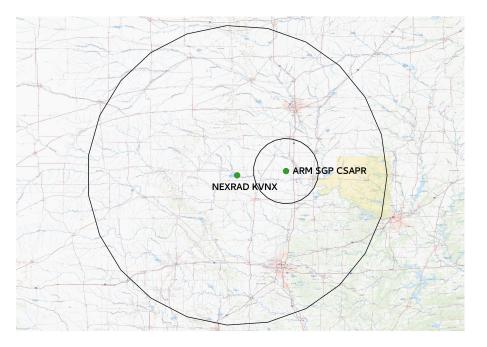
Deep Convolutional Neural Networks for Hydrometeor Classification using Dual Polarization Doppler Radars

Yuping Lu, Jitu Kumar ARM Data Science and Integration, ORNL 06/10/2019

The Problem



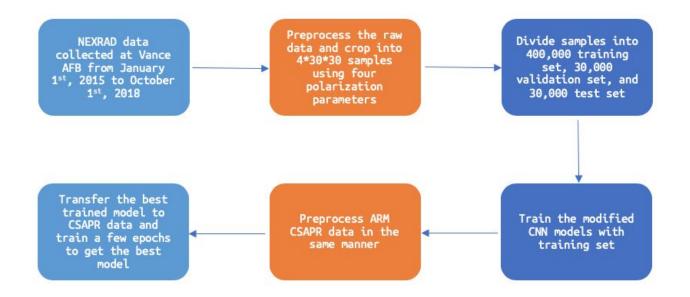
CSAPR: C-band scanning ARM precipitation dual-polarization Doppler weather radar.

In addition to the first three Doppler moments (reflectivity, radial velocity, and spectra width), the C-SAPR also provides differential reflectivity, correlation coefficient, and specific differential phase. The dual-polarization variables enable the provision of rainfall rate estimates and identification of precipitation types.

Four variables, horizontal reflectivity (Z_H), differential reflectivity (Z_{DR}), correlation coefficient (ρ_{HV}) and specific differential phase (K_{DP}), are used to build the model.

Data have no labels.

Training workflow



Training Environment

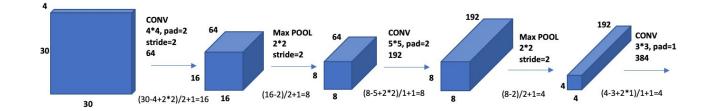
Preprocessing: ORNL CADES

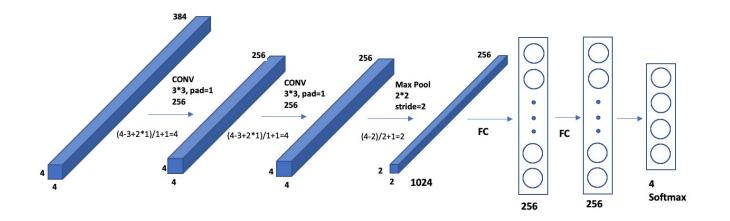
Training: NVIDIA DGX Station + PyTorch

Programming language: Python

Other tools: JupyterLab, GitHub

AlexNet architecture for NEXRAD

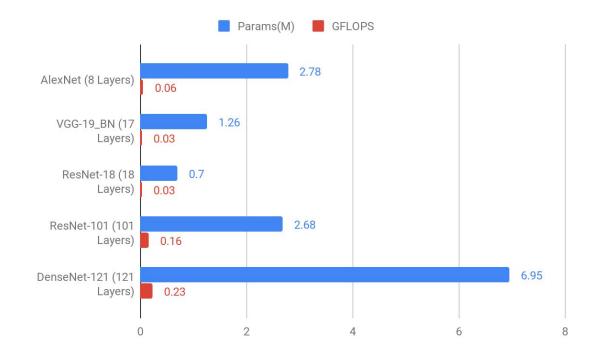




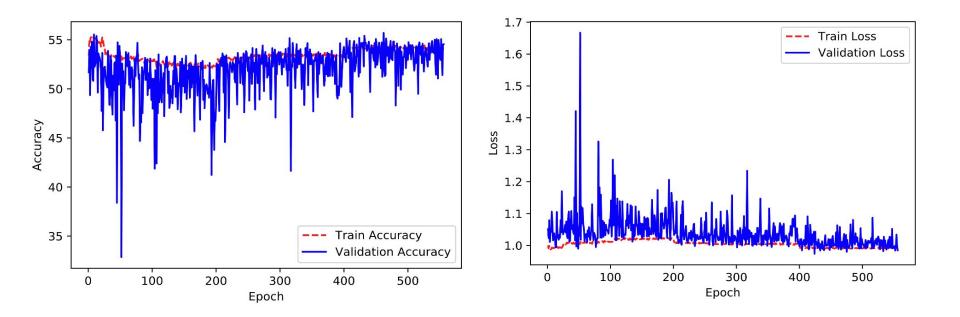
ResNet architectures for NEXRAD, number of parameters and GFLOPS

layer name	output size	18-layer	101-layer
conv1	30×30	3×3, 16, stride 1	
	30×30	3×3 max pool, stride 1	
conv2_x	30 imes 30	$\begin{bmatrix} 3 \times 3, 16 \\ 3 \times 3, 16 \end{bmatrix} \times 2$	$\begin{bmatrix} 1 \times 1, 16 \\ 3 \times 3, 16 \\ 1 \times 1, 64 \end{bmatrix} \times 3$
conv3_x	15×15	$\begin{bmatrix} 3 \times 3, 32 \\ 3 \times 3, 32 \end{bmatrix} \times 2$	$\begin{bmatrix} 1 \times 1, 32 \\ 3 \times 3, 32 \\ 1 \times 1, 128 \end{bmatrix} \times 4$
conv4_x	8 × 8	$\begin{bmatrix} 3 \times 3, 64 \\ 3 \times 3, 64 \end{bmatrix} \times 2$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 23$
conv5_x	4×4	$\begin{bmatrix} 3 \times 3, 128 \\ 3 \times 3, 128 \end{bmatrix} \times 2$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 3$
	1×1	average pool, 4-d fc, softmax	
Params(M)		0.7	2.68
GFLOPS		0.03	0.16

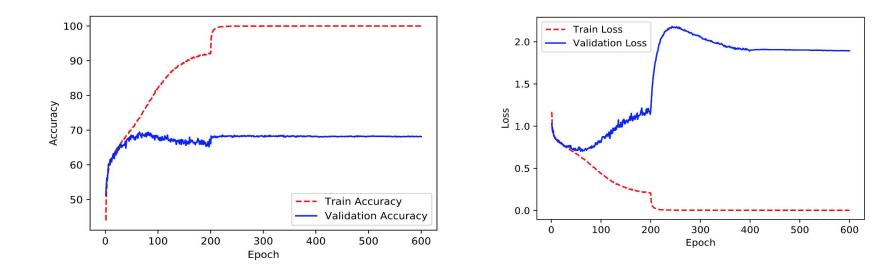
Number of parameters (in millions) and GFLOPS of each model



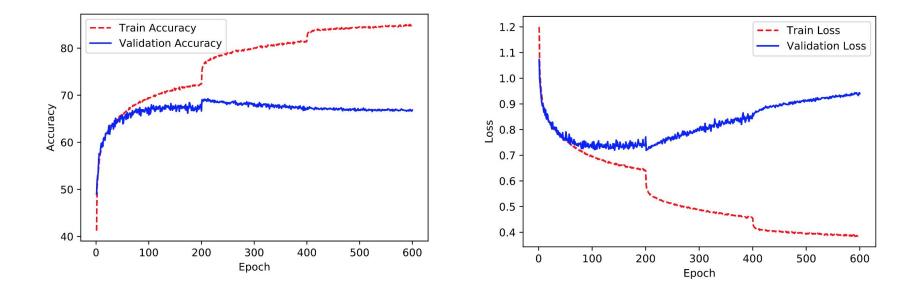
Not Learning Example



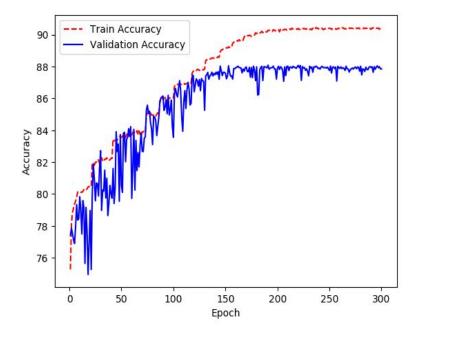
Overfitting Example 1

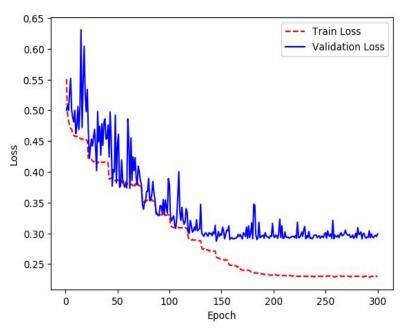


Overfitting Example 2



Overfitting Example 3





Reduce Overfitting

Fetch more data

Try some new approach in Neural Network

Change batch size

Try Regularization

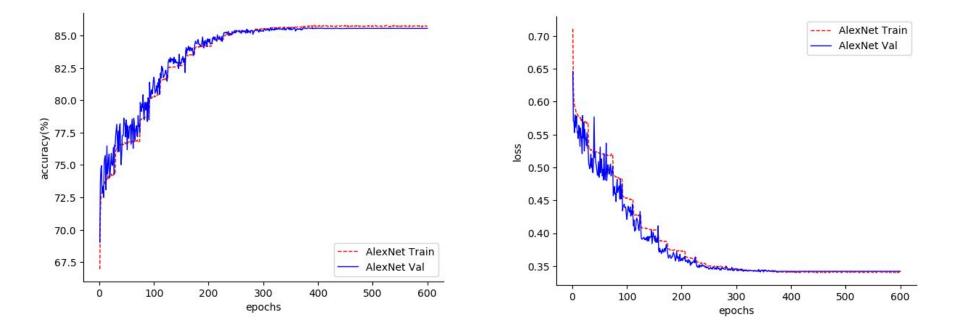
Reduce Overfitting

Add more data to the training.

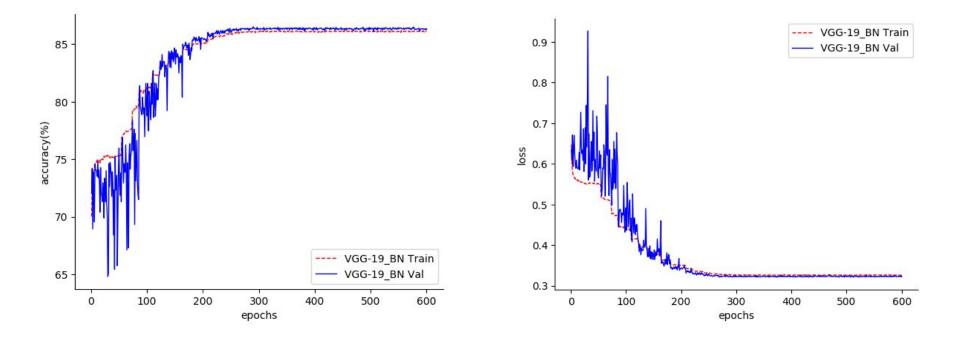
Reduce input size from 4*60*60 to 4*30*30.

Data augmentation.

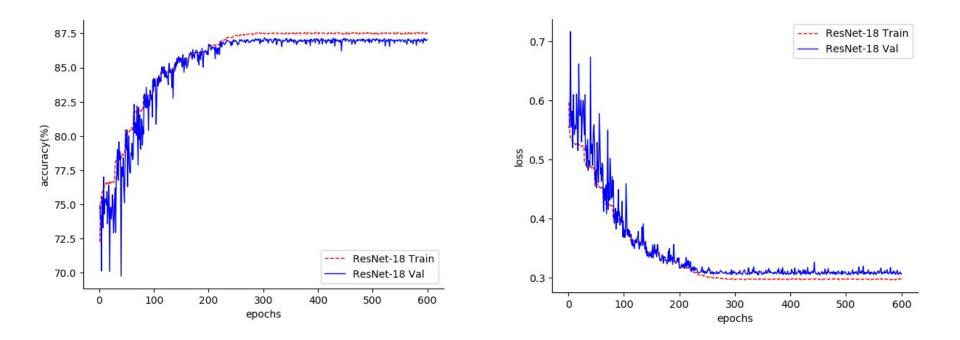
Hyperparameter Tuning.



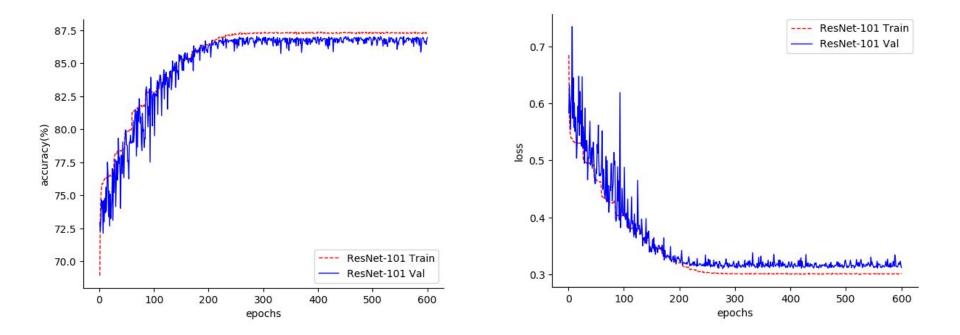
RandomCrop(), RandomHorizontalFlip(), RandomVerticalFlip(), batch-size = 256, epochs = 600, lr = 0.1, momentum = 0.9, weight-decay = 1e-3, dlr-decay = 0.5



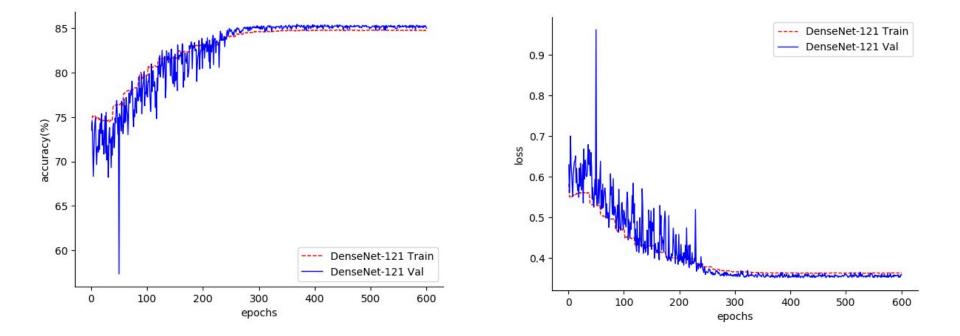
RandomCrop(), RandomHorizontalFlip(), RandomVerticalFlip(), batch-size = 256, epochs = 600, lr = 0.1, momentum = 0.9, weight-decay = 1e-3, dlr-decay = 0.5



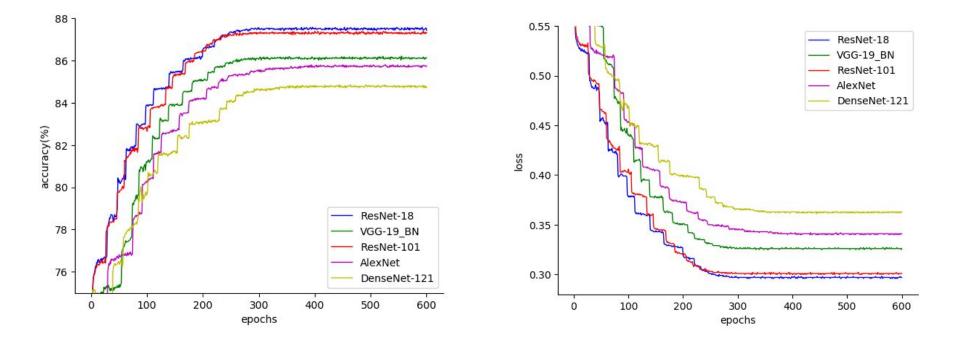
RandomCrop(), RandomHorizontalFlip(), RandomVerticalFlip(), batch-size = 256, epochs = 600, lr = 0.1, momentum = 0.9, weight-decay = 1e-3, dlr-decay = 0.5



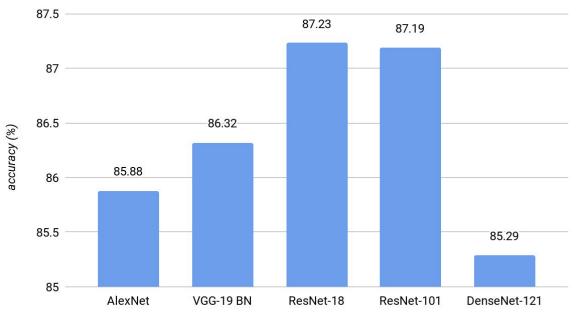
RandomCrop(), RandomHorizontalFlip(), RandomVerticalFlip(), batch-size = 256, epochs = 600, lr = 0.1, momentum = 0.9, weight-decay = 1e-3, dlr-decay = 0.5



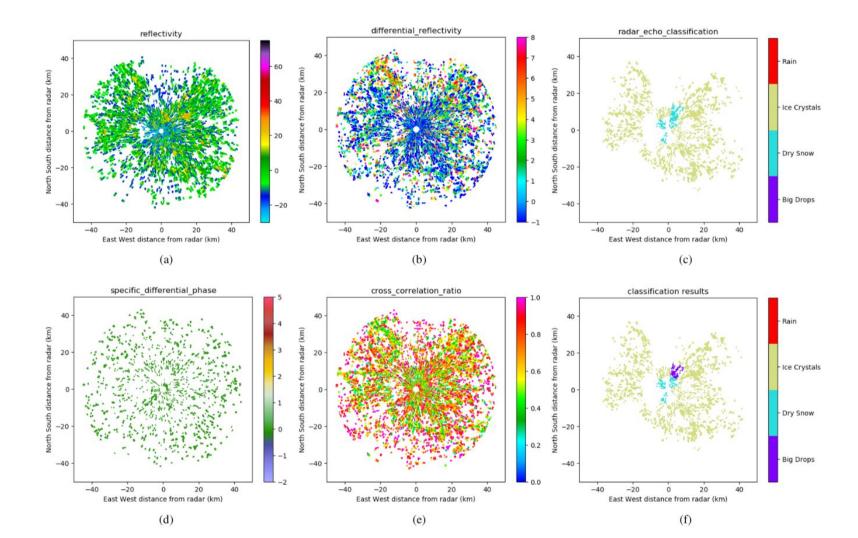
RandomCrop(), RandomHorizontalFlip(), RandomVerticalFlip(), batch-size = 256, epochs = 600, lr = 0.1, momentum = 0.9, weight-decay = 2e-3, dlr-decay = 0.5



Accuracy of each model on NEXRAD test set



Model



The Next Step

203_0_60.csv IC 54_90 0.csv RA 103_120_60.csv IC 206_210_30.csv IC 98_300_30.csv RA 218_30_30.csv RA 101_60_0.csv IC 130_240_60.csv IC 79_60_0.csv RA 96_180_0.csv IC 2_300_60.csv IC 227 60 30.csv RA 34_210 0.csv RA 226_330_0.csv IC 12_0_30.csv RA 115_120_0.csv IC 238_240_60.csv IC 229_210_60.csv DS 6_30_0.csv RA 6_210_60.csv IC 133_180_30.csv IC 29_90_30.csv IC

Use trained model to classify ARM CSAPR data.

Cooperate with radar experts to verify the classification results.

Finally to create Value-added products (VAPs) with the trained models.

We also have a poster, you can find more during the poster session. Thanks!