is a dissoci-
ation set of G.

Our algorithm is a branch-and-search algorithm. In this kind of algorithms,
we recursively branch on the current instance into several smaller instances to
search for a solution. Assume we use w as the measure to evaluate the size of an
instance, where w can be the number of vertices in a graph for graph problems.
Let C(w) denote the maximum number of leaves in the search tree generated by
the algorithm for any instance with measure at most w. If a branch generates l
branches and the measure in the i-th branch decreases by at least ai, then the
branch creates a recurrence

C(w) ≤ C(w − a1) + C(w − a2) + · · · + C(w − al).

The largest root of the function f(x) = 1 −
∑l

i=1 x−ai is called the branching
factor of the recurrence. The running time of the algorithm can be bounded by
O∗(γn), where γ is the maximum branching factor among all branching factors in
the algorithm. More details about the analysis can be found in the monograph [8].

The simplest branching rule in our algorithm is
(B1): Branching on a vertex v ∈ V \ S to generate two instances by either

including v to S or deleting v from the graph directly.
This rule is not often used, because for most cases it is not effective. Indeed,

most of previous papers use the following branching rule
(B2): Branching on a vertex v ∈ V \S to generate d(v)+2 instances by either

(i) deleting v from the graph (i.e., v is not in the solution set), or (ii) including
v to S and deleting all of its neighbors from the graph, or (iii) including v and
one of its neighbors to S.

Branching rule (B2) catches more structural properties of the problem and
it is possible to obtain an algorithm with running time better than O∗(2n).

Faster Computation of the Maximum Dissociation Set 285

We will give more branching rules based on special graph structures. With new
branching rules, we can improve the running time bound to O∗(1.4656n). In our
branch-and-search algorithm, we will guarantee that each sub-instance created
by the algorithm is an induced subgraph of the original graph and the size of S
is at most 4. This property allows us to further improve the running time bound
by using dynamic programming.

3 Structural Properties

In this section, we always assume that S = 0. This means the properties in
this section only hold for Maximum Dissociation Set, not for Generalized
Maximum Dissociation Set Problem. In fact, the case that S �= ∅ will be
easy to deal with and we do not need to form some lemmas. Proofs of the lemmas
in this section are omitted in this version due to space limitation.

Lemma 1. If there is a vertex v in a graph G such that the induced graph
G[N(v)] is a clique, then there is a maximum dissociation set of G containing v.

Lemma 2. Let v be a vertex dominated by u. If there is a maximum dissociation
set D′ such that v ∈ D′, then there is a maximum dissociation set D containing
both u and v.

Based on Lemma 2, we design a branching rule to deal with dominated vertices.
(B3): Branching on a vertex v dominated by u to generate two instances by

either deleting v from the graph or including both of v and u to the solution set.

Lemma 3. Let v be a degree-2 vertex in a graph G without dominated vertices.
There is a maximum dissociation set D containing either v or N(v).

Lemma 3 allows us to design a branching rule to deal with degree-2 vertices.
(B4): Branching on a degree-2 vertex v to generate two instances by either

including v to the solution set or including all vertices in N(v) to the solution
set and deleting v.

Lemma 4. Let G be a graph without dominated vertices. If a vertex v has a
satellite s with its parent ps, then there is a maximum dissociation set D such
that at least one of the following holds (i) v /∈ D, (ii) v, ps ∈ D and (iii) v, u′, s ∈
D for some neighbor u′ of v not adjacent to s.

Let s be a satellite of v and Ns(v) be the set of neighbors of v not adjacent to s,
where Ns(v) is possibly empty. Based on Lemma 4, we design a branching rule
to deal with vertices having satellites.

(B5): Branching on a vertex v with some satellite s to generate 2 + |Ns(v)|
instances by either (i) deleting v from the graph, or (ii) including v and ps to
the solution set, or (iii) including v, u′, s to the solution for each u′ ∈ Ns(v).

The following lemma will be used to deal with tw-satellites. Recall that we
use Tv to denote the set of all tw-satellites of a vertex v.

286 M. Xiao and S. Kou

Lemma 5. Let G be a graph without dominated vertices and satellite vertices.
If there is a vertex v with a neighbor u such that N [u] − N [v] = {s1, s2}, then
there is a maximum dissociation set D such that at least one of the following
holds: (i) v /∈ D, (ii) ({v} ∪ Tv) ⊆ D and D ∩ N(v) = ∅, (iii) v, u ∈ D,
(iv) v, u′, su′ ∈ D for some neighbor u′ of v adjacent to only one of s1 and s2
and su′ ∈ {s1, s2} is not adjacent to u′, (v) v, u′′ ∈ D for some neighbor u′′ of v
not adjacent to any of s1 and s2.

Based on Lemma 5, we design a branching rule to deal with vertices having
tw-satellites. Let v be a vertex having tw-satellites s1 and s2, where s1 and s2
are twins having a parent u. Let W1(v) denote the set of neighbors of v adjacent
to only one of s1 and s2 and for any vertex u′ ∈ W1(v), su′ ∈ {s1, s2} denote
the vertex not adjacent to u′. Let W2(v) denote the set of neighbors of v not
adjacent to any of s1 and s2.

(B6): Branching on v to generate instances by either (i) deleting v from
the graph, or (ii) including {v} ∪ Tv to the solution set and deleting N(v), or
(iii) including v, u to the solution, or (iv) including v, u′, su′ to the solution set
for each u′ ∈ W1(v), or (v) including v, u′′ to the solution for each u′′ ∈ W2(v).

Note that in (ii) of Rule (B6), we may include many vertices to S. In fact,
we should avoid this to design a dynamic programming algorithm later. So we
relax in this branch by including at most three vertices in Tv to the solution set.
We revise (B6) to (B6′) by replacing (ii) by

(ii ′) including {v}∪T ′
v to the solution set and deleting N(v), where T ′

v = Tv

if |Tv| ≤ 3 and T ′
v consists of arbitrary four vertices in Tv if |Tv| ≥ 4.

4 The Branch-and-Search Algorithm

We are going to design our algorithm based on the properties and branching rules
in the above section. We use mds(G,S) to denote our algorithm for MDS, which
takes a graph G and a vertex subset S as the input and computes a maximum
dissociation set D containing S. Our algorithm is a recursive algorithm that
consists of two parts. Part I is to deal with the case that S �= ∅ and Part II
is to deal with the case that S = ∅. Part I includes six reduction rules and
one branching rule, and Part II includes two reduction rules and five branching
rules, each of which will call the algorithm itself. Reduction rules simply reduce
the instance by deleting some vertices of the graph or moving some vertices
to S. Branching rules will generate recurrences with branching factor at most
1.4656. To avoid a confusing nesting of if-then-else statements, we assume that
when we design a reduction rule or a branching rule, all previous rules are not
applicable.

A vertex is decided if it is in S and undecided otherwise. We use U to denote
the set of undecided vertices, i.e., U = V \ S. In this paper, we will use n′ = |U |
as the measure to evaluate the size of the graph and then analyze our algorithm.
Note that n′ is not greater than the number n of vertices in the graph and this
problem can be solved directly when n′ = 0.

Faster Computation of the Maximum Dissociation Set 287

4.1 Part I of the Algorithm Where S �= ∅
This part consists of seven steps of the algorithm.

Step 1 (Components). If the graph G has l ≥ 2 connected components
H1,H2, . . . , Hl, return ∪l

i=1mds(Hi, Si), where Si = S ∩ V (Hi).

Step 2 (Simple Reduction 1). If there is an S-vertex v with dS(v) ≥ 2, return
⊥ to indicate no feasible solution.

Step 3 (Simple Reduction 2). If there is a U -vertex v adjacent to at least
two S-vertices or adjacent to a S-vertex u with dS(u) = 1, delete v from the
graph by returning mds(G \ v, S).

Step 4 (Simple Reduction 3). If there is a component H of G that contains
only one or two S-vertices, return mds(G \ H,S \ V (H)) ∪ V (H).

The correctness of these four steps is easy to observe and no new S-vertex is
created in these steps. After Step 4, for each S-vertex v, there is no S-vertex in
N(v) ∪ N2(v). This property will be used in the following steps.

Step 5 (Special Degree-1 S-vertices). If there is a degree-1 S-vertex v adja-
cent to a degree-2 vertex u, then we include u to the solution set directly by
returning mds(G \ N [u], S \ v) ∪ {v, u}.

The reason for this step is based on the following observation: If the other neigh-
bor v′ of u (v′ �= v) is in the final dissociation set D′, then we can replace v′

with u in D′ to get another solution; If v′ �∈ D′, then u should be included in
D′. So we can include u to the solution set directly.

Step 6 (Dominated S-vertices). If there is an S-vertex v dominated by a
vertex u, then we include u to the solution set directly by returning mds(G \
N [v], S \ v) ∪ {v, u}.

The reason is similar to that for Step 5. Any solution D′ contains at most one
vertex u∗ ∈ N(v). If u∗ �= u, we can replace u∗ with u in D′ to get another
solution. If D′ ∩N(v) = ∅, then u could be added to D′ directly to get a solution
of larger size. So u can be included to the solution set.

Step 7 (Branching on Neighbors of S-vertices). If S �= ∅, branch on a
neighbor u of an S-vertex v by deleting u from the graph or including u to the
solution set, i.e., return one of the following with maximum size

mds(G \ u, S) and mds(G \ N [{v, u}], S \ v) ∪ {v, u}.

We analyze this branching operation. In the first branch, at least one U -
vertex u is reduced. In the second branch, u is also reduced and all vertices
in N({v, u}) are reduced. We can see that |N({v, u})| ≥ 2 holds. It is impos-
sible that |N({v, u})| = 0 since Step 6 has been applied. If |N({v, u})| = 1,

288 M. Xiao and S. Kou

then either v is a degree-1 S-vertex and u is degree-2 neighbor of v or v is a
degree-2 S vertex dominated by u. For this case, either Step 5 or Step 6 would
be applied. Therefore, in the second branch, at least 1 + |N({v, u})| ≥ 3 U -
vertices are reduced. We get a recurrence

C(n′) ≤ C(n′ − 1) + C(n′ − 3), (1)

which has a branching factor of 1.4656.
Note that no new S-vertex is created in these steps. Next, we describe the

second part of our algorithm.

4.2 Part II of the Algorithm Where S = ∅
After Step 7, it always holds that S = ∅. We still have 8 steps.

Step 8 (Trivial Cases). If the graph has maximum degree at most 2, solve the
problem directly in polynomial time and return a maximum dissociation set.

Step 9 (Domination Reduction). If there is a vertex v such that N(v)
induces a clique, then return mds(G, {v}) by Lemma 1.

Note that any degree-1 U -vertex satisfies the condition in this step. So after
Step 9, the graph has no degree-1 vertex any more.

Step 10 (Domination Branching). If there is a vertex v dominated by u, then
branching on v with Rule (B3) by returning one of the following with maximum
size

mds(G \ v, ∅) and mds(G \ N [{v, u}], ∅) ∪ {v, u}.

This step is based on Lemma 2. In the first branch, one U -vertex v is reduced.
In the second branch, |N [{v, u}]| U -vertices are reduced. Note that no of v and
u can be a degree-1 vertex after Step 9. Then there are at least 3 vertices in
N [{v, u}]. In this step, we can get (1) at least. After this step, the graph has no
dominated vertex.

Step 11 (Degree-2 Vertices). If there is a degree-2 vertex v, then branching
on v with Rule (B4) by returning one of the following with maximum size

mds(G, {v}) and mds(G \ {v}, N(v)).

The correctness of this rule is based on Lemma 3. Since |N(v)| ≥ 2, there are at
least 3 vertices reduced in the second branch. This step also gives (1).

After Step 11, the graph has no vertex of degree ≤ 2.

Step 12 (Vertices of Degree ≥ 4 having Satellites). If there is a vertex v
of degree ≥ 4 having a satellite s, then branch on v with Rule (B5) by returning
one of the following with maximum size

mds(G \ {v}, ∅), mds(G \ N [{v, ps}], ∅) ∪ {v, ps}, and
arg max

u′∈Ns(v)
|mds(G \ N [{v, u′}], {s}) ∪ {v, u′}|. (2)

Faster Computation of the Maximum Dissociation Set 289

Fig. 1. Illustration for Step 12

Figure 1 gives an illustration for the operation in Step 12.
One U -vertex is reduced in the first branch, d(v) + 2 U -vertices are reduced

in the second branch, and at least d(v) + 3 U -vertices are reduced in the other
branches because each vertex u′ ∈ Ns(v) is adjacent to at least one vertex
t ∈ N2(v) \ {s}. Note that |Ns(v)| ≤ d(v) − 1. Let d = d(v). We get

C(n′) ≤ C(n′ − 1) + C(n′ − (d + 2)) + (d − 1) · C(n′ − (d + 3)), (3)

where d ≥ 4. For the worst case that d = 4, the branching factor is 1.4602.

Step 13 (Vertices of Degree ≥ 4 having tw-satellites). If there is a vertex
v of degree ≥ 4 having two tw-satellites s1 and s2, where s1 and s2 are twins
having a parent u, then branch on v with Rule (B6′) by returning one of the
following with maximum size

mds(G \ {v}, ∅), mds(G \ N [v], T ′
v) ∪ {v},

mds(G \ N [{v, u}], ∅) ∪ {v, u},
arg max

u′∈W1(v)
|mds(G \ N [{v, u′}], {su′}) ∪ {v, u′}|, and

arg max
u′′∈W2(v)

|mds(G \ N [{v, u′′}], ∅) ∪ {v, u′′}|.

Figure 2 gives an illustration for the operation in Step 13.
Recall that W1 is the set of neighbors of v adjacent to only one of s1 and

s2, and W2 is the set of neighbors of v not adjacent to any of s1 and s2. Let
d = d(v) ≥ 4, x1 = |W1| and x2 = |W2|. We have that

x1 + x2 ≤ d − 1.

In the first branch, one U -vertex is reduced. In the second branch, |N [v]| +
|T ′

v| = d+1+|T ′
v| U -vertices are reduced. In the third branch, d+3 U -vertices are

reduced. In the fourth branch, there are at least |N [{v, u′}]|+1 ≥ d+4 U -vertices

290 M. Xiao and S. Kou

Fig. 2. Illustration for Step 13

reduced. In the last branch, the number of reduced U -vertices is |N [{v, u′′}]|. We
consider three cases according to the value of |T ′

v|.
Case 1. |T ′

v| = 2: then |Tv| = 2. For this case, we know that x1 = 0, x2 ≤ d − 1
and |N [{v, u′′}]| ≥ d + 4 for each u′′ ∈ W2(v). Then we can branch with a
recurrence

C(n′) ≤ C(n′ − 1) + C(n′ − (d + 3)) + C(n′ − (d + 3)) + (d − 1) · C(n′ − (d + 4)),

which has a maximum branching factor of 1.4460 when d = 4.

Case 2. |T ′
v| = 3: then |Tv| = 3. For this case, we still have that |N [{v, u′′}]| ≥

d + 4 for each u′′ ∈ W2(v). Then we can branch with a recurrence

C(n′) ≤ C(n′ − 1) + C(n′ − (d + 4)) + C(n′ − (d + 3)) + x1 · C(n′ − (d + 4))+
x2 · C(n′ − (d + 4))

≤ C(n′ − 1) + C(n′ − (d + 3)) + d · C(n′ − (d + 4)),

which has a maximum branching factor of 1.4346 when d = 4.

Case 3. |T ′
v| = 4: For this case, we may only have that |N [{v, u′′}]| ≥ d + 3 for

each u′′ ∈ W2(v). Then we get

C(n′) ≤ C(n′ − 1) + C(n′ − (d + 5)) + C(n′ − (d + 3)) + x1 · C(n′ − (d + 4))+
x2 · C(n′ − (d + 3))

≤ C(n′ − 1) + C(n′ − (d + 5)) + d · C(n′ − (d + 3)),

which has a maximum branching factor of 1.4605 when d = 4.
After Step 13, no vertex of degree ≥ 4 has satellites or tw-satellites. Then

each neighbor u of a vertex v of degree ≥ 4 is adjacent to at least three vertices
in N2(v).

Step 14 (Vertices of Degree ≥ 5). If there is a vertex v of d(v) ≥ 5, then
branch on v with Rule (B2) by returning one of the following with maximum size

Faster Computation of the Maximum Dissociation Set 291

mds(G \ {v}, ∅), mds(G \ N [v], ∅) ∪ {v},
arg max

u∈N(v)
|mds(G \ N [{u, v}], ∅) ∪ {u, v}|.

Note that for each neighbor u of v, there is |N(u) − N(v)| ≥ 3. So in the branch
that u and v are included to the solution set, at least d+4 = d(v)+4 U -vertices
are reduced. This leads to the recurrence

C(n) ≤ C(n − 1) + C(n − (d + 1)) + d · C(n − (d + 4)). (4)

For the worst case of d = 5, this recurrence has a branching factor of 1.4374.

Lemma 6. After Step 14, S = ∅ and each connected component of the graph is
a regular graph of degree 3 or 4.

Step 15 (Regular Graphs of Degree 3 or 4). Pick up an arbitrary vertex v
and branch on v with Rule (B2) by returning one of the following with maximum
size

mds(G \ {v}, ∅), mds(G \ N [v], ∅) ∪ {v},
arg max

u∈N(v)
|mds(G \ N [{u, v}], ∅) ∪ {u, v}|.

We do not analyze the branching factor for this step. In fact, we will show that
this step will not exponentially increase the running time bound of the algorithm.

Theorem 1. A maximum dissociation set in graph with n vertices can be com-
puted in O∗(1.4656n) time and polynomial space.

In fact, Algorithm mds(G, ∅) satisfies this theorem. Note that each step of
mds(G, ∅), except Step 15, either reduces the graph directly or branches with a
branching factor at most 1.4656. Note that any induced subgraph of a connected
4-regular (resp., 3-regular) graph is not a 4-regular (resp., 3-regular) graph. Then
we can bound the number of times executing Step 15 and then prove this theo-
rem. For more details of the proof, please refer to the full version of this paper.

It is also easy to observe that in each step of mds(G,S), any created graph
is an induced subgraph of the initial graph and the size of S is at most 4. This
property allows us design a dynamic programming algorithm to improve the
running time.

5 Reducing the Time Complexity via Dynamic
Programming

In our recursive algorithm, the same subproblem I can appear many times. The
smaller the size of the subproblem, the higher the probability of the subproblem
appearing repeatedly. The idea is then to store the solutions to the subproblems
of small size in a database in advance. The database can be implemented in
such a way that the query time is logarithmic in the number of solutions stored.
When our algorithm needs to solve a subproblem of small size, we do not solve
it directly but we refer to our database, which ensures that a given subproblem

292 M. Xiao and S. Kou

will not be solved twice. This technique was firstly used by Robson [17] to reduce
the running time bound for Maximum Independent Set and later it was used
in many other problems [10,18].

Let n0 be the number of vertices in the initial graph and α = 0.1845. We
create a database database that contains solutions to all sub-instances I = (G,S)
such that the number of U -vertices in I is at most αn0 and |S| ≤ 4. We modify
mds(G,S) to dp(G,S) by adding Step 0: If the number of U -vertices in the graph
is at most αn0, then return D = database(G,S).

Lemma 7. The database can be constructed in O∗(1.3659n0) time.

A proof of this lemma can be found in the full version of this paper. We can inter-
pret our improved algorithm as: first compute the solutions to the small instances
in the database in a dynamic programming way, which takes O∗(1.3659n) time;
second use a branch-and-search method to solve the instance with more than
αn U -vertices, which has branching factors at most 1.4656 and then creates a
search tree of size O(1.4656(n−αn)) = O(1.3659n). Furthermore, in each leaf of
the search tree, the algorithm searches the databases in polynomial query time
to find a solution directly. In total, the algorithm uses O∗(1.3659n) time and
space.

Theorem 2. A maximum dissociation set in an n-vertex graph can be found in
O∗(1.3659n) time and space.

6 Concluding Remarks

In this paper, we have presented improved polynomial-space and exponential-
space algorithms for Maximum Dissociation Set. The polynomial-space algo-
rithm is a branch-and-search algorithm, which takes C(n′) ≤ C(n′−1)+C(n′−3)
as the worst recurrences and then runs in O∗(1.4656n′

) time, where n′ is at most
the number of vertices in the initial graph. The improvement is mainly obtained
by developing several new structural properties, such as Lemmas 4 and 5. With
these properties we can adopt some branches in our search algorithm and then
reduce the size of the search tree. Another technique to get the improvement is
that we use the number n′ of U -vertices (which can be regarded as ‘undecided’
vertices) as the measure instead of the number of total vertices in the graph. This
idea helps us to greatly simplify our algorithm and its analysis. Furthermore, we
will guarantee that the recursive algorithm only calls itself on induced subgraphs
of the initial graph and the number of S-vertices (which are not counted in our
measure n′ but still in the graph) is always bounded by a constant. This allows
us use classical dynamic programming to improve the running time bound with
exponential space. Finally, we achieve the running time bound O∗(1.3659n).

References

1. Alekseev, V.E., Boliac, R., Korobitsyn, D.V., Lozin, V.V.: NP-hard graph problems
and boundary classes of graphs. Theoret. Comput. Sci. 389, 219–236 (2007)

Faster Computation of the Maximum Dissociation Set 293

2. Asdre, K., Nikolopoulos, S.D., Papadopoulos, C.: An optimal parallel solution for
the path cover problem on P4-sparse graphs. J. Parallel Distrib. Comput. 67, 63–76
(2007)

3. Boliac, R., Cameron, K., Lozin, V.V.: On computing the dissociation number and
the induced matching number of bipartite graphs. Ars Comb. 72, 241–253 (2004)

4. Brešar, B., Jakovac, M., Katrenič, J., Semanǐsin, G., Taranenko, A.: On the vertex
k-path cover. Discrete Appl. Math. 161, 1943–1949 (2013)

5. Brešar, B., Kardoš, F., Katrenič, J., Semanǐsin, G.: Minimum k-path vertex cover.
Discrete Appl. Math. 159, 1189–1195 (2011)

6. Cameron, K., Hell, P.: Independent packings in structured graphs. Math. Program.
105, 201–213 (2006)

7. Chang, M-S., Chen, L-H., Hung, L-J., Liu, Y-Z., Rossmanith, P., Sikdar, S.: An
O∗(1.4658n)-time exact algorithm for the maximum bounded-degree-1 set prob-
lem. In: Proceedings of the 31st Workshop on Combinatorial Mathematics and
Computation Theory, pp. 9–18 (2014)

8. Fomin, F.V., Kratsch, D.: Exact Exponential Algorithms. Springer, Berlin (2010)
9. Göring, F., Harant, J., Rautenbach, D., Schiermeyer, I.: On F-independence in

graphs. Discussiones Math. Graph Theor. 29, 377–383 (2009)
10. Grandoni, F.: A note on the complexity of minimum dominating set. J. Discrete

Algorithms 4, 209–214 (2006)
11. Havet, F., Kang, R.J., Sereni, J.-S.: Improper colouring of unit disk graphs. Net-

works 54, 150–164 (2009)
12. Hung, R.-W., Chang, M.-S.: Finding a minimum path cover of a distance-hereditary

graph in polynomial time. Discrete Appl. Math. 155, 2242–2256 (2007)
13. Kardoš, F., Katrenič, J.: On computing the minimum 3-path vertex cover and

dissociation number of graphs. Theoret. Comput. Sci. 412, 7009–7017 (2011)
14. Lozin, V.V., Rautenbach, D.: Some results on graphs without long induced paths.

Inf. Process. Lett. 88, 167–171 (2003)
15. Orlovich, Y., Dolgui, A., Finke, G., Gordon, V., Werner, F.: The complexity of

dissociation set problems in graphs. Discrete Appl. Math. 159, 1352–1366 (2011)
16. Papadimitriou, C.H., Yannakakis, M.: The complexity of restricted spanning tree

problems. J. ACM 29, 285–309 (1982)
17. Robson, J.M.: Algorithms for maximum independent sets. J. Algorithms 7, 425–

440 (1986)
18. Rooij, J.M.M., Bodlaender, H.L.: Exact algorithms for dominating set. Discrete

Appl. Math. 159, 2147–2164 (2011)
19. Tu, J.: A fixed-parameter algorithm for the vertex cover P3 problem. Inf. Process.

Lett. 115(2), 96–99 (2015)
20. Xiao, M., Nagamochi, H.: Exact algorithms for maximum independent set. In:

Cai, L., Cheng, S.-W., Lam, T.-W. (eds.) Algorithms and Computation. LNCS,
vol. 8283, pp. 328–338. Springer, Heidelberg (2013)

21. Xiao, M., Nagamochi, H.: Complexity and kernels for bipartition into degree-
bounded induced graphs. In: Ahn, H.-K., Shin, C.-S. (eds.) ISAAC 2014. LNCS,
vol. 8889, pp. 429–440. Springer, Heidelberg (2014)

22. Xiao, M., Tan, H.: An improved exact algorithm for maximum induced matching.
In: Jain, R., Jain, S., Stephan, F. (eds.) TAMC 2015. LNCS, vol. 9076, pp. 272–283.
Springer, Heidelberg (2015)

23. Yannakakis, M.: Node-deletion problems on bipartite graphs. SIAM J. Comput.
10, 310–327 (1981)

Enumeration, Counting, and Random
Generation of Ladder Lotteries

Katsuhisa Yamanaka1(B) and Shin-ichi Nakano2

1 Department of Electrical Engineering and Computer Science, Iwate University,
Ueda 4-3-5, Morioka, Iwate 020-8551, Japan

yamanaka@cis.iwate-u.ac.jp
2 Department of Computer Science, Gunma University, Tenjin-cho 1-5-1,

Kiryu, Gunma 376-8515, Japan
nakano@cs.gunma-u.ac.jp

Abstract. A ladder lottery, known as “Amidakuji” in Japan, is one of
the most popular lotteries. In this paper, we consider the problems of
enumeration, counting, and random generation of the ladder lotteries.
For given two positive integers n and b, we give algorithms of enumer-
ation, counting, and random generation of ladder lotteries with n lines
and b bars.

1 Introduction

A ladder lottery, known as “Amidakuji” in Japan, is one of the most popular
lotteries for kids. It is often used to assign roles to members in a group. Imagine
that a group of four members A, B, C, and D wish to determine their group
leader using a ladder lottery. First, four vertical lines are drawn, then each mem-
ber chooses a vertical line. See Fig. 1(a). Next, a check mark (which represents
an assignment of the leader) and some horizontal lines are drawn, as shown in
Fig. 1(b). The derived one is called a ladder lottery, and it represents an assign-
ment. In this example the leader is assigned to D since the top-to-bottom route
from D ends at the check mark. (We will explain about the route soon.) In
Fig. 1(b), the route is drawn as a dotted line.

Formally, a ladder lottery is a network with n ≥ 2 vertical lines (lines for
short) and b horizontal lines (bars for short) each of which connects two consec-
utive vertical lines. We count the lines from left to right and call the i-th line from
the left i-th line. See Fig. 2 for an example. The top ends of the lines correspond
to a permutation π = (p1, p2, . . . , pn) of [n] = {1, 2, . . . , n}, and the bottom ends
of the lines correspond to the identity permutation ι = (1, 2, . . . , n) and they
satisfy the following rule. Each pi in π starts the top end of the i-th line, then
goes down along the line; whenever pi meets an end of a bar, pi goes horizontally
along the bar to the other end, and then goes down again. Finally, pi must reach
the bottom end of the pi-th line. Each bar corresponds to a modification of the
current permutation by swapping the two neighboring elements.

A ladder lottery appears in a variety of areas. First, a ladder lottery of the
reverse permutation (n, n − 1, . . . , 1) corresponds to a pseudoline arrangement
c© Springer International Publishing Switzerland 2015
J. Wang and C. Yap (Eds.): FAW 2015, LNCS 9130, pp. 294–303, 2015.
DOI: 10.1007/978-3-319-19647-3 27

Enumeration, Counting, and Random Generation of Ladder Lotteries 295

Fig. 1. An example of a ladder lottery.

Fig. 2. A ladder lottery of (6,4,3,5,2,1).

in discrete geometry [7]. By replacing bars as intersections of pseudolines, lad-
der lotteries can be regarded as pseudoline arrangements, and it is observed
that there is a one-to-one correspondence between pseudoline arrangements and
“optimal” ladder lotteries of a reverse permutation [7]. A ladder lottery of a
permutation is optimal if it has the minimum number of bars among ladder
lotteries of the permutation. Second, it is strongly related to primitive sorting
networks, which are deeply investigated by Knuth [3]. Third, in algebraic combi-
natorics, a reduced decomposition (by adjacent transpositions) of a permutation
corresponds to a ladder lottery of the permutation with the minimum number
of bars [4].

In this paper we consider the problems of enumeration, counting, and ran-
dom generation of ladder lotteries. We propose three algorithms for these three
problems. All the three algorithm are based on the code [1] of ladder lotteries.

2 Preliminaries

Code of Ladder Lotteries

In this subsection, we review a code of ladder lotteries in [1]. Using this code,
we design three algorithms in this paper.

Let L be a ladder lottery with n lines and b bars. We first divide each bar
of L into two horizontal line-segments, called half-bars. The left half of a bar is
called an l-bar (left half-bar) and the right half of a bar is called an r-bar (right
half-bar). We regard each original bar as a pair of an l-bar and an r-bar. Thus L

296 K. Yamanaka and S. Nakano

has 2b half-bars. The division results in n connected components, each of which
consists of one line and some half-bars attached to the line.

We can encode how half-bars are attached to the i-th line, as follows. Let
〈b1, b2, . . .〉 be the sequence of half-bars attached to the i-th line appearing from
top to bottom. We replace bi with 0 if bi is an r-bar, and with 1 if bi is an l-bar.
Then appending a 0 to indicate the end-of-line. This results in the code of the i-th
line, which is denoted by C(i). Concatenating those codes C(1), C(2), . . . , C(n)
results in the code C(L) for L. For example, for the ladder lottery in Fig. 2
C(1) = “10′′, C(2) = “110110′′, C(3) = “01001100′′, C(4) = “1100100′′,
C(5) = “010010′′, C(6) = “000′′, and

C(L) = “10110110010011001100100010010000′′.

Since the code contains two bits for each bar and one bit for each end-of-line,
its length is n + 2b bits.

Reconstruction from the Code

Now we explain how to reconstruct the original ladder lottery from the code.
In the code, a 0 represents either an r-bar or an end-of-line. Hence, we need to

recognize the end-of-lines to partite C(L) into C(1), C(2), . . . , C(n). After then,
it is easy to reconstruct original bars by connecting the corresponding l-bars and
r-bars, since the k-th l-bar of the i-th line and the k-th r-bar of the (i+1)-th line
correspond to an original bar. Figure 3 shows an example of the reconstruction
of the ladder lottery in Fig. 2 from its code.

Fig. 3. An example of the reconstruction from the code

We now explain how to recognize the end-of-lines. Since the first line has only
l-bars, the first consecutive 1s correspond to the l-bars of the first line, so the
first 0 is the end-of-line of the first line. Now we assume that the end-of-line for
the (i-1)-th line is recognized and we are now going to recognize the end-of-line
for the i-th line. We know the number, say k, of l-bars attached to the (i-1)-th
line, and it equals to the number of r-bars attached to the i-th line. Then the
end-of-line for the i-th line is the (k + 1)-th line 0 after the end-of-line for the
(i-1)-th line.

Enumeration, Counting, and Random Generation of Ladder Lotteries 297

Fig. 4. Pre-ladders derived from L.

Theorem 1 [[1]]. Let L be a ladder lottery with n lines and b bars. One can
encode L into a bitstring of length n + 2b. Both encoding and decoding can be
done in O(n + b) time.

Pre-ladder and its Code

Let L be a ladder lottery with n lines and b bars, and let C(L) be the code of L.
We define a substructure of L, as follows. Let P (C(L)) be the bitstring derived
from C(L) by removing the second last bit, and P (L) be the substructure of L
derived by “decoding” P (C(L)). Intuitively, P (L) is the substructure of L only
missing either a half-bar or an end-of-line, corresponding to the second last bit.
Similarly P (P (C(L))) is the bitstring derived from P (C(L)) by removing the
second last bit, and P (P (L)) be the corresponding substructure of L. Similarly,
we define P (P (P (C(L)))), P (P (P (P (C(L))))), We assume that a pre-ladder
has at least two lines. See Fig. 4 for an example. In the figure, end-of-lines are
depicted as black circles except for the end-of-line of the rightmost line, which is
depicted as a white circle. We say each of those substructure (including L itself)
a pre-ladder of L, and the sequence L,P (L), P (P (L)), . . . the removing sequence
of L. A pre-ladder possibly has unmatched l-bars only at the two rightmost lines.

3 Enumeration

Let Sn,b be the set of ladder lotteries with n lines and b bars. In this section,
we consider the problem of enumerating all ladder lotteries in Sn,b. We have
presented an algorithm that enumerates all “optimal” ladder lotteries of a given
permutation [7]. However, this algorithm cannot applied to the problem, since
Sn,b includes (non-optimal) ladder lotteries. In this section, we propose a simple
enumeration algorithm for Sn,b.

Our enumeration algorithm is based on reverse search [2]. We first define a
forest structure in which each leaf one-to-one corresponds to some ladder lottery
in Sn,b. Then, by traversing the forest, we can enumerate all leaves of the forest,
and all corresponding ladder lotteries in Sn,b. We designed several enumeration
algorithms based on similar (but distinct) tree structures [5–7].

298 K. Yamanaka and S. Nakano

Family Forest

Let L be a ladder lottery in Sn,b. By merging the removing sequence for every
L ∈ Sn,b, we have the forest, called family forest Fn,b, in which each leaf one-to-
one corresponds to some ladder lottery in Sn,b. We regard each edge corresponds
to some parent-child relation between the two pre-ladders. Each root is a pre-
ladder with exactly two lines and no half-bar attached to the second line. See
Fig. 5 for an example.

Child Enumeration

We have the following lemma according to the parent-child relation.

Lemma 1. Given any pre-ladder R in Fn,b, one can enumerate all child pre-
ladders of R in O(1) time for each.

By recursively enumerating all child pre-ladders of a derived pre-ladder in Fn,b,
we have the following theorem.

Theorem 2. One can enumerate all ladder lotteries with n lines and b bars in
O(n + b) time for each. Our algorithm uses O(n + b) space.

4 Counting

In this section we consider a counting problem. Given two positive integers n ≥ 2
and b ≥ 0, we wish to count the number of ladder lotteries with n lines and b
bars. Using the enumeration algorithm in the previous section, we can count such
ladder lotteries one by one, but very slowly. This method takes Ω(|Sn,b|) time,
which may be exponential on n and b. In this section, we propose an efficient
counting algorithm. Our algorithm does not count ladder lotteries one by one,
but counts each “type” of pre-ladders all together, and runs in polynomial time.1

We now define the type for each pre-ladder. A pre-ladder R is type t(�, h, p, q)
if R satisfies the following conditions:

(a) R contains � ≥ 2 lines;
(b) R contains h ≥ p + q half-bars (Each bar is counted as two half-bars);
(c) p unmatched l-bars are attached to the (�-1)-th line; and
(d) q unmatched l-bars are attached to the �-th line.

For example, the pre-ladder P (L) in Fig. 4 is type t(6, 25, 1, 0). Note that
any ladder lottery with n lines and b bars is type t(n, 2b, 0, 0). We denote by
T (�, h, p, q) the set of pre-ladders of type t(�, h, p, q). We give a useful recurrence
for |T (�, h, p, q)|.

We have the following four cases.

1 We assume that n and b are coded in unary codes.

Enumeration, Counting, and Random Generation of Ladder Lotteries 299

Fig. 5. The family forest F3,4.

300 K. Yamanaka and S. Nakano

Case 1: h < p + q or � < 2.
|T (�, h, p, q)| = 0 holds, since h ≥ p + q and � ≥ 2 hold for any pre-ladder.

Case 2: � = 2, q = 0, and h = p
Clearly such pre-ladder is unique, so |T (�, h, p, q)| = 1 holds.

Case 3: h ≥ p + q and q = 0.
Let R be a pre-ladder of type t(�, h, p, q). The second last bit of C(R) is

always 0. (Otherwise, �-th line has an l-bar, a contradiction.) The second last
bit 0 in C(R) represents either an r-bar of �-th line or the end-of-line of (�-1)-th
line. For the former case P (R) is type t(�, h − 1, p + 1, 0). For the latter case
P (R) is type t(� − 1, h, 0, p). For any distinct R1 and R2 of t(�, h, p, q) with
h ≥ p + q and q = 0, P (R1) and P (R2) are distinct. Thus |T (�, h, p, 0)| =
|T (�, h − 1, p + 1, 0)| + |T (� − 1, h, 0, p)| holds.

Case 4: h ≥ p + q and q > 0.
Let R be a pre-ladder of type t(�, h, p, q). The second last bit in C(R) is

either 0 or 1. If the second last bit of C(R) is 0, then it represents an r-bar
attached to �-th line. Thus, P (R) is type t(�, h−1, p+1, q). Otherwise, the second
last bit of C(R) is 1, then it represents an l-bar attached to �-th line. Hence,
P (R) is type t(�, h − 1, p, q − 1). Thus |T (�, h, p, q)| = |T (�, h − 1, p + 1, q)| +
|T (�, h − 1, p, q − 1)| holds.

For example, Fig. 6 shows the recurrence for |T (3, 8, 0, 0)|. By the recurrence, we
have the following lemma.

Lemma 2. For four non-negative integers �, h, p, and q,

|T (�, h, p, q)|

=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

0 ifh < p + q or � < 2
1 if � = 2, q = 0, andh = p

|T (�, h − 1, p + 1, 0)| + |T (� − 1, h, 0, p)| ifh ≥ p + q and q = 0
|T (�, h − 1, p + 1, q)| + |T (�, h − 1, p, q − 1)| ifh ≥ p + q and q > 0

Based on the recurrence above, Algorithm 1 computes the number of lad-
der lotteries with n lines and b bars. Algorithm 1 is a dynamic programming
algorithm on the table of types. The number of entries is nb3, and each entry is
calculated in constant time, so the total running time is O(nb3). As a byproduct
the number of ladder lotteries with every n′ ≤ n lines and every b′ ≤ b bars are
also computed.

Theorem 3. The number of ladder lotteries with every n′ ≤ n lines and every
b′ ≤ b bars can be calculated in O(nb3) time in total.

5 Random Generation

In this section we consider random generation of ladder lotteries. The recur-
rence in Lemma 2 generates a tree structure among the types (see an example

Enumeration, Counting, and Random Generation of Ladder Lotteries 301

Fig. 6. The recurrence for |T (3, 8, 0, 0)|.

in Fig. 6), in which each path from the root to a leaf one-to-one corresponds
to some ladder lottery of type t(n, 2b, 0, 0). The choice of i-th generation type
decides the meaning of the (i+1)-th last bit of the code. (Here the root belongs
to the first generation.)

The table generated by Algorithm 1 tells us the number of leaves in the
subtree rooted at each type. We can choose a random path from the root to
some leaf, by repeatedly choosing some child of the current type so that each
leaf has an equal chance to be reached. Thus we can generate ladder lotteries,
uniformly at random.

Our algorithm is shown in Algorithm 2. Suppose that we are now at a
type T (�, h, p, q) in the tree structure, and T (�1, h1, p1, q1) and T (�2, h2, p2, q2)
are the two child types of T (�, h, p, q). Algorithm 2 computes a random value,

302 K. Yamanaka and S. Nakano

Algorithm 1. DP-Count(n, b)
1 for � = 2 to n do
2 for h = 0 to 2b do
3 for p = 0 to h do
4 for q = 0 to h do
5 if h < p + q then
6 |T (�, h, p, q)| = 0
7 else if � = 2, q = 0, and h = p then
8 |T (�, h, p, q)| = 1
9 else if q = 0 then

10 |T (�, h, p, q)| = |T (�, h − 1, p + 1, 0)| + |T (� − 1, h, 0, p)|
11 else if q > 0 then
12 |T (�, h, p, q)| = |T (�, h − 1, p + 1, q)| + |T (�, h − 1, p, q − 1)|

Algorithm 2. Random-Generation(�, h, p, q)
1 begin
2 if � = 2, h = p, and q = 0 then
3 return the ladder lottery corresponding to the path from the root to the

current leaf.
4 else
5 if T (�, h, p, q) has only one child, say T (�1, h1, p1, q1) then
6 Random-Generation(�1, h1, p1, q1)

7 /* Let T (�1, h1, p1, q1) and T (�2, h2, p2, q2) be the two child types

of T (�, h, p, q). */

8 Generate an integer x in [1, |T (�, h, p, q)|] uniformly at random.
9 if x ≤ |T (�1, h1, p1, q1)| then /* Choose T (�1, h1, p1, q1) */

10 Random-Generation(�1, h1, p1, q1)
11 else /* Choose T (�2, h2, p2, q2). */

12 Random-Generation(�2, h2, p2, q2)

say x, in [1, |T (�, h, p, q)|] uniformly at random, chooses T (�1, h1, p1, q1) if x ≤
|T (�1, h1, p1, q1)| and T (�2, h2, p2, q2) otherwise, then recursively call with the
chosen type. Since Algorithm 1 computes the table as the preprocessing, these
numbers can be looked up in O(1) time. Thus we can generate ladder lotteries
uniformly at random, as in the following theorem.

Theorem 4. Given two integers n ≥ 2 and b ≥ 0, after computing the table of
|T (�, h, p, q)| by Algorithm 1, we can generate a ladder lottery with n lines and
b bars in O(n + b) time for each, uniformly at random.

Enumeration, Counting, and Random Generation of Ladder Lotteries 303

6 Summary

We have designed three algorithms for enumeration, counting, and random gen-
eration of ladder lotteries with n lines and b bars. All the three algorithms are
based on the code [1] of ladder lotteries.

Our enumeration algorithm enumerates all the ladder lotteries with n lines
and b bars in O(n+ b) time for each. Our counting algorithm counts the number
of ladder lotteries with n lines and b bars in O(nb3) time. Our random generation
algorithm takes O(nb3) time as a preprocessing, then generates ladder lotteries
with n lines and b bars O(n + b) time for each, uniformly at random.

Acknowledgment. This work is partially supported by MEXT/JSPS KAKENHI,
including the ELC project. (Grant Numbers 24106007 and 25330001).

References

1. Aiuchi, T., Yamanaka, K., Hirayama, T., Nishitani, Y.: Coding ladder lotteries.
In: Proceedings of European Workshop on Computational Geometry 2013,
Braunschweig, Germany, pp. 151–154, March 2013

2. Avis, D., Fukuda, K.: Reverse search for enumeration. Discrete Appl. Math. 65(1–
3), 21–46 (1996)

3. Knuth, D.E.: Axioms and Hulls. LNCS, vol. 606. Springer, Heidelberg (1992)
4. Manivel, L.: Symmetric Functions, Schubert Polynomials and Degeneracy Loci.

American Mathematical Society, Providence (2001)
5. Nakano, S.: Efficient generation of triconnected plane triangulations. Comput.

Geom. Theory Appl. 27(2), 109–122 (2004)
6. Yamanaka, K., Nakano, S.: Listing all plane graphs. J. Graph Algorithms Appl.

13(1), 5–18 (2009)
7. Yamanaka, K., Nakano, S., Matsui, Y., Uehara, R., Nakada, K.: Efficient enumera-

tion of all ladder lotteries and its application. Theoret. Comput. Sci. 411, 1714–1722
(2010)

Efficient Modular Reduction Algorithm
Without Correction Phase

Haibo Yu1(B), Guoqiang Bai2, and Huikang Hao3

1 Department of Computer Science and Technology, Tsinghua University,
Beijing, China

yhb13@mails.tsinghua.edu.cn
2 Institute of Microelectronics, Tsinghua University, Beijing, China

baigq@tsinghua.edu.cn
3 School of Computer Science and Engineering,

Beihang University, Beijing, China
hhk@cse.buaa.edu.cn

Abstract. In this paper, we propose an efficient modular reduction
algorithm without correction phase based on Barrett reduction algorithm.
We eliminate the error between the estimated quotient and the real one,
which leads that the proposed algorithm can perform modular reduction
with less operation steps. On the other hand, it can also make for a decrease
in extra subtraction circuits. According to the data flow diagram, it is crys-
tal clear that the number of control steps of original Barrett algorithm is
twice the proposed algorithm. Therefore, the throughput of our method
is doubled compared with Barrett algorithm with same clock frequency.
Additionally, the proposed method can be a good solution for high-speed
applications.

Keywords: Public-key cryptography · Modular reduction · Barrett
algorithm · Correction phase · High-speed hardware implementation

1 Introduction

Just shortly after Diffle and Hellman proposed the first public-key exchange pro-
tocol in 1976 [1], Rivest, Shamir and Adleman proposed the first practical public-
key cryptosystem (PKC) in 1978 [2]. For now, elliptic curve is quite ubiquitous in
mathematics and computing, and Elliptic Curve Cryptography (ECC) can offer
equivalent security as RSA with much smaller key sizes [3,4], which has been
proven on both theoretical and practical aspects. From a mathematic viewpoint,
public-key encryption and decryption algorithms are strategically implemented
in Residue Number System (RNS), where one of the cornerstones of PKC is
modular arithmetic.

Because of modular addition being relatively simple, modular multiplication
is still the core operation of many public-key cryptosystems, in which modular
reduction is of importance. For high-speed hardware implementation, cryptog-
raphy puts forward higher requirement of the throughput of modular multiplica-
tion [5,6]. Therefore, the high-throughput implementation of modular reduction
is necessary.
c© Springer International Publishing Switzerland 2015
J. Wang and C. Yap (Eds.): FAW 2015, LNCS 9130, pp. 304–313, 2015.
DOI: 10.1007/978-3-319-19647-3 28

Efficient Modular Reduction Algorithm Without Correction Phase 305

The two most widely used algorithm for modular reduction are Montgomery
reduction and Barrett reduction, which were both introduced in 1980’s. [7] shows
the detail of Barrett modular reduction algorithm. In 2000, J. F. Dhem and
J.J. Quisquater optimized the original algorithm and named it as the improved
Barrett method in [8,9] proposed a high-speed hardware implementation of RSA
based on Barrett’s modular reduction. After several years, [10] presented a mod-
ified Barrett algorithm with single folding in 2007. Miroslav Knežević et al.
introduced modular reduction without precomputaional phase with some spe-
cial modulus in 2009 [11], based on the original algorithm, and [12] proposed an
efficient way for reduction of large integers by small modulus.

All contributions mentioned above have not changed the basic idea, replacing
the exact quotient value with the estimated one, which could avoid complicated
division operations. However, because of the error between the estimated value
and the exact value, correction phase is essential to ensure reduction result being
in the correct interval [8], which needs extra judgment and subtraction circuits
for hardware implementation.

To satisfy the requirements for high-speed applications, the error between
exact value and estimated value of quotient should be fixed or clear. Thus in
this paper, we propose a high-speed modular reduction method without cor-
rection phase, which means the method can eliminate the estimated error to
obtain reduction result. Additionally, because of only basic arithmetic opera-
tions involved, our method is suitable for hardware implementation especially.

The organization of this paper is given as follows: Euclidean division, the
original Barrett reduction and the improved Barrett reduction algorithm are
described in Sect. 2, which do a brief look back at the related work; in Sect. 3, the
efficient modular reduction algorithm and the related hardware implementations
are proposed, being the core part of this paper and Sect. 4 concludes the paper.

2 Preliminaries

To make the following explanations and descriptions easier, we show some nota-
tions used in this paper firstly. An n-bit integer X is represented in radix 2
representation as X = (Xn−1 · · · X0)2 and Xn−1 �= 0; Xi refers to the i -th bit
of X, 0 ≤ i ≤ n − 1 and Xi ∈ {0, 1}; |X| refers to the bit length of X in radix 2
and |X| = n based on description above. Note that all integers discussed in this
paper are represented in radix 2.

2.1 Euclidean Division

Given two nonnegative integers U and V, with U �=0, the Euclidean division is
the process of U and V producing unique integers q and r to satisfy the equation
U = qV + r, with 0 ≤ r < V [13].

The integer q, called the quotient, is denoted by the floor function as q =
⌊

U
V

⌋

, in which the floor function always rounds toward -∞. The integer r, called
the remainder, is represented as U (mod V). In addition, the floor function is

306 H. Yu et al.

suitable for hardware implementation if V is of type 2w, which is only briefly
touched in shifting operations.

2.2 Barrett Reduction

Barrett reduction algorithm, introduced by P. D. Barrett in 1986 [7], is a classical
reduction method. This algorithm computes the remainder r = N (mod M) for
an input N and a fixed modulus M , with an estimated value of quotient.

With |M | = m and |N | = 2m, we may write the quotient as

q =
⌊

N

M

⌋

=

⌊

N
2m−1 · 22m

M

2m+1

⌋

The estimation of q is recorded as

q̂ =

⎢

⎢

⎢

⎣

⌊

N
2m−1

⌋

⌊

22m

M

⌋

2m+1

⎥

⎥

⎥

⎦ (1)

where
⌊

22m

M

⌋

, being a constant for a fixed modulus M, can be precomputed.
Now we can get the reduction value of N modulo M, being written as r =

N − q̂M , that is

r = N −

⎢

⎢

⎢

⎣

⌊

N
2m−1

⌋

⌊

22m

M

⌋

2m+1

⎥

⎥

⎥

⎦ M

Based on precomputational phase, Barrett reduction algorithm can take care
of the estimated q-value without complicated division operation. Barrett reduc-
tion algorithm is shown in Algorithm1.

Algorithm 1. Barrett reduction algorithm

Input: N, where |N | = 2m; M, being fixed and |M | = m; precomputing μ =
⌊

22m

M

⌋
;

Output: r = N (mod M);
1: q1 ⇐ ⌊N/2m−1

⌋
;

2: q2 ⇐ q1 · μ;
3: q3 ⇐ ⌊q2/2m+1

⌋
;

4: r1 ⇐ q3 · M (mod 2m+1)
5: r ⇐ N (mod 2m+1) − r1
6: if r < 0 then
7: r ⇐ r + 2m+1;
8: end if ;
9: if r ≥ M then

10: r ⇐ r − M ;
11: end if ;
12: return r ;

Efficient Modular Reduction Algorithm Without Correction Phase 307

2.3 Improved Barrett Algorithm

Algorithm 1 only considers the case of 2m-digit input data and m-digit modulus.
However, when |N | �= 2 |M |, the error between exact value and estimated one
may grow unpredictably. To improve the original algorithm, [8] introduced more
parameters to minimize the error.

Rewrite the estimated value as

q̂ =

⎢

⎢

⎢

⎣

⌊

N
2m+β

⌋

⌊

2m+α

M

⌋

2α−β

⎥

⎥

⎥

⎦ (2)

where α and β are parameters. Using the original Barrett reduction, m and -1
are in the roles of α and β respectively. For a fixed modulus M, |M | = m, assume
arbitrary input data N with |N | = m + γ, such that γ > 0 and Nm+γ−1 �= 0.
Finally

⌊

N

M

⌋

− 2γ−α − 2β+1 + 2β−α − 1 < q̂ ≤
⌊

N

M

⌋

(3)

The detail of derivation process can be found in [8], where the improved
algorithm can guarantee the error limitation with appropriate parameters α, β
and γ. To minimize the error, J. F. Dhem considered β ≤ −2 and α > γ, which
result in q̂ = q or q̂ = q − 1.

Both the original Barrett reduction and the improved Barrett reduction
algorithms described above try their best to replace the real quotient with the
estimated one and minimize the error. However, in order to perform modular
reduction operation, they need a condition judgment to ensure reduction result
being in the interval [0,M) exactly, such as step 6 and step 9 in Algorithm1,
called correction phase.

It is evident that the reason of extra condition judgment is the error. From
the implementation point of view, the appearance of error reduces the system
throughput forcing one to add extra judgment circuit module and increase oper-
ation time, which has a serious impact on the circuit performance for high-speed
system. Hence, both algorithms are not suitable for high speed applications. In
next section we will show the proposed modular reduction algorithm without
estimated error.

3 The Proposed Modular Reduction Algorithm

To meet the requirements of high-speed applications, the error between exact
value and estimated one should be fixed or clear. For a fixed error, we can get the
exact q-value with adding or subtracting the error from the estimated q-value.
While elimination of error is the best way for high-speed modular reduction oper-
ation, which can overcome the shortcomings of two modular reduction method
described above. In this section, we propose a high-speed modular reduction
method without correction phase.

308 H. Yu et al.

The mathematical algorithm of modular reduction is introduced firstly for
which the estimated error in the original Barrett reduction or the improved Bar-
rett reduction can be efficiently avoided. Besides, it is worth noting that the
proposed algorithm is suitable for hardware implementation especially. Last but
not the least, we show the data flow diagram and the datapath of the proposed
algorithm, which can indicate visually our advantages for high-speed applica-
tions.

3.1 Mathematical Algorithm of the Proposed Modular Reduction

Before describing the proposed algorithm, we first give some basic definitions to
make the following explanations clearly. Let us, for now, assume that M and
N are nonnegative integers whose lengths are m and m + γ bits respectively,
that is |M | = m and |N | = m + γ, such that γ > 0, 2m−1 ≤ M < 2m and
2m+γ−1 ≤ N < 2m+γ .

Based on Euclidean division, the quotient q is recorded as

q =
⌊

N

M

⌋

=

⌊

N · 2m+α

M

2m+α

⌋

(4)

where α is a parameter and α > 0. According to (4), we define B = N · 2m+α

M . It
immediately follows that q =

⌊

B
2m+α

⌋

Just the same as Barrett modular reduction, we take care of the estimated
q-value instead of the real value. Based on (4), we define estimated quotient as

q′ =

⎢

⎢

⎢

⎣

N
⌊

2m+α

M

⌋

2m+α

⎥

⎥

⎥

⎦ (5)

Let us define B′ = N ·
⌊

2m+α

M

⌋

and then we have q′ =
⌊

B′
2m+α

⌋

.
Starting with the main idea of the proposed modular reduction algorithm, we

present a lemma as follow, which shows the relation between the real quotient q
and the estimated value q′.

Lemma 1. Known that q =
⌊

B
2m+α

⌋

and q′ =
⌊

B′
2m+α

⌋

, the conclusion holds
⌊

B
2m+α − 2γ−α

⌋

≤ q′ ≤ q.

Proof. Because we always have U
V − 1 <

⌊

U
V

⌋

≤ U
V and B′ = N

⌊

2m+α

M

⌋

, we may
write

N

(

2m+α

M
− 1

)

< B′ = N

⌊

2m+α

M

⌋

≤ N
2m+α

M

N
2m+α

M
− N < B′ ≤ N

2m+α

M

Efficient Modular Reduction Algorithm Without Correction Phase 309

Since B = N 2m+α

M , rewrite the inequality above

B − N < B′ ≤ B (6)

Dividing by 2m+α for the inequality (6), it is easy to obtain that

B

2m+α
− N

2m+α
<

B′

2m+α
≤ B

2m+α

According to the definition of the floor function and input integer N, we have
N < 2m+γ , which leads to

⌊

B

2m+α
− 2γ−α

⌋

≤
⌊

B′

2m+α

⌋

≤
⌊

B

2m+α

⌋

(7)

⌊

B

2m+α
− 2γ−α

⌋

≤ q′ ≤ q

It is the relation between q and q′. �

Modular arithmetic is regarded as the cornerstone of public-key cryptography,
in which modular multiplication is the core operation [9]. As the basic step of
modular multiplication, the results of modular reduction are always not zero.
Therefore, it is reasonable to assume N

M = B/2m+α is not an integer, which
means the value of B/2m+α consists of two parts, integral part and fractional
part.

Under the premise of the fractional part of B
2m+α being greater than or equal

to 2γ−α, it is always true that
⌊

B
2m+α − 2γ−α

⌋

=
⌊

B
2m+α

⌋

with the quality of

floor function. In combination with (7),
⌊

B
2m+α

⌋

is exactly equal to
⌊

B′
2m+α

⌋

in
this case. Recall the definition of q and q′, we can get the conclusion:

q = q′

if the fractional part of B
2m+α is not less than 2γ−α.

Known that N
M = B/2m+α and |M | = m, the minimum fractional part of

B
2m+α is 2−m. Thus it requires

2−m ≥ 2γ−α ⇒ α ≥ m + γ (8)

Hence, we draw a conclusion that q′ is indeed a excellent estimate of q without
estimated error and no correction step is needed to obtain r = N (mod M).

The proposed modular reduction algorithm is presented in Algorithm2. It
is important to point out that we can have obviously less computational steps
with the fixed modulus M. On the other hand, the proposed algorithm only
involves in multiplication, shift and substraction operations, which is suitable
for high-speed hardware and software implementations.

In contrast to the original Barrett modular reduction (shown in Algorithm1)
or the improved algorithm, our proposed algorithm does not include the correc-
tion steps. In the original Barrett reduction, the number of correction steps is

310 H. Yu et al.

at most 2 [7], and in the improved Barrett reduction, the number of correction
steps is at most 1 [8]. While in our algorithm, this number can be zero, which
reduces the number of redundant subtractions efficiently and brings a higher
throughput. Thus it is suitable for high-speed applications.

Algorithm 2. The proposed modular reduction
Input: N, where |N | = m + γ; M, being fixed and |M | = m; precomputing μ =⌊

2m+α

M

⌋
;

Output: r = N (mod M);
1: q1 ⇐ N · μ;
2: q2 ⇐ ⌊q1/2m+α

⌋
;

3: r1 ⇐ q2 · M
4: r ⇐ N − r1
5: return r ;

3.2 Hardware Implementation

To verify our approach in practice, we show the data flow diagram and datapath
of the proposed modular reduction in this subsection. The control and data flow
is the basis of datapath synthesis [14], in which functional units and storage units
are allocated to a special control step. Figure 1 shows the detail of the data flow
diagrams of the proposed algorithm, on the left side, and the original Barrett
algorithm, on the right side.

The control steps are numbered with ti, where the number i is nonnegative
and consecutive. For each control step, system can finish the related operations,
such as arithmetic operations and logic operations. Time required for different
operations can be very different from each other. Assigning the separate weight-
ing factors to related control step or splitting a long control step into several
ones can be a solution to balance control steps. For simplicity, every control step
is deemed to be identical in terms of computation time in the following analysis.

In the proposed modular reduction, there are one multiplier named Mul1, one
subtractor named Sub1 and three registers named R1, R2 and R3, respectively,
where registers are represented as circles in the data flow diagram. As shown in
Fig. 1, one right-shifter is required and one of registers can be used for the shifter,
which can reduce the complexity of integrated circuits and simplifies circuit
layout and wiring. In this case, R2 is the shift register. Note that the output
results of multiplier always store in R2, which means the output terminal of
Mul1 connects with the register R2 fixedly to save hardware cost of multiplexer.

The data flow diagram of original Barrett modular reduction is represented in
the right part of Fig. 1. There are also one multiplier named Mul1′, one subtrac-
tor/adder named Sub1′ and four registers named R1′, R2′, R3′ and R4′. An extra
register is required to store the value of 2m+1 and the output of shift operation,
compared with the proposed algorithm. Obviously, the correction phase in orig-
inal Barrett modular reduction algorithm increases the number of control steps.

Efficient Modular Reduction Algorithm Without Correction Phase 311

Fig. 1. Data flow diagrams of the proposed reduction algorithm and Barrett algorithm

Datapath of the proposed modular reduction algorithm, based on the data
flow diagram, is shown in Fig. 2, which involves in three multiplexers. The more
multiplexers are, the more complex circuit controlling signals becomes. A fixed
connection between the output of Mul1 and the register R2, would bring not only
small circuit scale but concise control codes in system. As mentioned above, the
shifter in datapath can be replaced by a register with shifting operation, where
the register R2 is the right choice.

According to the data flow diagram, it is crystal clear that the number of con-
trol step of original Barrett algorithm is twice the proposed algorithms. Based
on many achievements of fast multipliers, multiplication on the critical path
can be performed in one clock cycle with pipeline design, which means multi-
plication step can be identical with other control steps in terms of computation
time. Accordingly, throughput of our method can be doubled with same clock
frequency in the best case, compared with correction-needed Barrett reduction.
In other words, for a given throughput, the clock frequency can be halved with
respect to modular reduction using the proposed algorithm. Therefore, hard-
ware implementation of the proposed algorithm could bring high throughput
compared with the original method, which is suitable for high-speed applica-
tions.

312 H. Yu et al.

Fig. 2. Datapath of the proposed modular reduction algorithm

4 Conclusion

In this paper, we introduce an efficient modular reduction algorithm based on
Barrett modular reduction. Because of high-precision multiplication operation,
the value of remainder can be obtained in very simple control steps. Compared
with the original Barrett reduction or the improved algorithm, the proposed
algorithm does not include the correction steps. In the original Barrett reduc-
tion, the number of correction steps is at most 2, and in the improved Barrett
reduction, the number of correction steps is at most 1. While in our algorithm,
this number can be zero, which reduces the number of redundant subtractions
efficiently and brings a higher throughput. Thus, the proposed algorithm is suit-
able for high-speed applications.

Acknowledgment. This work is supported by the National Natural Science founda-
tion of China (No.61472208 and U1135004). The authors would like to thank the editor
and reviewers for their comments.

References

1. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Trans. Inf. The-
ory 22(6), 644–654 (1976)

2. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures
and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)

3. Miller, V.S.: Use of elliptic curves in cryptography. In: Williams, H.C. (ed.)
CRYPTO 1985. LNCS, vol. 218, pp. 417–426. Springer, Heidelberg (1986)

4. Koblitz, N.: Elliptic curve cryptosystems. Math. Comput. 48(177), 203–209 (1987)
5. Knežević, M., Vercauteren, F., Verbauwhede, I.: Speeding up bipartite modular

multiplication. In: Hasan, M.A., Helleseth, T. (eds.) WAIFI 2010. LNCS, vol. 6087,
pp. 166–179. Springer, Heidelberg (2010)

6. Knezevic, M., Vercauteren, F., Verbauwhede, I.: Faster interleaved modular mul-
tiplication based on barrett and montgomery reduction methods. IEEE Trans.
Comput. 59(12), 1715–1721 (2010)

Efficient Modular Reduction Algorithm Without Correction Phase 313

7. Barrett, P.: Implementing the rivest shamir and adleman public key encryption
algorithm on a standard digital signal processor. In: Odlyzko, A.M. (ed.) CRYPTO
1986. LNCS, vol. 263, pp. 311–323. Springer, Heidelberg (1987)

8. Dhem, J.-F., Quisquater, J.-J.: Recent results on modular multiplications for smart.
In: Schneier, B., Quisquater, J.-J. (eds.) CARDIS 1998. LNCS, vol. 1820, pp. 336–
352. Springer, Heidelberg (2000)

9. Großschädl, J.: High-speed RSA hardware based on Barret’s modular reduction
method. In: Paar, C., Koç, Ç.K. (eds.) CHES 2000. LNCS, vol. 1965, pp. 191–203.
Springer, Heidelberg (2000)

10. Hasenplaugh, W., Gaubatz, G., Gopal, V.: Fast modular reduction. In: 18th IEEE
Symposium on Computer Arithmetic, ARITH 2007, pp. 225–229. IEEE (2007)

11. Knezevic, M., Batina, L., Verbauwhede, I.: Modular reduction without precom-
putational phase. In: IEEE International Symposium on Circuits and Systems,
ISCAS 2009, pp. 1389–1392. IEEE (2009)

12. Rutten, L., Van Eekelen, M.: Efficient and formally proven reduction of large inte-
gers by small moduli. ACM Trans. Math. Soft. (TOMS) 37(2), 16 (2010)

13. PUBLIC-KEY CRYPTOGRAPHY. Primality testing and integer factorization in
public-key cryptography (2009)

14. Paulin, P.G., Knight, J.P.: Force-directed scheduling for the behavioral synthesis
of asics. IEEE Trans. Comput.-Aided Des. Integr. Circ. Syst. 8(6), 661–679 (1989)

Super Solutions of Random Instances
of Satisfiability

Peng Zhang and Yong Gao(B)

Department of Computer Science, Irving K. Barber School of Arts and Sciences,
University of British Columbia Okanagan, Kelowna V1V 1V7, Canada

yong.gao@ubc.ca

Abstract. We study the probabilistic behaviour of super solutions to
random instances of the Boolean Satisfiability (SAT) and Constraint
Satisfaction Problems (CSPs). Our analysis focuses on a special type of
super solutions, the (1,0)-super solutions. For random k-SAT, we estab-
lish the exact threshold of the phase transition of the solution probability
for the cases of k = 2 and 3, and upper and lower bounds on the threshold
of the phase transition for the case of k ≥ 4. For CSPs, by overcoming
difficulties that do not exist in the probabilistic analysis of the standard
solution concept, we manage to derive a non-trivial upper bound on the
threshold for the probability of having a super solution.

1 Introduction

For many problems arising in uncertain, dynamic, or interactive environments,
it is desirable to find solutions that can be modified at a low cost in response to
changes of the environment. This requires that a solution has a certain degree of
robustness or stability. For example, super solutions have been used to formalize
the notion of a robust or stable solution to the Boolean Satisfiability problem
and the constraint satisfaction problem [8,10]. An (a, b)-super solution to a CSP
instance is a satisfying solution such that, if the values assigned to any set of
a variables are no longer available, a new solution can be found by reassigning
values to these a variables and at most b other variables.

In general, finding super solutions to SAT and CSPs is NP-complete. One
of the fruitful approaches to such hard problems is to understand the typical-
case complexity of a hard problem by studying the probabilistic behaviour of
random instances [2,9]. By analyzing the threshold phenomena of the solution
probability and the correlated easy-hard-easy pattern of the instance hardness of
the standard solution concept for SAT and CSPs, much insight has been gained
on the effectiveness of the many heuristics widely-used in practice to tackle these
problems [6,7,9,11–13].

In this paper, we study the probabilistic behaviour of super solutions to
random instances of SAT and CSPs. Our analysis focuses on a special (but
highly non-trivial) type of super solutions, the (1,0)-super solutions. We denote
the problems of finding (1, 0)-super solution for k-SAT and CSPs by (1, 0)-k-SAT
and (1, 0)-CSP respectively.
c© Springer International Publishing Switzerland 2015
J. Wang and C. Yap (Eds.): FAW 2015, LNCS 9130, pp. 314–325, 2015.
DOI: 10.1007/978-3-319-19647-3 29

Super Solutions of Random Instances of Satisfiability 315

In Sect. 2, we establish the exact threshold for the probability of having a
(1, 0)-super solutions to random 3-SAT by making use of an observation on
the equivalence between a (1, 0)-k-SAT and a standard satisfying solution of a
properly-constructed (k − 1)-SAT instance. In Sect. 3, we establish upper and
lower bounds on the threshold of random (1, 0)-k-SAT for k ≥ 4. In Sect. 4, we
study possible upper bounds on the threshold of random (1, 0)-CSPs.

2 Super Solutions for Boolean Satisfiability

Let X = {x1, x2, · · · , xn} be a set of n Boolean variables. A literal is a variable
or its negation. A k-clause is a disjunction of k different literals and a k-CNF
formula is a conjunction of k-clauses. An assignment σ is a mapping σ : X →
{1, 0}n and is said to satisfy a k-CNF formula F if each clause of F contains at
least one literal that evaluates to true under σ. A satisfying assignment is also
called a solution.

2.1 Equivalent Definitions of (1, 0)-Super Solutions

As a special case of (a, b)-super solutions, a (1, 0)-super solution for a k-SAT
is a solution such that changing the value assigned to exactly one variable will
not violate any clause. Equivalently, a (1, 0)-super solution is an assignment
such that every clause contains at least two literals that evaluate to true under
the assignment. Another equivalent condition for a (1, 0)-super solution is given
below and plays a crucial role in our analysis.

Definition 1. The projection of a clause C = l1 ∨ · · · ∨ lk is defined to be the
conjunction of all (k − 1)-clauses contained in C, i.e. π(C) = ∧k

i=1(∨j �=ilj). We
say that C projects onto π(C) and call clauses in π(C) siblings.

The projection of a CNF formula F is defined to be π(F) = ∧Ci∈F π(Ci).

The following observation can be proved easily.

Lemma 1. An assignment (1,0)-satisfies F if and only if it satisfies π(F).

The following theorem complements existing results on the worst-case complexity
of super solutions [10].

Theorem 1. (1, 0)-k-SAT is in P for k ≤ 3, and is NP-Complete otherwise.

Proof. Any instance of (1,0)-3-SAT F can be solved by solving the 2-SAT
instance of π(F), which is in P. For k ≥ 4, we first prove the NP-completeness
of (1,0)-4-SAT via a reduction from 3-SAT. Note that, σ satisfies (l1 ∨ l2 ∨ l3)
if and only if it (1,0)-satisfies (l1 ∨ l2 ∨ l3 ∨ 1). For any 3-SAT F , we reduce it
into a 4-SAT F ′ as following in three steps. First, create 4 additional variables,
Y = {y1, y2, y3, y4} and a 4-SAT Fy of all the possible

(

4
2

)

clauses, where each
clause has exactly two negations of variables. In order to (1,0)-satisfy Fy, we
have σy(yi) = 1, 1 ≤ i ≤ 4. Secondly, for each clause ci in F , add c′

i = (ci ∨ y1)
into F ′. Finally, let F ′ be the conjunction of F ′ and Fy. Now, σ is a solution of
F if and only if it is a (1,0)-solution of F ′. Thus (1,0)-4-SAT is NP-complete.
Similar methods can reduce any k-SAT instance to (1, 0)-(k + 1)-SAT instance.

316 P. Zhang and Y. Gao

2.2 Random Models of k-SAT

We denote by Fk(n,m) the standard random model for k-CNF formulas on n
variables, where the m clauses are selected uniformly at random without replace-
ment from the set of all possible 2k

(

n
k

)

k-clauses. We say that a sequence of events
En occurs with high probability (w.h.p.) if limn→∞ P[En] = 1. As sometimes it is
hard to directly analyze Fk(n,m) due to the dependence created by selecting the
clauses without replacement, we consider two related models. The first model
selects from all 2k

(

n
k

)

proper clauses with replacement. The second model selects
each literal uniformly and independently with replacement. Both models may
result in improper formula and the second model may have improper clauses.
As long as k is fixed, the number of improper clauses and repeated clauses is
o(n). Therefore, with-high-probability properties of (1,0)-satisfiability hold in all
these three models simultaneously. For notation convenience, we denote all three
models by Fk(n,m). When k ≤ 3, we use the first model. When k ≥ 4, we use
the second model. We also assume that k is fixed.

Due to Lemma 1, the probability for Fk(n,m) to be (1,0)-satisfiable equals
the probability for its projection π(F) to be satisfiable. This, however, does
not imply that the probability for a random Fk(n,m) to be (1, 0)-satisfiable
equals the probability for Fk−1(n, km) to be satisfiable. The following result on
the exact threshold of the solution probability of (1,0)-2-SAT is not hard to
establish.

Theorem 2. F2(n,m) is (1,0)-satisfiable w.h.p. when m = o(
√

n) and is (1,0)-
unsatisfiable w.h.p. when m = ω(

√
n).

Proof. We say that two clauses are conflicting if some literal in one clause is the
negation of some literal in the other clause. Note that a 2-CNF formula F is
(1,0)-satisfiable if and only if no conflicting clauses exists. Let F = C1 ∧· · ·∧Cm

and Xi,j be the indicator variable that Ci conflicts with Cj . Then, E[Xi,j] =
2(2(n−1)−1)+1

22(n2)
= 4n−5

2n(n−1) . Denote by X =
∑

(i,j) Xi,j the number of conflicting

pairs in F .

E[X] =
(

m

2

)

E[Xi,j] =
m2

n
(1 − o(1))

When m = o(
√

n), lim
n→∞P[X > 0] ≤ lim

n→∞E[X] = 0.

Let t =
(

m
2

)

and p = E[Xi,j], then E[X] = tp. Note that, X2 is composed
of t2 items of Xi,jXi′,j′ . Group these items according to h = |{i, j, i′, j′}|. We
see that E[Xi,jXi′,j′] equals p when h = 2, and equals p2 otherwise. Thus,
E

[

X2
]

= tp + (t2 − t)p2. When m = ω(
√

n),

lim
n→∞P[X > 0] ≥ lim

n→∞
E[X]2

E[X2]
= lim

n→∞
tp

tp + 1 − p
= 1,

where the first inequality is due to the Cauchy-Schwarz inequality.

Super Solutions of Random Instances of Satisfiability 317

2.3 An Exact Threshold for the Solution Probability of (1,0)-3-SAT

We use the equivalence (Lemma 1) for a (1, 0)-super solution to study the thresh-
old for the solution probability of random (1, 0)-3-SAT. We upper bound (resp.
lower bound) the probability for F to be (1,0)-unsatisfiable by the probability of
some necessary (resp. sufficient) condition on the satisfiability of its projection
π(F) (a 2-CNF formula). The conditions were proposed in [4]. It is important
to note that while π(F) is a 2-CNF formula obtained from a random 3-CNF
formula F3(n,m), π(F) itself is not distributed as the random 2-CNF formula
F2(n,m). This is the major obstacle we have to deal with in our analysis.

Theorem 3. F3(n, rn) is (1,0)-satisfiable w.h.p. if r < 1/3 and is (1,0)-
unsatisfiable w.h.p. if r > 1/3.

The proof of the above result is presented in two lemmas. In the proof, we use F
to denote a random formula F3(n, rn), m = rn, and write N = 23

(

n
3

)

. A bicycle
([4]) of length s ≥ 2, is a conjunction of s + 1 2-clauses C0, · · · , Cs defined on s
variables {x1, x2, · · · , xs} such that Ci = li ∨ li+1, 0 < i < s, C0 = u ∨ l1, and
Cs = ls ∨ v, where

1. li is either xi or xi, and
2. u and v are from {xi, xi | 1 ≤ i ≤ s}.

It can be shown that if a 2-SAT is unsatisfiable, then it must contain a
bicycle ([4]).

Lemma 2. F3(n, rn) is (1,0)-satisfiable w.h.p. when r < 1/3.

Proof. For any fixed bicycle B = C0∧· · ·∧Cs, we consider the number of 3-CNF
formulae F such tht B ⊂ π(F). Let C = {C1, C2, · · · , Cs−1}. Since clauses in C
are defined on distinct literals, no two clauses in C can be siblings with respect to
the projection of any 3-clause. Similarly, no three clauses from B can be siblings
with respect to a 3-clause. The only possible siblings are (C0, Ci) and (Cs, Ci)
for some 0 ≤ i ≤ s.

Denote by g(s, l) the number of 3-CNF formulas F such that B ⊂ π(F),
where l = 0, 1, or 2 is the number of clause pairs that belong to the projection
of a same 3-clause in F . We have

g(s, l) =
(

N − (s + 1 − l)
m − (s + 1 − l)

)

· (2(n − 2))s+1−2l.

Let p(s) denote the probability that a bicycle of length s over a given (ordered)
set of s variables is part of π(F). Then,

p(s) ≤
(

N

m

)−1

(g(s, 0) + 2s · g(s, 1) + g(s, 2))

≤
(

N

m

)−1

2(s + 1)
(

N − (s − 1)
m − (s − 1)

)

· (2(n − 2))s−3

≤
(

3r

2(n − 1)

)s−1

· s + 1
2(n − 2)2

318 P. Zhang and Y. Gao

Let Ns denote the number of different bicycles of length of s and X be the
number of bicycles in π(F). As Ns < ns2s(2s)2, we have

E[X] =
n

∑

s=2

Nsp(s) ≤ 4n

(n − 2)2

n
∑

s=2

s2(s + 1)(
3rn

n − 1
)s−1

When r < 1/3, lim
n→∞P[X > 0] ≤ lim

n→∞E[X] = 0. 	

A snake of length t ≥ 1 is the conjunction of 2t 2-clauses C0, C1, · · · , C2t−1

and has following structure.

1. Ci = (li ∨ li+1), 0 ≤ i ≤ 2t − 1. l0 = l2t = lt
2. For any 0 < i, j < 2t − 1, li �= lj and li �= lj .

If π(F) contains a snake, then F is not (1,0)-satisfiable. We show that w.h.p.
π(F) contains a snake of length log3r n.

Lemma 3. F3(n, rn) is (1,0)-unsatisfiable w.h.p. when r > 1/3.

Proof. Let A be a snake of length t, XA be the indicator variable that A occurs in
F . Note that there only the two pairs, (C0, Ct−1) and (Ct, C2t−1), can potentially
be siblings with respect to the projection of a 3-clause. Let s = 2t − 1 and let
p(s) be the probability that a snake of length t over a given set of variables is in
π(F). We have

p(s) =
(

N

m

)−1

(g(s, 0) + 2g(s, 1) + g(s, 2))

≈
(

N

m

)−1

4g(s, 2) ≈ (
3r

2n
)s−1 1

n2

Let X denote the number of snakes of length t in π(F). E[X] =
(

n
s

)

s!2sp(s) ≈
(3r)s/n. When r > 1/3 and t = ω(log3r n), limn→∞ E[X] = ∞.

In order to apply the second moment method to X, we have to consider
correlation between snakes. To satisfy a clause (li ∨ lj), if li is false, then lj
must be true. This implication can be represented by two arcs (li, lj), (lj , li) in a
digraph. The digraph for a snake of length t is a directed cycle lt, l1, l2, · · · , ls, lt.
Two snakes are not independent if and only if there are some common arcs
between the corresponding directed cycles. Let B be another snake of length t.
Suppose B share i arcs with A and these arcs contain j vertices. Then, taking
into consideration the fact that the dominating term is still the one where exactly
two pairs in B are siblings in the projection of the formula, we have

P[B|A] ≤
(

N−2t−(2t−i)
m−2t−(2t−i)

)

· (2(n − 2))2t · (2(n − 2))2t−i

(

N−2t
m−2t

)

· (2(n − 2))2t

≤
(

m − 2t

N − 2t
· 2(n − 2)

)2t−i

≤
(

3r

2n

)2t−i

Super Solutions of Random Instances of Satisfiability 319

It is clear that those common i arcs comprise (j − i) directed paths. Fixing A,
there are L1 number of choices for the shared j vertices to occur in B, and there
are L2 number of choices for the remaining 2t − j vertices to occur in B.

L1 =
(

2 ·
(

2t

2(j − i)

))2

· (j − i)! ≤ 4 · (2t)4(j−i)

L2 ≤
(

n − j + 1
2t − j

)

(2t − j)! · 22t−j ≤ (2(n − j + 1))2t−j

For a given A, let A(i, j) be the set of snakes sharing i arcs and j vertices with
A, and write

p(i, j) =
∑

B∈A(i,j)

P[B|A] = L1L2P[B|A]

≤
(

3r

2n

)2t−i

4(2t)4(j−i) (2(n − j + 1))2t−j
.

If i ≤ t, then i+1 ≤ j ≤ 2i. If t < i ≤ 2t, then i+1 ≤ j ≤ 2t. Let A ∼ B denote
the fact that A and B are dependent.

∑

A∼B

P[B|A] =
2t

∑

i=1

min{2i,2t}
∑

j=i+1

p(i, j) =
2t

∑

j=2

j−1
∑

i=j/2

p(i, j)

≤
2t

∑

j=2

(2(n − j + 1))2t−j 4
j−1
∑

i=j/2

(

3r

2n

)2t−i

(2t)4(j−i)

≤
2t

∑

j=2

(2(n − j + 1))2t−j 4 · j

2

(

3r

2n

)2t−j+1

(2t)4

≤
2t

∑

j=2

2j

(

3r

2n

)

(2t)4

≤ Θ(1) · 1
n

t6 = o(
1
n

(3r)2t) = o(E[X]).

According to corollary 4.3.5 of [3], lim
n→∞P[X > 0] = 1.

2.4 Thresholds for the Solution Probability of (1, 0)-k-SAT

Using Markov’s inequality, the following upper bound on the threshold of the
phase transition can be proved:

Theorem 4. For all k ≥ 3, Fk(n, rn) is (1, 0)-unsatisfiable w.h.p. when r >
2k

k+1 ln 2.

320 P. Zhang and Y. Gao

In the rest of this section, we establish a lower bound on the threshold for
k > 3 and show that the ratio of the lower bound over the upper bound goes
to 1 as k goes to infinity. Our analysis uses the techniques introduced in [2]
for proving lower bounds on the threshold for the phase transition of standard
satisfying solutions of random SAT, but the calculation we have to deal with
is even more complicated. The idea is to use a weighting scheme on satisfying
assignments when applying the second moment method to prove lower bounds
on the threshold.

For a clause c, denote by S(c) the set of (1, 0)-super solutions of c, S0(c)
(resp. S1(c)) the set of assignments that satisfies exactly 0 (resp. 1) literal of c.
Define H(σ, c) be the number of satisfied literals minus the number of unsatisfied
literals. For an event A, let 1A be the indicator variable that A occurs. The
weight of σ w.r.t. c is defined as w(σ, c) = γH(σ,c)1σ∈S(c), 0 < γ < 1 and is
determined by k. These definitions extend naturally to a formula F : w(σ, F) =
γH(σ,F)1σ∈S(F) =

∏

ci
w(σ, ci). Let X =

∑

σ w(σ, F). F is (1,0)-satisfiable if and
only if X > 0.

Note that by viewing an instance of (1, 0)-k-SAT as a generalized Boolean
satisfiability problem (Boolean CSP) and applying the conditions established
in [5], random (1, 0)-k-SAT has a sharp threshold. Therefore, to show X > 0
w.h.p., it is sufficient to prove that P[X > 0] is greater than some constant.

For a fixed σ and a random k-clause c, since σ (1-0)-satisfies c if at least two
literals in c evaluate to true under σ, we have

E[w(σ, c)] = E

[

γH(σ,c)(1 − 1σ∈S0(c) − 1σ∈S1(c))
]

= (
γ + γ−1

2
)k − 2−kγ−k − k2−kγ−k+2 = φ(γ)

Thus, E[X] =
∑

σ

∏

ci
E[w(σ, c)] = (2φ(γ)r)n.

We now consider E
[

X2
]

. Fix a pair of assignments σ, τ such that they overlap
each other on z = αn variables. Consider a random k-clause c and write

f(α) = E[w(σ, c)w(τ, c)] = E

[

γH(σ,c)+H(τ,c)1σ,τ∈S(c)

]

.

We have the following equations for relevant events

1σ,τ∈S(c) = 1 − 1σ �∈S(c) − 1τ �∈S(c) + 1σ,τ �∈S(c),

1σ �∈S(c) = 1σ∈S0(c) + 1σ∈S1(c),

1σ,τ �∈S(c) = 1σ∈S0(c),τ∈S0(c) + 1σ∈S0(c),τ∈S1(c)

+ 1σ∈S1(c),τ∈S0(c) + 1σ∈S1(c),τ∈S1(c),

and for mathematical expectations

Super Solutions of Random Instances of Satisfiability 321

E

[

γH(σ,c)+H(τ,c)1
]

= (α(
γ2 + γ−2

2
) + 1 − α)k,

E

[

γH(σ,c)+H(τ,c)1σ �∈S(c)

]

= 2−k((αγ−2 + 1 − α)k

+ k(αγ−2 + 1 − α)k−1(αγ2 + 1 − α)),

E

[

γH(σ,c)+H(τ,c)1σ,τ �∈S(c)

]

= 2−k(αkγ−2k + 2kγ−2k+2αk−1(1 − α)

+ γ−2k+4(kαk + k(k − 1)αk−2(1 − α)2)).

Therefore, the expectation of X2 can be written as

E
[

X2
]

=
∑

σ,τ

E[w(σ, F)w(τ, F)]

=
∑

σ,τ

∏

ci

E[w(σ, ci)w(τ, ci)] = 2n
n

∑

z=0

(

n

z

)

f(z/n)rn

The following lemma from [1] enables us to consider the dominant part of
E

[

X2
]

.

Lemma 4. Let h be a real analytic positive function on [0, 1] and define g(α) =
h(α)/(αα(1 − α)1−α), where 00 ≡ 1. If g has exactly one maximum at g(β),
β ∈ (0, 1), and g′′(β) < 0, then there exists constant C > 0 such that for all
sufficient large n,

∑n
z=0

(

n
z

)

h(z/n)n ≤ C × g(β)n.

Define gr(α) = f(α)r/(αα(1 − α)1−α) and say gr(α) satisfies the dominant con-
dition if gr

′′(1/2) < 0 and gr(1/2) is the unique global maximum. According to
lemma 4 and φ(γ)2 = f(1/2), if gr(α) satisfies the dominant condition, then

P[X > 0] >
E[X]2

E[X2]
=

4nf(1/2)rn

E[X2]

>
(2gr(1/2))n

C · (2gr(1/2))n
=

1
C

,

where C is a constant when k is fixed.
If we can find suitable γ and r so that gr(α) satisfies the dominant condition,

then X > 0 w.h.p.. It is clear that the dominant condition implies f ′(1/2) = 0.
According to [2], a necessary condition for f ′(1/2) = 0 is that the sum of vectors
scaled by their corresponding weight is 0, i.e.,

∑

v∈{0,1}k w(v)v = 0. For (1, 0)-

k-SAT, this is
∑k

i=1

(

k
i

)

γ2i(2i − k) = 0. When k = 4, this equation requires
γ = 0. Thus, the weighting scheme is not meaningful when k = 4. Therefore, we
consider the case of k > 4 first and then the case of k = 4 in a different way.

It is too complicated to directly prove that gr(α) satisfies the dominant con-
dition, at least for small k. Therefore, we plot figures to show how gr(α) changes
when k is fixed. Figure 1 shows the case when k = 5. For each k, when r is
smaller than some r∗

k, gr(α) satisfies the dominant condition and Fr(n, rn) is
(1, 0)-satisfiable w.h.p. Thus r∗

k is a lower bound for Fk(n, rn). We do this analy-
sis for k up to 11 and show the values in Table 1. We can see that the ratio of

322 P. Zhang and Y. Gao

the lower bound over the upper bound of thresholds of Fk(n, rn) goes to 1 as k
becomes large. We still have to solve the case k = 4 separately. The weighting
scheme, w(σ, c) = γH(σ,c)1σ∈S(c), does not work for any γ > 0. This is because
H(σ, F) is either 0 or positive. Thus, a compromise is to consider only those
assignments which satisfy H(σ, F) = 0. Specifically, for each clause of F , exactly
two literals are satisfied and exactly two literals are unsatisfied. And every sat-
isfying assignment has the same weight, 1. By doing this, the likelihood for an
assignment not to be in X is doubled. Therefore, the upper bound for such solu-
tions becomes 2k−1

1+k ln 2, half of the upper bound for (1, 0)-4-SAT. The remaining
analysis is similar to the analysis of k > 4. The r∗

4 we found is 0.602.

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Fig. 1. k = 5, r = 1, 1.2, 1.6, 2, 2.4, 2.8, 3.2 (top down)

Table 1. Upper bound and lower bound for different k

k 4 5 6 7 8 9 10 11

Upper Bound 2.2 3.6 6.3 11.1 19.7 35.5 64.5 118.3

Lower Bound 0.6 1.6 3.7 7.8 15.8 30.9 59.3 113.4

3 Super Solutions for Random Binary CSPs

We consider random binary CSPs defined on a domain D of size |D| = d.
A binary CSP C consists of a set of variables X = {x1, · · · , xn} and a set
of binary constraints (C1, · · · , Cm). Each constraint Ci is specified by its con-
straint scope, an unordered pair of two variables in X, and a constraint relation
RCi

that defines a set of incompatible value tuples in the binary relation D × D
for the scope variables. An incompatible value tuple is also called a restriction.
The constraint graph of a binary CSP is a graph whose vertices correspond to
the set of variables and edges correspond to the set of constraint scopes. We
use the following random CSP model Bd,q

n,m where the domain size is allowed to
increase with the number of variables.

Super Solutions of Random Instances of Satisfiability 323

1. Its constraint graph is a random graph G(n,m) where the m edges are selected
uniformly at randomly from all the possible

(

n
2

)

edges.
2. For each edge, its constraint relation is determined by choosing each value

tuple in D × D as a restriction independently with probability q.

Proposed and studied in a series of papers by Xu, et al., this class of models
for random CSPs is known as the Model RB [11–13]. In particular, the exact
threshold of the phase transition of standard satisfiability has been established in
[12] and the (resolution) complexity of random instances at the phase transition
has been analyzed in [13].

Denote by H(σ1, σ2) the set of variables being assigned different values by
σ1 and σ2, i.e., H(σ1, σ2) = {xi|σ1(xi) �= σ2(xi), 1 ≤ i ≤ n}. Let σ be a fixed
assignment and I be a random Bd,q

n,m instance. Define the following three events:

1. S(σ) : σ is a solution for I.
2. Si(σ) : there exists another solution σ′ for I such that H(σ, σ′) = {xi}.
3. T (σ) : σ is a (1, 0)-super solution for I.

It is clear that P[T (σ)] = P[S(σ)]P[∩1≤i≤nSi(σ)|S(σ)]. Estimating the probabil-
ity of a (1, 0)-super solution for a random CSP instance is, however, more compli-
cated than estimating the probability of a satisfying assignment, largely due to
the fact that the events Si(σ), 1 ≤ i ≤ n, are not independent. This is the major
hurdle we need to overcome. Note that in a random CSP instance, the selection
of constraints and the selection of restrictions for each constraint are indepen-
dent. Let C ⊂ (X × X)m be the collection of all possible sets of m unordered
pairs of variables. For a given set e ∈ C of m unordered pairs, denote by E(e)
the event that e is selected as the set of constraints of the random instance I. Let
mi be the number of constraints xi is involved with. Considering an assignment
σ′, H(σ, σ′) = {xi}, it is clear that P

[

S(σ′)|S(σ) ∩ E(e)
]

= 1 − (1 − q)mi . Let
D′ = D \ {σ(xi)}, σ′(xi) = y, p = 1 − q, then

P[Si(σ)|S(σ) ∩ E(e)] = P
[∪y∈D′S(σ′)|S(σ) ∩ E(e))

]

= P

[
∩y∈D′S(σ′)|S(σ) ∩ E(e))

]

= 1 − P

[
∩y∈D′S(σ′)|S(σ) ∩ E(e))

]

= 1 − (1 − (1 − q)mi)d−1.

This shows that, conditioned on S(σ) and fixed constraint sets e, Si(σ) and
Sj(σ) are independent for any i �= j.

P[T (σ)] = P[∪e∈C (E(e) ∩ S(σ) ∩ (∩1≤i≤nSi(σ)))]

=
∑
e∈C

P[E(e)]P[S(σ)|E(e)]P
[∩i∈[n]Si(σ)|S(σ) ∩ E(e)

]

=

((
n
2

)
m

)−1

pm
∑
e∈C

n∏
i=1

(
1 − (1 − pmi)d−1

)
. (1)

Let Yσ be an indicator variable of Tσ and Y =
∑

σ Yσ be the number of (1, 0)-
super solutions. We have

E[Y] = dn · E[Yσ] = dn · P[Tσ]

324 P. Zhang and Y. Gao

We have the following lower and upper bounds on the threshold of solution
probability.

Theorem 5. Consider the random CSP Bd,q
n,m with d =

√
n, p = 1 − q, m =

c · n ln n where c is a positive constant.

– If c > − 1
3 ln p , lim

n→∞E[Y] = 0 and thus Bd,q
n,m is (1, 0)-unsatisfiable w.h.p.

– If c < − 1
10 ln p and q = 1 − p < 0.43, lim

n→∞E[Y] → ∞.

Proof. Due to space limit, we give a brief proof of the first part of the conclusion
and omit the proof of the second part of the conclusion.

The right hand side of Eq. (1), subject to
∑n

i=1 mi = 2m, achieves the global
maximum when mi = 2m

n , 1 ≤ i ≤ n. This can be proved by the method of
Lagrange multipliers. Let c = c′ · − 1

ln p , then

E[Y] ≤ (d · pc lnn · (1 − (1 − p2c lnn)d−1))n

= (d · nc ln p · (1 − (1 − n2c ln p)d−1))n

≈ (n1/2−c′ · (1 − (1 − n−2c′
)n1/2

))n.

For any a, b satisfying 0 ≤ a ≤ 1 and ab < 1, (1 − a)b ≥ 1 − ab. If c′ > 1/3, then

E[Y] ≤ (n1/2−c′ · n−2c′
n1/2)n = (n1−3c′

)n → 0.

4 Conclusions

To the best of our knowledge, we have conducted (for the first time) a proba-
bilistic analysis of super solutions of random instances of SAT and CSPs. While
we have focused on the special (but already challenging) case of (1,0)-super solu-
tions, some of our analysis extends to the case of (a, 0)-super solutions for a > 1.
For random instances of CSPs, new analytical methods and ideas are needed to
obtain a more detailed characterization of the behavior of the super solutions,
and we leave this as a future work. It is also highly interesting to conduct a
systematic empirical analysis to fully understand the hardness of solving ran-
dom instances of (1, 0)-k-SAT as well as the hardness of solving the projected
standard SAT instances, which may serve as suite of SAT benchmark with a
unique structural properties. Finally, we wonder if our analysis can be extended
to random instances of other problems such as graphical games where solution
concepts similar to super solutions have been used.

References

1. Achlioptas, D., Moore, C.: The asymptotic order of the random k-sat threshold.
In: Proceedings of the FOCS, pp. 779–788 (2002)

2. Achlioptas, D., Peres, Y.: The threshold for random k-sat is 2k (ln 2 - o(k)). In:
STOC 2003, pp. 223–231. ACM, New York (2003)

Super Solutions of Random Instances of Satisfiability 325

3. Alon, N., Spencer, J.H.: The Probabilistic Method. Wiley, New York (2008)
4. Chvatal, V., Reed, B.: Mick gets some (the odds are on his side) (satisfiability).

In: SFCS 1992, pp. 620–627. IEEE Computer Society, Washington (1992)
5. Creignou, N., Daud, H.: Combinatorial sharpness criterion and phase transition

classification for random CSPS. Inf. Comput. 190(2), 220–238 (2004)
6. Culberson, J., Gent, I.: Frozen development in graph coloring. Theoret. Comput.

Sci. 265(1–2), 227–264 (2001)
7. Gao, Y., Culberson, J.: Consistency and random constraint satisfaction models. J.

Artif. Intell. Res. 28, 517–557 (2007)
8. Ginsberg, M.L., Parkes, A.J., Roy, A.: Supermodels and robustness. In: AAAI

1998/IAAI 1998, Menlo Park, CA, USA, pp. 334–339 (1998)
9. Gomes, C., Walsh, T.: Randomness and structure. In: Rossi, F., van Beek, P.,

Walsh, T. (eds.) Handbook of Constraint Programming, pp. 639–664. Elsevier,
Amsterdam (2006)

10. Hebrard, E., Hnich, B., Walsh, T.: Super solutions in constraint programming.
In: Régin, J.-C., Rueher, M. (eds.) CPAIOR 2004. LNCS, vol. 3011, pp. 157–172.
Springer, Heidelberg (2004)

11. Xu, K., Boussemart, F., Hemery, F., Lecoutre, C.: Random constraint satisfaction:
easy generation of hard (satisfiable) instances. Artif. Intell. 171, 514–534 (2007)

12. Xu, K., Li, W.: Exact phase transitions in random constraint satisfaction problems.
J. Artif. Intell. Res. 12, 93–103 (2000)

13. Xu, K., Li, W.: Many hard examples in exact phase transitions. Theoret. Comput.
Sci. 355, 291–302 (2006)

A Data Streams Analysis Strategy Based on Hadoop
Scheduling Optimization for Smart Grid Application

Fengquan Zhou1, Xin Song2(✉), Yinghua Han2, and Jing Gao2

1 XuJi Group Corporation, State Grid, Xuchang 461000, China
2 Northeastern University at Qinhuangdao, Northeastern University,

Qinhuangdao 066004, China
bravesong@163.com

Abstract. The massive data streams analysis in the Smart Grids data processing
system is very important, especially in the high-concurrent read and write envi‐
ronments where supporting the massive real-time streaming data storage and
management. The computational and stored requirements for Smart Grids can be
met by utilizing the Cloud computing. In order to support the robust, affordable
and reliable power streaming data analysis and storage, in this paper, we propose
a power data streams analysis strategy based on Hadoop scheduling optimization
for smart grid monitoring application. The proposed strategy combined with the
flexible resources and services shared in network, omnipresent access and parallel
processing features of cloud computing. Finally, the simulation results show that
proposed strategy can effectively improve the efficiency of computing resource
utilization and achieve the massive information concurrent processing ability.

Keywords: Data streams analysis · Hadoop scheduling optimization · Smart
grid application · Cloud computing

1 Introduction

With the wide application of new technology in the power grid system, the construction
of the robust smart grid has become the inevitable trend of the power grid development.
The monitoring and analysis platform will deal with the massive amounts of sensor
streams data in smart grid system because of a wide variety of sensor devices on sensing
layer. The heterogeneous sensor data objects include text, numbers, forms, and graphics
etc. Unlike traditional data sets processing strategy, the power monitoring system put
forward the high request for the real time and reliability in streams data storage and
management method. However, the traditional computing system cannot solve the real-
time calculation, comprehensive analysis and extensibility problem of power data
streams. Smart grid data processing system need to store huge amounts of streams data
from the endpoint sensor nodes. It needs have the higher concurrent read/write requests
and the higher scalability. The emerging cloud computing service system provides the
support for the complex smart grid applications [1]. It may be impossible to store an
entire data stream or to scan through it multiple times due to the tremendous volume of
the sensor data streams on the power monitoring application system. In front of the

© Springer International Publishing Switzerland 2015
J. Wang and C. Yap (Eds.): FAW 2015, LNCS 9130, pp. 326–333, 2015.
DOI: 10.1007/978-3-319-19647-3_30

amazing power data scale expanding, the power grid monitoring system arises some
new technology challenges, such as massive information storage, real-time data
processing, streams data retrieval, streams data mining and intelligent information
processing etc. The smart grid system architecture is an urgent need to support the
dynamic scalable characteristics of massive streams data processing for new storage
calculation model, through constructing the massive streams data analysis processing
platform based on Hadoop can effectively solve the above problems. MapReduce was
developed as a distributed programming model on Hadoop by Google’s Jeffrey Dean
and Sanjay Ghemawat for the mass data processing; it is mainly used for parallel
processing and realization of the big data sets. In this paper, we proposed a power data
streams analysis strategy based on Hadoop distributed system scheduling optimization.
The proposed strategy can realize the storage and fast parallel processing of the massive
power stream data. Using Hadoop scheduling optimization strategy, the simulation
results show that proposed strategy achieves more energy savings and also can ensure
that the total amount of data to retain in memory or to be stored on disk is small.

The rest of this paper is organized as follows: in Sect. 2, we briefly review some
closely related works. The proposed data streams multi-dimensional analysis strategy
is derived and discussed in Sect. 3. The validity analysis and performance evaluation
are presented in Sect. 4. Finally, the conclusions and future work directions are described
in Sect. 5.

2 Related Works

There have been a few of studies on the storage and analysis of the smart grid data
streams using cloud computing architecture. Reference [2] derived the near-optimal or
suboptimal strategies of the two players in stackelberg game using convex optimization
and simulated annealing techniques, it presented a stackelberg game-based optimiza‐
tion framework of the smart grid with distributed PV power generations and data
centers, jointly accounting for the service request dispatch and routing problem in the
cloud with the power data flow analysis in power grid. Reference [3] introduced the
security and reliability issues of cloud computing architecture for the smart grid appli‐
cations. Moreover, it presented cloud computing service based existing smart grid
projects and open research issues. Chang, Sekchin et al. desired to use cognitive radio
channels for communication among a wireless network of smart meters. They showed
a framework for the utilization of a cloud computing smart grid [4]. It is important for
cloud service providers to reduce electricity cost as much as possible. Reference [5]
conceived a strategy for reducing the electricity cost by utilizing energy storage facili‐
ties which exist in data centers in smart grid environment. They proposed a dynamic
energy storage control strategy based on the Q-Learning algorithm which did not
assume any a priori information on the Markov process governing the energy manage‐
ment system of the data centers. For the data streams analysis of the power supply
system, some researcher discussed how cloud computing model can be used for devel‐
oping smart grid solutions. Flexible resources and services shared in network, parallel
processing and omnipresent access are some features of Cloud Computing that are
desirable for Smart Grid applications. Even though the Cloud Computing model is

A Data Streams Analysis Strategy 327

considered efficient for Smart Grids, it has some constraints such as security and
reliability [6]. In the future smart grid application system, the implementation of a
smart objects-oriented monitoring system is a complex challenge as distributed, auton‐
omous, and heterogeneous sensor components at different levels of abstractions and
granularity need to cooperate among themselves, with conventional networked infra‐
structures. Reference [7] proposed the integration of two complementary mainstream
paradigms for large-scale distributed computing: Agents and Cloud. Authors intro‐
duced a cloud-assisted and agent-oriented IoT architecture that can be fit for the smart
grid application for the massive data streams analysis processing. If the data centers
for the power management were distributed multiple geographic area, the energy
consumptions of data centers for smart grid were becoming unacceptably high, and
placing a heavy burden. Various power management methodologies based on
geographic load balancing have recently been proposed to effectively utilize several
features of smart grid [8]. Smart grid is a power system with advanced communication
technologies and information processing strategies integrated and leveraged. Reference
[9] introduced an resource optimization framework of leveraging the cloud domain to
reduce the cost of information management in the smart grid. A huge amount of row
data was collected by smart meters and sensors from the end user and different part of
the network to the computation system of smart grid. Subsequently, this considerably
big amount of data must be processed, analyzed and stored in a cost effective ways.
Researchers have been suggesting different solutions, Ref. [10] discussed the feasibility
study of the handling of monitoring of renewable energy in smart grid on cloud
computing framework retaining smart grid security, analysis of the availability of
energy management software tools. Due to process the massive data stream for smart
grid system, in this paper, we built a large-scale data stream processing system based
on Hadoop scheduling optimization. The managing platform has both the distributed
storage technology of massive sensor data streams and the data streams compression
algorithm for smart grid application.

3 Implementation of Massive Data Streams Analysis Strategy
for Smart Grid Monitoring System

The stream data are generated continuously in power enterprise, with huge volume,
infinite flow, and fast-changing behavior. The ultimate goal of power data center
construction is to support the massive data stream storage and management, such as data
stream mining, data stream multi-dimensional analysis, and the decision support serv‐
ices etc. The default setting of Hadoop scheduler focused on homogeneous cluster
computing resources. However, the heterogeneity of cluser node is inevitable due to the
hardware upgrade or cloud computing resource virtualization. According to the char‐
acteristics of the smart grid data streams processing system, combined Hadoop parallel
computing model, this section includes cloud architecture for smart grid, Hadoop sched‐
uling optimization method, and power data streams analysis strategy. The strategy put
forward on virtualization resources management platform using open source framework
of Hadoop, and build a dynamic scalable distributed parallel computing scheme based
on MapReduce computing model of Hadoop frame.

328 F. Zhou et al.

3.1 Cloud Computing Architecture for Smart Grid Application

The distributed MapReduce processing architecture of the power data stream in cloud
computing environment is three levels, that is basic resource layer, data processing layer
and business application layer, as shown in Fig. 1. The basic resource layer includes
power data storage systems, servers and processors. The computer hardware resources
were abstracted through virtualization technology to achieve the fine-grained manage‐
ment and allocation of resources for improving the efficiency of resources used and
enhancing the scalability of resources. In addition, the power data were stored according
to the different types of data for improving the efficiency of data reading and writing.
The data processing layer includes algorithms, resource scheduling, real-time
processing, batch implementation, etc. The core of the power data processing is MapRe‐
duce function that implements the different demand through the different functions. In
order to realize the resource scheduling, the layer combined the basic resource sched‐
uling algorithm, active queue management, neural network and genetic algorithm to
realize the different scheduling function. The business application layer includes middle‐
ware, K/V storage and front page display function. Based on the business needs of the
smart grid data, the business application layer will implement the calculation, analysis,
simulation, optimization, planning, design and decision-making, etc.

computing simulation analysis optimization planning decision

Middleware, K/V storage, page display

Business application layer

Reduce function

Algorithm
scheduling

Real-time
processing

Batch
procesing

Resources
scheduling

Map function

Data processing layer

Computing resources
virtualization

Cluster technology

Cloud computing
technology

Relational database

Massive data storage

Distributed data storage

Non-relational database

Basic resource layer

Data transfer

Data transfer

Fig. 1. The three layer architecture of smart grid data platform based on the MapReduce model

A Data Streams Analysis Strategy 329

3.2 Power Data Streams Analysis Strategy Based on Hadoop Scheduling
Optimization Method

Hadoop is a distributed system infrastructure, developed by the Apache foundation. The
user can develop the distributed application program and make full use of the high speed
computing and storage of the cluster in the case of not understand the distributed low-
level details. Hadoop MapReduce is calculation model of the massive data stream
processing. It has the characteristics of parallel processing, distributed computing, espe‐
cially suitable for the calculation of big data. The strong open source implementation of
the Hadoop can satisfy the need of most of the data computing and analysis.

Hadoop default scheduler is aimed at homogeneous cluster computing resources.
However, even in a homogeneous environment, some tasks also may be backward in
execution due to the resources competition and unfair distribution, thus affecting the
progress of the whole job. In order to solve this problem, Hadoop adopted a Speculative
Execution strategy, that is, the backward tasks were found in time and rescheduled by
calculating the execution progress of each task in the process of execution. However, the
Hadoop scheduling algorithm is inefficiency in heterogeneous cluster environment. Both
the Map tasks and Reduce tasks, it will not to perform at a rate constant. In view of the
heterogeneous cluster environment on smart grid application, this paper adopted resched‐
uling optimization algorithm based on history information. The main idea of the algorithm
includes two aspects. (1) The inner subphase of the Map tasks and Reduce tasks is not
fixed. The proportion of each stage was determined according to different application and
the history information of job execution. In the process of execution, the proportion of
each stage will be corrected according to the execution progress and the speed of execution
will be recalculated. The backward task was computed the remaining completion time,
then the task with the longest remaining time will be rescheduling. (2) The cluster node
in the fast node pool is not necessarily meeting the demand of rescheduling, and ideal
node needs to meet. The rescheduling task on the node performs faster than the
original node and does not become a new backward task. The algorithm is described as
follows:

Step 1. Before the application execution, the scaling factor of the Map tasks and
Reduce tasks in each phase was made sure based on the history execution information.

Step 2. In the application execution process, the scaling factor in step 1 was corrected
continuously according to the execution progress.

Step 3. According to the execution progress and speed of calculation tasks, the task
which the execution progress is below Slow_Task_Threshold will be computed the
remaining completion time. Then, the speculative_task with the longest remaining
completion time need be rescheduled.

Step 4. The most appropriate computing nodes (node_best) were screened from the
fast node pool. The cluster nodes in the fast node pool were screened according to the
rescheduling cost to filter out the nodes that cannot shorten the execution time after
rescheduling. Then, the most appropriate computing node was selected combined with
the data locality principle and the optimal node performance principle.

Step 5. The speculative_task was rescheduled on node_best.

330 F. Zhou et al.

In addition, in order to make the strategy for computing resources have the univer‐
sality, the execution speed standard deviation of task in different nodes was calculated
for determining the heterogeneity size of computing resources. Then, in accordance with
the size, three important parameters in algorithm were updated, that is, the slow node
threshold slow_node_threshold, the slow task threshold Slow_Task_Threshold,
maximum rescheduling task number SpeculativeCap.

The Map-Reduce task scheduling process and fast node selection strategy is shown
in Fig. 2.

Task 1

Task 2

Task 3

Task 4

Task 5

Task 3

Task 5

Task 1

Task 4

Task 2

Task 1

Task 2

Task 3

Task 4

Task 5

Task 4

Task 2

Task 3

Task 5

Task 1

Unfinished Map
task pool

Quequed Map
task pool

Slow Map task

Fast node pool

Performance optimal
scheduling node pool

In accordance with perfomance and
locality equilibrium selection strategy

According to the tasks
required completion time line Locality optimal

scheduling node pool

Suboptimal scheduling node pool

(a) Map task scheduling and node selection

Task 1

Task 2

Task 3

Task 4

Task 5

Task 3

Task 5

Task 1

Task 4

Task 2

Task 1

Task 2

Task 3

Task 4

Task 5

Task 4

Task 2

Task 3

Task 5

Task 1

Unfinished
Reduce task pool

Quequed
Reduce task pool

Slow Reduce task

Fast node pool

Performance optimal
scheduling node pool

In accordance with perfomance
optimization selection strategy

According to the tasks
required completion time line

Suboptimal scheduling node pool

(b) Reduce task scheduling and node selection

Fig. 2. The MapReduce task scheduling process on heterogeneous grid environment

A Data Streams Analysis Strategy 331

4 Performance Evaluation

In this section, the intermediate result local storage performance of proposed strategy
was evaluated. The power data flow velocity is 1 MB/s (that is, the data is sent by 200 B
each, and 5000 sequence /s), the scale of the intermediate result is 50 GB, Each test for
10 times, each time 10 min, the experimental results is the average value. The Fig. 3
shows the performance contrast for the LRU algorithm (Least Recently Used), the recent
research RTMR algorithm [11], naive algorithm and the proposed power data streams
analysis strategy based on Hadoop Scheduling Optimization (HSO). The memory read/
write performance is improved 18 % by the proposed strategy. The external storage read/
write and memory hit rate performance are improved 22.8 % and 12.1 % respectively.
Entirety read/write performance is improved 21.8 %.

Fig. 3. The performance optimization of the intermediate result storage

5 Conclusion

Cloud computing is applied to the smart grid for solving the unified management and
scheduling problem of power information resources. In view of the request of concurrent
processing massive data on the future smart grid system, in this paper, we have proposed
and described a massive power data streams analysis strategy based on Hadoop sched‐
uling optimization. The process model adopted the virtualization architecture to inte‐
grate and optimize large-scale heterogeneous information resources. Depending on the
smart grid application, the proposed strategy can improve the heterogeneous computing
resource utilization in smart grid and reduce the cost of grid monitoring system opera‐
tion. It provided a dynamic scalable computing platform for the power data streams
storage and processing based on cloud computing technology.

Acknowledgment. The research work was supported by the Fundamental Research Funds of
the Central University under Grant no. N120323009, the Natural Science Foundation of Hebei
Province under Grant No. F2014501055, the Program of Science and Technology Research of
Hebei University No. ZD20132003, the Natural Science Foundation of Liaoning Province under

332 F. Zhou et al.

Grant No.201202073, and the National Natural Science Foundation of China under Grant No.
61403069, No.61473066 and No.61374097.

References

1. McDaniel P., Smith S. W.: Outlook: cloud computing with a chance of security challenges
and improvements. In: Proceeding of the IEEE Computer and Reliability Societies, pp. 77–
80 (2010)

2. Wang, Y.Z., Lin, X., Pedram, M.: A stackelberg game-based optimization framework of the
smart grid with distributed pv power generations and data centers. IEEE Trans. Energy
Convers. 29(4), 978–987 (2014)

3. Yigit, M., Gungor, V.C., Baktir, S.: Cloud compting for smart grid applications. Comput.
Netw. 70, 312–329 (2014)

4. Chang, S., Nagothu, K., Kelley, B.: A beamforming approach to smart grid systems based on
cloud cognitive radio. IEEE Syst. J. 8(2), 461–470 (2014)

5. Zhang S.B., Ran Y.Y. and Wu X.M. et al.: Electricity cost optimization for data centers in
smart grid environment. In: IEEE International Conference on Control and Automation,
Taichung, TaiWan, pp. 290–295 (2014)

6. Markovicn, D.S., Zivkovic, D., Branovic, I., et al.: Smart power grid and cloud computing.
Renew. Sustain. Energy Rev. 24, 566–577 (2013)

7. Fortino G., Guerrieri A. and Russo W.: Integration of agent-based and cloud computing for
the smart objects-oriented IoT. In: IEEE International Conference on Computer Supported
Cooperative Work in Design, Hsinchu, TaiWan, pp. 493–498 (2014)

8. Rahman, A., Liu, X., Kong, F.X.: A survey on geographic load balancing based data center
power management in the smart grid environment. IEEE Commun. Surv. Tutorials 16(1),
214–233 (2014)

9. Fang, X., Yang, D.J., Xue, G.L.: Evolving smart grid information management cloudward:
a cloud optimization perspective. IEEE Trans. Smart Grid 4(1), 111–119 (2013)

10. Bitzer B., Gebretsadik E. S.: Cloud computing framework for smart grid applications. In:
48th International Universities Power Engineering Conference, Dublin, Ireland, (2013)

11. Qi, K.Y., Zhao, Z.F., Fang, J., Ma, Q.: Real-time processing for high speed data stream over
large scale data. Chin. J. Comput. 35(3), 477–490 (2012)

A Data Streams Analysis Strategy 333

Author Index

Akagi, Toshihiro 25

Bai, Guoqiang 304

Cheng, Jie 33

Dong, Jianming 104
Du, Donglei 162

Feng, Qilong 180
Fomin, Fedor V. 3
Fürer, Martin 45

Gagarin, Andrei 138
Gao, Jing 326
Gao, Yong 314
Ge, Cunjing 52
Goebel, Randy 104
Guo, Chengwei 66
Gutin, Gregory 138

Habibulla, Yusupjan 78
Han, Yijie 89
Han, Yinghua 326
Hao, Huikang 304
Hu, Jueliang 104
Hu, Shuai 170
Huang, Ping 115

Ivanyos, Gábor 125

Karapetyan, Daniel 138
Komusiewicz, Christian 150
Kou, Shaowei 282

Li, Gaidi 162
Li, Wenjun 170, 180
Lin, Guohui 104
Lin, Mugang 180
Liu, Henan 190
Liu, Mingjie 241
Liu, Tian 198
Liu, Yang 204
Liu, Zhiyong 259
Luo, Taibo 104

Ma, Chenglong 66
Ma, Feifei 52
Misra, Neeldhara 3

Nakano, Shin-ichi 25, 294

Pisantechakool, Photchchara 217
Pu, Lianrong 271

Radulescu, Andreea 150

Santha, Miklos 125
Saurabh, Saket 3
Song, Xin 326
Su, Kaile 115
Su, Xiaotong 104

Tan, Xuehou 217
Tong, Weitian 104

Wang, Jinyan 229
Wang, Maoning 241
Wang, Youshi 259
Wu, Chenchen 162
Wu, Jingli 229

Xian, Aiyong 271
Xiao, Mingyu 282
Xu, Dachuan 162
Xu, Ke 198
Xu, Yinfeng 104, 190

Yamanaka, Katsuhisa 294
Yap, Chee K. 7
Yin, Minghao 229
Yu, Haibo 304

Zhang, Fa 259
Zhang, Peng 314
Zhang, Shengyu 66, 204
Zhao, Jin-Hua 78
Zhou, Fengquan 326
Zhou, Hai-Jun 78
Zhu, Binhai 33
Zhu, Daming 33, 271
Zhu, Kaiyuan 271

	Preface
	Organization
	Contents
	Invited Talks
	Graph Modification Problems: A Modern Perspective
	References

	Soft Subdivision Search in Motion Planning, II: Axiomatics
	1 Introduction
	2 The SSS Framework
	3 Generalized Setting for SSS
	4 Axiomatic Properties of SSS
	5 What About Exactness?
	6 Conclusion
	References

	Contributed Papers
	On r-Gatherings on the Line
	1 Introduction
	2 (k,r)-Gathering on the Line
	3 -Gathering on the Line
	4 -Gather Clustering
	5 Outlier
	6 Conclusion
	References

	A New Algorithm for Intermediate Dataset Storage in a Cloud-Based Dataflow
	1 Introduction
	2 The IDS Problem
	3 Binary Tree Model for the IDS Problem
	3.1 S-C Tree Model
	3.2 Proofs of the Theorems

	4 Algorithm for the IDS Problem Based on the S-C Tree
	5 Conclusions
	References

	Efficient Computation of the Characteristic Polynomial of a Threshold Graph
	1 Introduction
	2 The Determinant of a Weighted Threshold Graph Matrix
	3 Computation of the Characteristic Polynomial of a Threshold Graph
	4 Complexity in the Bit Model
	5 Open Problems
	References

	A Fast and Practical Method to Estimate Volumes of Convex Polytopes
	1 Introduction
	2 The Volume Estimation Algorithm
	2.1 Rounding
	2.2 Subdivision
	2.3 Hit-and-Run
	2.4 Reutilization of Sample Points
	2.5 Framework of the Algorithm

	3 Experimental Results
	3.1 The Performance of PolyVest
	3.2 Result Checking
	3.3 The Performance of Two Hit-and-Run Method
	3.4 The Advantage of Reutilization of Sample Points

	4 Related Works
	5 Conclusion
	A About the Number of Sample Points
	References

	Social Models and Algorithms for Optimization of Contact Immunity of Oral Polio Vaccine
	1 Introduction
	2 Preliminaries
	2.1 Definitions and Notations
	2.2 Models
	2.3 Problems
	2.4 Overview

	3 Polynomial-Time Algorithms
	4 Intractability
	5 Conclusion
	References

	The Directed Dominating Set Problem: Generalized Leaf Removal and Belief Propagation
	1 Introduction
	2 Generalized Leaf Removal and the Hybrid Algorithm
	2.1 Core Percolation Transition
	2.2 The Hybrid Algorithm

	3 Spin Glass Model and Belief-Propagation
	4 Conclusion
	References

	A Linear Time Algorithm for Ordered Partition
	1 Introduction
	2 Overview
	3 Preparation
	3.1 Perfect Hash Function
	3.2 Converting Ordered Partition with Integers of plogn Bits to that with Integers of p1/3logn Bits
	3.3 Nonconservative Integer Sorting

	4 Ordered Partition of T by S
	5 Ordered Partition
	6 Randomization and Nonconservativeness
	7 Conclusion
	References

	Machine Scheduling with a Maintenance Interval and Job Delivery Coordination
	1 Introduction
	2 The Algorithm D-NF-SPT
	2.1 A Tight Instance

	3 Conclusions
	References

	Lower and Upper Bounds for Random Mimimum Satisfiability Problem
	1 Introduction
	2 Preliminaries
	3 The Upper Bound
	4 The Lower Bound
	5 Experimental Results
	6 Conclusions and Future Work
	References

	On Solving Systems of Diagonal Polynomial Equations Over Finite Fields
	1 Introduction
	2 Warm-Up: The Quadratic and Cubic Cases
	2.1 The Quadratic Case
	2.2 The Cubic Case

	3 The General Case
	3.1 The Reduction When d is Even
	3.2 The Algorithm When [d]-1Fp

	References

	Pattern Backtracking Algorithm for the Workflow Satisfiability Problem with User-Independent Constraints
	1 Introduction
	2 Patterns and the User-Iterative Algorithm
	3 The Pattern-Backtracking Algorithm
	3.1 Pattern Validity Test
	3.2 The Backtracking Algorithm

	4 Comparison of the PB and UI Algorithms
	5 Computational Experiments
	6 Conclusion
	References

	On the Sound Covering Cycle Problem in Paired de Bruijn Graphs
	1 Introduction
	2 Cycle-Walk Decompositions
	3 An Algorithm for the Parameters n and d
	4 Shortest Sound Cycles and Approximately Sound Cycles
	5 A Tractable Special Case for the Parameter n
	6 Outlook
	References

	Approximation Algorithms for the Multilevel Facility Location Problem with Linear/Submodular Penalties
	1 Introduction
	2 Multilevel Facility Location Problem with Submodular Penalties
	3 Multilevel Facility Location Problem with Linear Penalties
	References

	Smaller Kernels for Several FPT Problems Based on Simple Observations
	1 Introduction
	2 Preliminaries
	3 Co-Path Set and Linear Arrangement by Deleting Edges
	3.1 Reduction Rules
	3.2 Kernel Analysis

	4 Path-Contractibility
	4.1 Reduction Rule and Kernel Analysis

	5 Connected Dominating Set on G7 graphs
	5.1 Reduction Rule and Kernel Analysis

	References

	Parameterized Minimum Cost Partition of a Tree with Supply and Demand
	1 Introduction
	2 Preliminaries
	3 Kernelization for PPTSD
	4 A Parameterized Algorithm for PPTSD
	5 Conclusion
	References

	The Online Storage Strategy for Automated Storage and Retrieval System with Single Open in One Dimension
	1 Introduction
	2 Problem Statement and Notations
	3 -Sorted Strategy
	4 Conclusion
	References

	Union Closed Tree Convex Sets
	1 Introduction
	2 Preliminaries
	3 Main Results
	4 Conclusions
	References

	Fast Quantum Algorithms for Least Squares Regression and Statistic Leverage Scores
	1 Introduction
	2 Preliminaries
	3 Quantum Algorithm for LSR
	4 Quantum Algorithm for Calculating Statistic Leverage Scores and Matrix Coherence
	References

	A New Distributed Algorithm for Computing a Dominating Set on Grids
	1 Introduction
	2 Preliminaries
	3 Chang's Centralized Constructive Method Revisited
	4 Distributed Grid Domination
	4.1 Model and Notation
	4.2 Outline of Our Distributed Algorithm
	4.3 Initialization
	4.4 Settlement
	4.5 Termination
	4.6 The Algorithm

	5 Conclusions
	References

	Approximate Model Counting via Extension Rule
	1 Introduction
	2 Model Counting Using Extension Rule
	2.1 Extension Rule
	2.2 Model Counting Using Extension Rule

	3 Approximate Model Counting Using Extension Rule
	3.1 ULBApprox
	3.2 SampleApprox

	4 Experimental Results
	5 Conclusions
	References

	Improved Information Set Decoding for Code-Based Cryptosystems with Constrained Memory
	1 Introduction
	2 FS-ISD
	3 The New Algorithm
	3.1 The Motivation
	3.2 The New Algorithm
	3.3 The Complexity
	3.4 Comparison

	4 Conclusions
	A Proof of Lemma 4
	B Proof of Lemma 6
	C Proof of Lemma 7
	References

	Truthful Strategy and Resource Integration for Multi-tenant Data Center Demand Response
	1 Introduction
	2 Reward System and Truthful Strategy Design
	2.1 Rewards System
	2.2 Truthful Strategy

	3 Model Analysis and Algorithm Design
	3.1 Complexity Analysis
	3.2 The Off-line and On-line Algorithms

	4 Experimental Results
	5 Conclusion
	References

	Local Search to Approximate Max NAE-k-Sat Tightly
	1 Introduction
	2 Local Search for Max NAE-k-SAT
	2.1 The Algorithm and Its Performance
	2.2 The Time Complexity

	3 The Complexity of Approximating Max NAE-k-SAT
	4 Local Search for Max NAE-(k)-SAT
	5 Conclusion
	References

	Faster Computation of the Maximum Dissociation Set and Minimum 3-Path Vertex Cover in Graphs
	1 Introduction
	2 Preliminaries
	3 Structural Properties
	4 The Branch-and-Search Algorithm
	4.1 Part I of the Algorithm Where S �= ∅
	4.2 Part II of the Algorithm Where S= ∅

	5 Reducing the Time Complexity via Dynamic Programming
	6 Concluding Remarks
	References

	Enumeration, Counting, and Random Generation of Ladder Lotteries
	1 Introduction
	2 Preliminaries
	3 Enumeration
	4 Counting
	5 Random Generation
	6 Summary
	References

	Efficient Modular Reduction Algorithm Without Correction Phase
	1 Introduction
	2 Preliminaries
	2.1 Euclidean Division
	2.2 Barrett Reduction
	2.3 Improved Barrett Algorithm

	3 The Proposed Modular Reduction Algorithm
	3.1 Mathematical Algorithm of the Proposed Modular Reduction
	3.2 Hardware Implementation

	4 Conclusion
	References

	Super Solutions of Random Instances of Satisfiability
	1 Introduction
	2 Super Solutions for Boolean Satisfiability
	2.1 Equivalent Definitions of (1, 0)-Super Solutions
	2.2 Random Models of k-SAT
	2.3 An Exact Threshold for the Solution Probability of (1,0)-3-SAT
	2.4 Thresholds for the Solution Probability of (1,0)-k-SAT

	3 Super Solutions for Random Binary CSPs
	4 Conclusions
	References

	A Data Streams Analysis Strategy Based on Hadoop Scheduling Optimization for Smart Grid Application
	Abstract
	1 Introduction
	2 Related Works
	3 Implementation of Massive Data Streams Analysis Strategy for Smart Grid Monitoring System
	3.1 Cloud Computing Architecture for Smart Grid Application
	3.2 Power Data Streams Analysis Strategy Based on Hadoop Scheduling Optimization Method

	4 Performance Evaluation
	5 Conclusion
	References

	Author Index

