
M. Sohel Rahman Etsuji Tomita (Eds.)

 123

LN
CS

 8
97

3

9th International Workshop, WALCOM 2015
Dhaka, Bangladesh, February 26–28, 2015
Proceedings

WALCOM: Algorithms
and Computation

Lecture Notes in Computer Science 8973
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

M. Sohel Rahman Etsuji Tomita (Eds.)

WALCOM: Algorithms
and Computation

9th International Workshop, WALCOM 2015
Dhaka, Bangladesh, February 26-28, 2015
Proceedings

13

Volume Editors

M. Sohel Rahman
BUET, Department of CSE
ECE Building, West Palasi, Dhaka 1205, Bangladesh
E-mail: msrahman@cse.buet.ac.bd

Etsuji Tomita
The University of Electro-Communications
The Advanced Algorithms Research Laboratory
Chofugaoka 1-5-1, Chofu, Tokyo 182-8585, Japan
E-mail: tomita@ice.uec.ac.jp

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-319-15611-8 e-ISBN 978-3-319-15612-5
DOI 10.1007/978-3-319-15612-5
Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2015930429

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

© Springer International Publishing Switzerland 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in ist current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

This proceedings volume contains papers presented at WALCOM 2015, the 9th
International Workshop on Algorithms and Computation, held during Febru-
ary 26–28, 2015, at the Training Institute, Atomic Energy Research Establish-
ment (AERE), Ganakbari, Savar, Dhaka, Bangladesh. The workshop covered
diverse areas of algorithms and computation, namely, approximation algorithms,
data structures, computational geometry, combinatorial algorithms, distributed
and online algorithms, graph drawing, graph algorithms, combinatorial prob-
lems and computational complexity. The workshop was organized jointly by
the Bangladesh Atomic Energy Commission, Bangladesh Academy of Sciences
(BAS), and the Department of Computer Science and Engineering, BUET.

WALCOM is an annual conference series on all aspects of algorithms and
computation. Since its inception in 2007, it has been held as a yearly event.
WALCOM has grown substantially in reputation and has been able to attract
researchers and scientists around the globe. WALCOM 2015 was organized in
cooperation with IEICE Technical Committee on Theoretical Foundations of
Computing (COMP) and the Special Interest Group for ALgorithms (SIGAL)
of the Information Processing Society of Japan (IPSJ). This year, 88 manuscripts
were submitted to WALCOM. After a few withdrawals, 85 papers with authors
from 25 different countries were reviewed. Among these submissions, 26 were
accepted as full papers and three were accepted as short papers. Papers were
selected based on a thorough reviewing (usually, at least three review reports
per paper) followed by in-depth discussion sessions by the WALCOM Program
Committee comprising 29 researchers of international repute from Australia,
Bangladesh, Canada, France, Germany, Hong Kong, India, Italy, Japan, Korea,
The Netherlands, Poland, Sweden, Switzerland, Taiwan, and USA. This year,
for the first time in the history of WALCOM, Best Paper Awards were given.
We are happy to highlight that “Edge-Colorings of Weighted Graphs” authored
by Yuji Obata and Takao Nishizeki and “An Almost Optimal Algorithm for
Voronoi Diagrams of Non-Disjoint Line Segments” authored by Sang Won Bae
were selected for the Best Paper Awards by the Program Committee. We are
also delighted to announce that following the tradition of the previous years,
two special issues—one in Journal of Graph Algorithms and Applications and
the other in Journal of Discrete Algorithms—are being organized comprising the
extended versions of selected papers from WALCOM 2015.

In addition to the 29 contributed talks, the scientific program of the work-
shop included three invited talks by the 2006 Gödel Prize winner Prof. Manin-
dra Agrawal of the Indian Institute of Technology Kanpur, India, Prof. Shin-ichi
Minato of Hokkaido University, Japan, and Prof. Rajeev Raman, University of
Leicester, UK. We are extremely grateful to our invited speakers for their ex-
cellent talks at the workshop. We thank all the authors who submitted their

VI Preface

work for consideration to WALCOM 2015. We deeply appreciate the competent
and timely handling of the submissions of all Program Committee members and
external reviewers, despite their extremely busy schedule. In this connection we
must also acknowledge the EasyChair conference management system for provid-
ing a beautiful platform for conference administration. We must thank Springer
as well for publishing the proceedings of WALCOM 2015 in their prestigious
LNCS series. We are indebted to the WALCOM Steering Committee and the
Advisory Committee for their continuous guidance and support. Above all, we
are extremely grateful to the Organizing Committee of WALCOM 2015 for mak-
ing the event a grand success. Last but not the least, we express our heartiest
gratitude to the kind and generous support of the sponsors.

February 2015 M. Sohel Rahman
Etsuji Tomita

Organization

WALCOM Steering Committee

Kyung-Yong Chwa Korea Advanced Institute of Science and
Technology

Costas S. Iliopoulos King’s College London, UK
M. Kaykobad Bangladesh University of Engineering &

Technology
Petra Mutzel TU Dortmund, Germany
Shin-ichi Nakano Gunma University, Japan
Subhas Chandra Nandy Indian Statistical Institute, India
Takao Nishizeki Tohoku University, Japan
C. Pandu Rangan Indian Institute of Technology, Madras, India
Md. Saidur Rahman Bangladesh University of Engineering &

Technology

WALCOM 2015 Organizers

WALCOM 2015 Supporters

VIII Organization

WALCOM 2015 Program Committee

Guillaume Blin Université de Bordeaux, France
Hans L. Bodlaender Utrecht University, The Netherlands
Francis Y.L. Chin The University of Hong Kong, Hong Kong,

SAR China
Rezaul A. Chowdhury Stony Brook University, USA
Naveen Garg Indian Institute of Technology Delhi, India
Mohammad T. Hajiaghayi University of Maryland, USA
Seok-Hee Hong University of Sydney, Australia
Kazuo Iwama Kyoto University, Japan
Ming-Yang Kao Northwestern University, USA
Ralf Klasing CNRS, University of Bordeaux, France
Michael Langston University of Tennessee, USA
Andrzej Lingas Lund University, Sweden
Giuseppe Liotta University of Perugia, Italy
Ian Munro University of Waterloo, Canada
Petra Mutzel TU Dortmund, Germany
Subhas Chandra Nandy Indian Statistical Institute, India
Kunsoo Park Seoul National University, Korea
Micha�l Pilipczuk University of Warsaw, Poland
M. Sohel Rahman Bangladesh University of Engineering &

Technology (BUET), Bangladesh (Co-chair)
Md. Saidur Rahman Bangladesh University of Engineering &

Technology (BUET), Bangladesh
Wojciech Rytter University of Warsaw, Poland
Kunihiko Sadakane The University of Tokyo, Japan
Sandeep Sen Indian Institute of Technology Delhi, India
Bill Smyth McMaster University, Canada
Etsuji Tomita The University of Electro-Communications,

Japan (Co-chair)
Osamu Watanabe Tokyo Institute of Technology, Japan
Sue Whitesides University of Victoria, Canada
Peter Widmayer ETH Zürich, Switzerland
Hsu-Chun Yen National Taiwan University, Taiwan

WALCOM 2015 Advisory Committee

Mesbahuddin Ahmad President, Bangladesh Academy of Sciences
M. Shamsher Ali Fellow, Bangladesh Academy of Sciences
Khawaja Muhammed

Sultanul Aziz Secretary, Bangladesh Academy of Sciences
Naiyyum Choudhury Fellow, Bangladesh Academy of Sciences

Organization IX

Khaleda Ekram Vice-Chancellor, Bangladesh University
of Engineering & Technology

Md. Monzurul Haque Member (Engineering), Bangladesh Atomic
Energy Commission

Mahmudul Hasan Member (Physical Science), Bangladesh
Atomic Energy Commission

Mohammad Mahfuzul Islam Head, Bangladesh University
of Engineering & Technology

Md. Monirul Islam Chairman, Bangladesh
Atomic Energy Commission

M. Kaykobad Professor, Bangladesh University of
Engineering & Technology

Harun-Or-Rashid Director General, Bangladesh
Atomic Energy Commission

M. Ali Zulquarnain Member (Planning), Bangladesh Atomic
Energy Commission

WALCOM 2015 Organizing Committee

Md. Shakil Ahmed Bangladesh Atomic Energy Commission
(Joint Secretary)

Md. Mostafa Akbar Bangladesh University of Engineering &
Technology

Addris Ali Bangladesh Atomic Energy Commission
Mohammed Eunus Ali Bangladesh University of Engineering &

Technology
Md. Ashikur Rahman Azim Bangladesh University of Engineering &

Technology
Khawaja Muhammed

Sultanul Aziz Bangladesh Academy of Sciences
Mohammad Al-Mahmud Bangladesh University of Engineering &

Technology
Madhusudan Basak Bangladesh University of Engineering &

Technology
Md. Muradul Bashir Bangladesh University of Engineering &

Technology
Naiyyum Choudhury Bangladesh Academy of Sciences
Anada Kumar Das Bangladesh Atomic Energy Commission
Mohammod Abu Sayid Haque Bangladesh Atomic Energy Commission
Md. Mahbubul Hoq Bangladesh Atomic Energy Commission
Md. Dulal Hossain Bangladesh Atomic Energy Commission
Md. Iqbal Hossain Bangladesh University of Engineering &

Technology

X Organization

Md. Saddam Hossain Bangladesh University of Engineering &
Technology

Alim-Al-Islam Bangladesh University of Engineering &
Technology

A T M Fayezul Islam Bangladesh Atomic Energy Commission
Mohammad Mahfuzul Islam Bangladesh University of Engineering &

Technology
Md. Nurul Islam Bangladesh Atomic Energy Commission
Imtiaz Kamal Bangladesh Atomic Energy Commission
Md. Rezaul Karim Dhaka University, Bangladesh
M. Kaykobad Bangladesh University of Engineering &

Technology (Co-chair)
Shahidul Islam Khan Bangladesh University of Engineering &

Technology
Mubarak Ahmed Khan Bangladesh Atomic Energy Commission
Tanvir Ahmed Khan Bangladesh University of Engineering &

Technology
Shefaly Khatun Bangladesh Atomic Energy Commission
ANK Mamun Bangladesh Atomic Energy Commission
Md. Abdul Manan Bangladesh Atomic Energy Commission
M. A. Mazed Bangladesh Academy of Sciences
Md. Nasrul Haque Mia Bangladesh Atomic Energy Commission
Kh. Nuba Shittain Mitu Bangladesh Atomic Energy Commission
Syed Abdul Momin Bangladesh Atomic Energy Commission
Md. Karam Newaz Bangladesh Atomic Energy Commission
Md. Abdur Rahim Bangladesh Atomic Energy Commission
Md. Anisur Rahman Bangladesh Atomic Energy Commission
Md. Mizanur Rahman Bangladesh University of Engineering &

Technology
Md. Saidur Rahman Bangladesh University of Engineering &

Technology (Co-chair)
M. Sohel Rahman Bangladesh University of Engineering &

Technology
Harun-Or-Rashid Bangladesh Atomic Energy Commission

(Co-chair)
Sudipto Saha Bangladesh Atomic Energy Commission
Khaled Mahmud Shahriar Bangladesh University of Engineering &

Technology
Rifat Shahriyar Bangladesh University of Engineering &

Technology (Secretary)
Sadia Sharmin Bangladesh University of Engineering &

Technology (Joint Secretary)
Md. Malek Sonar Bangladesh Atomic Energy Commission
Shaheena Sultana Bangladesh University of Engineering &

Technology

Organization XI

Shauli Sarmin Sumi Bangladesh Atomic Energy Commission
Etsuji Tomita The University of Electro-Communications,

Japan
Md. Meshbah Uddin Bangladesh Atomic Energy Commission
Md. Shuza Uddin Bangladesh Atomic Energy Commission
Sk. Md. Yunus Bangladesh Atomic Energy Commission
Md. Anzan-Uz-Zaman Bangladesh Atomic Energy Commission

WALCOM 2015 Additional Reviewers

Agarwal, Pankaj
Aspnes, James
Bacher, Axel
Bannai, Hideo
Baswana, Surender
Bateni, Mohammadhossein
Bishnu, Arijit
Brinda, Karel
Böckenhauer, Hans-Joachim
Cai, Jin-Yi
Chitnis, Rajesh
Czyżowicz, Jerzy
de Rugy Altherre, Nicolas
Dehghani, Sina
Devismes, Stéphane
Didimo, Walter
Diwan, Ajit
Du, Hai
Ehsani Banafati, Soheil
Esfandiari, Hossein
Evans, William
Fischer, Johannes
Flocchini, Paola
Foucaud, Florent
Gambette, Philippe
Ganapathi, Pramod
Grilli, Luca
Grytczuk, Jaros�law
Gudmundsson, Joachim
Hagan, Ron
Harsha, Prahaladh
Jansson, Jesper
Kakugawa, Hirotsugu
Karim, Md. Rezaul

Kortsarz, Guy
Kowaluk, Miros�law
Krasikov, Ilia
Kriege, Nils
Kurz, Denis
Kutzkov, Konstantin
Lu, Allan
Manlove, David
Manne, Fredrik
Mccauley, Samuel
Mitchell, Joseph
Mondal, Debajyoti
Monemizadeh, Morteza
Montecchiani, Fabrizio
Morris, Tim
Mömke, Tobias
Nakano, Shin-Ichi
Nishat, Rahnuma Islam
Nomikos, Christos
Nöllenburg, Martin
Pajak, Dominik
Papadopoulou, Evanthia
Persson, Mia
Phillips, Charles
Pilipczuk, Marcin
Purohit, Manish
Radoszewski, Jakub
Roselli, Vincenzo
Roy, Sasanka
Rutter, Ignaz
Sikora, Florian
Sledneu, Dzmitry
Smid, Michiel
Sommer, Christian

XII Organization

Soueidan, Hayssam
Su, Hsin-Hao
Suri, Subhash
Szreder, Bartosz
Tixeuil, Sébastien

Vialette, Stéphane
Wang, Kai
Wolff, Alexander
Zhang, Yong
Żyliński, Pawe�l

WALCOM 2015 Sponsors

Invited Talks
(Abstracts)

Polynomial Identity Testing

Manindra Agrawal�

1 Introduction

Polynomial Identity Testing (PIT in short) is the problem of checking if a poly-
nomial of n variables with coefficients from r a field F is identically zero, i.e., if
all its terms cancel each other out. The problem is very simple to solve efficiently
if the polynomial is given in the usual sum-of-products form:

P (x1, x2, . . . , xn) =
∑

0≤i1,i2,...,in≤d

αi1,i2,...,inx
i1
1 xi2

2 · · ·xin
n ;

simply check whether all coefficients αi1,i2,...,in ∈ F are zero. It becomes non-
trivial when the polynomial is given in a form different from sum-of-products.
For example:

P (u, v, x, y) = (ux+ vy)2 + (vx − uy)2 − (u2 + v2) · (x2 + y2).

One can try expressing such polynomials as sum-of-products and then checking if
they are zero, however, the size of the resulting polynomial can become exponen-
tial and so this method is not efficient. A general representation of polynomials
is via arithmetic circuits: these define a sequence of addition and multiplication
operations starting from variables and ending in the desired polynomial. For
example, the second polynomial is expressed as arithmetic circuit below:

* N Rama Rao Professor, Indian Institute of Technology, Kanpur. Research supported
by J C Bose Fellowship FLW/DST/CS/20060225

XVI M. Agrawal

+

∗

+

∗ ∗

∗

+

∗

u

∗

v

+

∗

x

∗

y

∗

+

∗ ∗

−1

2 2

2 2 2 2

−1

P (u, v, x, y) = (ux+ vy)2 + (vx− uy)2 − (u2 + v2) · (x2 + y2)

In the above figure, the operations are inside circles and take as input poly-
nomials on arrows coming into the circles and output the resulting polynomial
on arrows going out of the circles. If a constant c is present on an arrow carrying
polynomial Q into an addition operation, the polynomial is replaced by cQ, and
if the arrow is going into a multiplication operation, the polynomial is replaced
by Qc. The size of an arithmetic circuit is defined to be the number of opera-
tions in the circuit. So, for example, the size of the above circuit is 16. Another
important parameter associated with an arithmetic circuit is its depth: depth of
an arithmetic circuit is the length of the longest chain of arrows from an input
variable to the output polynomial. In the above example circuit, the depth is 4.

PIT has had long and interesting history. A randomized polynomial time
algorithm for solving it was given by Schwartz and Zippe[Sch80,Zip79]. Since
then, several other randomized polynomial-time algorithms have been shown
[CK97,LV98,AB03], but no deterministic polynomial time algorithm for the
problem is known till date. In 2002, two important results were shown for PIT:
Kabanets and Impagliazzo [KI04] showed that a determinsitic algorithm for PIT
would imply a lower bound on arithmetic complexity of an explicit polynomial
computable in NEXP(this was subsequently extended in [Agr05,AV08,GKKS13]);
Agrawal, Kayal, and Saxena [AKS04] derandomized the randomized polynomial
time algorithm for a special kind of PITs, resulting in a deterministic polyno-
mial time algorithm for primality testing. Since then, the problem has come to
occupy center-stage in complexity theory and a lot of subsequent development
has taken place [KS07,SS13,ASSS12].

Polynomial Identity Testing XVII

References

[AB03] Agrawal, M., Biswas, S.: Primality and identity testing via chinese remain-
dering. J. ACM 50(4), 429–443 (2003)

[Agr05] Agrawal, M.: Proving lower bounds via pesudo-random generators. In: Pro-
ceedings of the FST&TCS, pp. 96–105 (2005)

[AKS04] Agrawal, M., Kayal, N., Saxena, N.: PRIMES is in P. Annals of Mathemat-
ics 160(2), 781–793 (2004)

[ASSS12] Agrawal, M., Saha, C., Saptharishi, R., Saxena, N.: Jacobian hits circuits:
Hitting sets, lower bounds for depth-d occur-k formulas and depth-3 tran-
scendence degree-k circuits. In: Proceedings of Annual ACM Symposium on
the Theory of Computing, pp. 599–614 (2012)

[AV08] Agrawal, M., Vinay, V.: Arithmetic circuits: A chasm at depth four. In: Pro-
ceedings of Annual IEEE Symposium on Foundations of Computer Science,
pp. 67–75 (2008)

[CK97] Chen, Z.-Z., Kao, M.-Y.: Reducing randomness via irrational numbers. In:
Proceedings of Annual ACM Symposium on the Theory of Computing, pp.
200–209 (1997)

[GKKS13] Gupta, A., Kamath, P., Kayal, N., Saptharishi, R.: Arithmetic circuits:
A chasm at depth three. In: Proceedings of Annual IEEE Symposium on
Foundations of Computer Science, pp. 578–587 (2013)

[KI04] Kabanets, V., Impagliazzo, R.: Derandomizing polyonmial identity tests
means proving circuit lower bounds. Computational Complexity 13, 1–46
(2004)

[KS07] Kayal, N., Saxena, N.: Polynomial identity testing for depth 3 circuits. Com-
putational Complexity 16(2), 115–138 (2007)

[LV98] Lewin, D., Vadhan, S.: Checking polynomial identities over any field: To-
wards a derandomization? In: Proceedings of Annual ACM Symposium on
the Theory of Computing, pp. 428–437 (1998)

[Sch80] Schwartz, J.T.: Fast probabilistic algorithms for verification of polynomial
identities. J. ACM 27(4), 701–717 (1980)

[SS13] Saxena, N., Seshadri, C.: From Sylvester-Gallai configurations to rank
bounds: Improved black-box identity test for depth3 circuits. J. ACM 60(5),
article 33 (2013)

[Zip79] Zippel, R.E.: Probabilistic algorithms for sparse polynomials. In: Ng, K.W.
(ed.) EUROSAM 1979 and ISSAC 1979. LNCS, vol. 72, pp. 216–226.
Springer, Heidelberg (1979)

Power of Enumeration — BDD/ZDD-Based

Methods for Indexing Combinatorial Patterns

Shin-ichi Minato

Graduate School of Information Science and Technology, Hokkaido University/
JST ERATO MINATO Discrete Structure Manipulation System Project,

Sapporo, 060-0814, Japan

Abstract

Discrete structures are foundational material for computer science and mathe-
matics, which are related to set theory, symbolic logic, inductive proof, graph
theory, combinatorics, probability theory, etc. Many problems are decomposed
into discrete structures using simple primitive algebraic operations.

A Binary Decision Diagram (BDD) is a representation of a Boolean function,
one of the most basic models of discrete structures. After the epoch-making
paper [1] by Bryant in 1986, BDD-based methods have attracted a great deal
of attention. The BDD was originally invented for the efficient Boolean function
manipulation required in VLSI logic design, but Boolean functions are also used
for modeling many kinds of combinatorial problems. A Zero-suppressed BDD
(ZDD) [3] is a variant of the BDD, customized for representing and indexing
combinatorial patterns. ZDDs have been successfully applied not only to VLSI
design, but also for solving various combinatorial problems, such as constraint
satisfaction, frequent pattern mining, and graph enumeration. Recently, ZDDs
have become more widely known, since D.E. Knuth intensively discussed ZDD-
based algorithms in the latest volume of his famous series of books [2].

Although a quarter of a century has passed since Bryant first put forth his
idea, there are still many interesting and exciting research topics related to BDDs
and ZDDs [4]. One of the most important topics would be that Knuth presented
a surprisingly fast algorithm “Simpath” [2] to construct a ZDD which represents
all the paths connecting two points in a given graph structure. This work is
important because many kinds of practical problems are efficiently solved by
some variations of this algorithm. We generically call such ZDD construction
methods “frontier-based methods.”

In this talk, we present recent research activity related to BDDs and ZDDs.
We first briefly explain the basic techniques for BDD/ZDD manipulation, and we
then show an overview of the frontier-based method for efficiently enumerating
and indexing the solutions of combinatorial problems. We also present several
topics on various applications of those state-of-the-art techniques.

Power of Enumeration XIX

References

1. Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. IEEE
Transactions on Computers C-35(8), 677–691 (1986)

2. Knuth, D.E.: The Art of Computer Programming: Bitwise Tricks & Techniques;
Binary Decision Diagrams, vol. 4, fascicle 1. Addison-Wesley (2009)

3. Minato, S.-I.: Zero-suppressed BDDs for set manipulation in combinatorial prob-
lems. In: Proc. of 30th ACM/IEEE Design Automation Conference (DAC 1993),
pp. 272–277 (1993)

4. Minato, S.-I.: Techniques of BDD/ZDD: Brief history and recent activity. IEICE
Transactions on Information and Systems E96-D(7), 1419–1429 (2013)

Encoding Data Structures�

Rajeev Raman

University of Leicester, UK

Abstract. In recent years, there has been an explosion of interest in
succinct data structures, which store the given data in compact or com-
pressed formats and answer queries on the data rapidly while it is still
in its compressed format. Our focus in this talk is to introduce encod-
ing data structures. Encoding data structures consider the data together
with the queries and aim to store only as much information about the
data as is needed to store the queries. Once this is done, the original data
can be deleted. In many cases, one can obtain space-efficient encoding
data structures even when the original data is incompressible.

* A full version of the invited talk can be found on p. 1.

Table of Contents

Invited Contribution

Encoding Data Structures . 1
Rajeev Raman

Approximation Algorithms

Fast Algorithms for Constrained Graph Density Problems 8
Venkatesan Chakaravarthy, Neelima Gupta, Aditya Pancholi,
and Sambuddha Roy

The Directed Ring Loading with Penalty Cost . 20
Li Guan, Jianping Li, Xuejie Zhang, and Weidong Li

Edge-Colorings of Weighted Graphs (Extended Abstract) 32
Yuji Obata and Takao Nishizeki

Unit Covering in Color-Spanning Set Model . 44
Ehsan Emamjomeh-Zadeh, Mohammad Ghodsi, Hamid Homapour,
and Masoud Seddighin

Data Structures and Algorithms

Compact Encodings and Indexes for the Nearest Larger Neighbor
Problem . 53

Seungbum Jo, Rajeev Raman, and Srinivasa Rao Satti

A Practical Succinct Data Structure for Tree-Like Graphs 65
Johannes Fischer and Daniel Peters

Forming Plurality at Minimum Cost . 77
Wei-Yin Lin, Yen-Wei Wu, Hung-Lung Wang, and Kun-Mao Chao

Approximate Distance Oracle in O(n2) Time and O(n) Space for
Chordal Graphs . 89

Gaurav Singh, N.S. Narayanaswamy, and G. Ramakrishna

Computational Geometry

Straight-Path Queries in Trajectory Data . 101
Mark de Berg and Ali D. Mehrabi

XXII Table of Contents

Folding a Paper Strip to Minimize Thickness . 113
Erik D. Demaine, David Eppstein, Adam Hesterberg, Hiro Ito,
Anna Lubiw, Ryuhei Uehara, and Yushi Uno

An Almost Optimal Algorithm for Voronoi Diagrams of Non-disjoint
Line Segments (Extended Abstract) . 125

Sang Won Bae

Combinatorial Algorithms

PTAS’s for Some Metric p-source Communication Spanning Tree
Problems . 137

Santiago V. Ravelo and Carlos E. Ferreira

Fault-Tolerant Gathering of Asynchronous Oblivious Mobile Robots
under One-Axis Agreement . 149

Subhash Bhagat, Sruti Gan Chaudhuri,
and Krishnendu Mukhopadhyaya

Enumerating Eulerian Trails via Hamiltonian Path Enumeration 161
Hiroyuki Hanada, Shuhei Denzumi, Yuma Inoue, Hiroshi Aoki,
Norihito Yasuda, Shogo Takeuchi, and Shin-ichi Minato

Distributed and Online Algorithms

The Impact of Communication Patterns on Distributed Self-Adjusting
Binary Search Trees . 175

Thim Strothmann

An Efficient Silent Self-Stabilizing Algorithm for 1-Maximal Matching
in Anonymous Networks . 187

Yuma Asada and Michiko Inoue

Dynamic Online Multiselection in Internal and External Memory 199
Jérémy Barbay, Ankur Gupta, Srinivasa Rao Satti,
and Jonathan Sorenson

Competitive Analysis for Multi-objective Online Algorithms 210
Morten Tiedemann, Jonas Ide, and Anita Schöbel

Graph Drawing and Algorithms

Simultaneous Drawing of Planar Graphs with Right-Angle Crossings
and Few Bends . 222

Michael A. Bekos, Thomas C. van Dijk, Philipp Kindermann,
and Alexander Wolff

Table of Contents XXIII

An Improved Algorithm for Parameterized Edge Dominating Set
Problem . 234

Ken Iwaide and Hiroshi Nagamochi

On Bar (1, j)-Visibility Graphs (Extended Abstract) 246
Franz J. Brandenburg, Niklas Heinsohn, Michael Kaufmann,
and Daniel Neuwirth

Simultaneous Time-Space Upper Bounds for Red-Blue Path Problem
in Planar DAGs . 258

Diptarka Chakraborty and Raghunath Tewari

Combinatorial Problems and Complexity

Non-repetitive Strings over Alphabet Lists . 270
Neerja Mhaskar and Michael Soltys

Dichotomy Theorems for Homomorphism Polynomials of Graph
Classes . 282

Christian Engels

Common Unfolding of Regular Tetrahedron and Johnson-Zalgaller
Solid . 294

Yoshiaki Araki, Takashi Horiyama, and Ryuhei Uehara

Threshold Circuits for Global Patterns in 2-Dimensional Maps 306
Kei Uchizawa, Daiki Yashima, and Xiao Zhou

Graph Enumeration and Algorithms

Superset Generation on Decision Diagrams . 317
Takahisa Toda, Shogo Takeuchi, Koji Tsuda, and Shin-ichi Minato

On Triangle Cover Contact Graphs . 323
Md. Iqbal Hossain, Shaheena Sultana, Nazmun Nessa Moon,
Tahsina Hashem, and Md. Saidur Rahman

Logspace and FPT Algorithms for Graph Isomorphism for Subclasses
of Bounded Tree-Width Graphs . 329

Bireswar Das, Murali Krishna Enduri, and I. Vinod Reddy

Author Index . 335

Competitive Analysis for Multi-objective Online Algorithms
Morten Tiedemann, Jonas Ide, and Anita Schöbel

E1

Erratum

Encoding Data Structures

Rajeev Raman

University of Leicester, UK

Abstract. In recent years, there has been an explosion of interest in
succinct data structures, which store the given data in compact or com-
pressed formats and answer queries on the data rapidly while it is still
in its compressed format. Our focus in this talk is to introduce encod-
ing data structures. Encoding data structures consider the data together
with the queries and aim to store only as much information about the
data as is needed to store the queries. Once this is done, the original data
can be deleted. In many cases, one can obtain space-efficient encoding
data structures even when the original data is incompressible.

1 Introduction

The need for performing complex processing on ever-larger volumes of data has
led to the re-evaluation of the space usage of data structures. Whereas in classical
data structures, a linear space usage, namely using O(n) words of space, is
considered to be optimal, this is often too much for very large data. For example,
a suffix tree on a string of n characters from a fixed alphabet requiresΘ(n) words.
A usual assumption is that a computer word must be of length Ω(log n) bits, so
that one can work with numbers such as the input size n, and be able to address
enough memory to hold the input. Thus, a suffix tree requires Θ(n log n) bits
of memory, while the input requires only O(n) bits. This asymptotic blow-up
also manifests itself in practice: even a even a highly optimized implementation
of a suffix tree requires 20n bytes in the worst case [15] to index a string of n
bytes. This level of internal memory usage is unacceptable if we wish to index
gigabytes or terabytes of string data.

In response to this issue, there has been a great deal of research into succinct
and compressed data structures [2] building upon the early work of Jacobson
[12] and contemporaries. In succinct data structures, we view the given instance
x of the data on which we wish to build a data structure as coming from a set S
of objects, and the aim is to represent x using space as close to the information-
theoretic bound of �log2 |S|� bits as possible. In compressed data structures, we
postulate a probability distribution on S and aim to represent x using as close
to the Shannon bound of �log2 1/Pr(x)� bits as possible.

However, there are cases where the succinct approach does not offer any
asymptotic improvements. Consider the well-known range maximum query prob-
lem, which is, given a static array A[1..n], to pre-process A to answer queries:

RMQ(l, r): return maxl≤i≤r A[i].

M.S. Rahman and E. Tomita (Eds.): WALCOM 2015, LNCS 8973, pp. 1–7, 2015.
c© Springer International Publishing Switzerland 2015

2 R. Raman

Assume, for simplicity, that A contains a permutation of {1, . . . , n}. Observe
that since RMQ(i, i) queries can be used to reconstruct A, any data structure
for answering RMQ on A must contain all the information contained in A, and
hence use Ω(n logn) bits.

In order to get around this, we modify the RMQ slightly:

RMQ(l, r): return argmaxl≤i≤r A[i].

In other words, we only seek the index in the range {l, . . . , r} where the maxi-
mum value among A[l], . . . , A[r] lies. In many applications of the RMQ problem,
knowing the index where the maximum value lies is sufficient. With this mod-
ified version, it is no longer possible to reconstruct A is by performing RMQs.
For example, if n = 3 then the arrays A = (1, 3, 2) and A′ = (2, 3, 1) will give
exactly the same answer to any RMQ operation, and the space lower bound of
Ω(n logn) bits no longer applies.

2 Encoding Data Structures

We now define some terminology regarding encoding data structures.

Effective entropy. Given a set of objects S, and a set of queries Q, consider the
equivalence class C on S induced by Q, where two objects from S are equivalent
if they provide the same answer to all queries in Q. We define the quantity
�log2 |C|� bits to be the effective entropy of S with respect to Q. In case it is
possible to reconstruct the given object x ∈ S by means of the queries Q, we
have |C| = |S| and there is no advantage to be gained. However, if |C| � |S|,
as is sometimes the case, then there can be substantial savings. For example, it
is known [7] that for the RMQ problem, |C| ≤ 4n � n! = |S|, so the empirical
entropy of the class of arraysA containing permutations, with respect to RMQ, is
only about 2n bits, as opposed to the entropy of the arrays A which is ∼ n logn
bits. In what follows, we will abbreviate “the effective entropy of S with respect
to Q” as “the effective entropy of Q.”

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

INPUT
QUERY

RESULT

PREPROC

E
n
co

d
in
g

PREPROC

 D

S

Fig. 1. Schematic illustation of the preprocessing steps in an encoding data structure

Encoding Data Structures 3

Encoding and Encoding Data Structure. Given an object x ∈ S, instead of storing
x directly, we can store a representation of the equivalence class y ∈ C that
x belongs to. By the definition of C, queries can be answered correctly using
y, rather than x; we call y an encoding of x. Note that since all queries can
be answered using y, there is no need to store x, and it can be deleted, as
depicted diagrammatically in Fig 1. The encoding y can then be converted into
an encoding data structure that not only answers queries correctly but rapidly.
Ideally the space usage of this data structure should be (1 + o(1)) log2 |C| bits.

Expected effective entropy. One can also define the expected empirical entropy
of a class of objects S with respect to Q: postulate a distribution on S, which
induces a distribution on C. The effective empirical entropy is then defined as∑

y∈C Pr(y) · log2 1/Pr(y). An encoding that aims to achieve the expected effec-
tive entropy then tries to represent an encoding y using as close to log2 1/Pr(y)
bits as possible.

Minimal Encodings. As stated above, it is assumed that there is an effective
characterization of the equivalence class C induced on S by Q, and that given
an input x ∈ S, it is possible to constructively and fairly quickly find a y ∈ C
to represent x. We will henceforth call such encodings minimal encodings. A
property of minimal encodings is that the encoding only contains the information
about x that could be inferred via queries in Q, and an encoding data structure
that is built upon y has the same property, provided the pre-processing does not
refer to the input x. Characterizing the C that leads to a minimal encoding can
be a non-trivial enumeration task, leading to objects studied by combinatorial
mathematicians such as Baxter permutations [9] and Schröder trees [6].

Minimality is, however, a stringent requirement, often an element from a set
E that is larger than C is used to represent the given input x. Provided that
log2 |E| = o(log2(|S|)) we will still consider this to be an encoding.

3 Results on Encoding Data Structures

We now discuss some recent results on encoding data structures.

3.1 Range Statistics on 1D-Arrays

Range Maximum Queries. For the RMQ problem defined above, the non-encoding
solution [8] is obtained via the Cartesian tree [17], a binary tree on n nodes. Fis-
cher and Heun [7] observed that the Cartesian tree gives a 1-1 correspondence
between binary trees on n nodes and equivalence classes for the RMQ problem,
thus giving a minimal encoding for RMQ. Since there are 1

2n+1

(
2n
n

)
binary trees

on n + 1 nodes, the effective entropy works out to be 2n − O(log n) bits, and
Fischer and Heun gave a 2n+o(n)-bit data structure that answers RMQ in O(1)
time1. Davoodi et al. [4,3] gave alternative 2n+ o(n)-bit data structures.

1 This result, as do all results in this abstract, use the word RAM model with word
size Θ(log n) bits.

4 R. Raman

The expected effective entropy (for uniform random permutations in A) of
RMQ is approximately 1.736n bits [10]. Davoodi et al. [3] gave an encoding data
structure that answers RMQ in O(1) time, using 1.919n+ o(n) bits on average.

Range Top-k and Range Selection. We are given an array A[1..n] that contains
a permutation of {1, . . . , n} and an integer k specified at pre-processing time,
and need to answer the query:

top-k-pos(l, r): return positions of the k largest values in A[l..r].

This is a generalization of the RMQ problem, which is the case k = 1. Grossi
et al. [11] showed that any encoding must have size Ω(n log k) bits and gave an
encoding data structure that uses O(n log k) bits and answers queries in O(k)
time. For the case k = 2, Davoodi et al. [3] gave a minimal encoding, but were
unable to obtain from this a closed-form expression for the empirical entropy of
the top-2 problem. They showed that empirical entropy is at least 2.656n bits
by a computational case analysis, and gave a data structure that took at most
3.272n+ o(n) bits and answered top-2 queries in O(1) time.

Recently, Gawrychowski and Nicholson [9] gave a different encoding for the
top-k problem. Using their encoding, they were able to obtain tight upper and
lower bounds of 1

k+1nH(1
k+1) and (1 − o(1)) 1

k+1nH(1
k+1) bits on the effective

entropy for all values of k. HereH(x) = x log2(1/x)+(1−x) log2 1/(1−x) for any
0 ≤ x ≤ 1. For k = 2, this gives the encoding complexity of the top-2 problem
to be approximately 2.755n bits. However, it is not clear that their encoding is
minimal, and they do not give an encoding data structure that answers top-k-pos
queries rapidly.

The range selection problem is as follows. We are again given an array A[1..n]
that contains a permutation of {1, . . . , n} and an integer k specified at pre-
processing time, and need to answer the query

select(i, l, r): return the position of the i-th largest value in A[l..r], for any i ≤ k.

Clearly, since by repeated select operations, we can obtain the top-k in a given
range, the effective entropy of range selection is no lower than that of the top-
k problem. Navarro et al. [16] gave an encoding that takes O(n log k) bits of
space, which is asymptotically optimal, and answers queries in optimal O(1 +
log i/ log logn) time.

Range Majority. We are given an array A[1..n] that contains (wlog) values from
{1, . . . , n}, and a number 0 < τ ≤ 1/2, specified at pre-processing time. We wish
to answer the following query:

majorityτ (l, r): If some value occurs at least τ(r − l+1) times in A[l..r], return
any index i ∈ {l, . . . , r} such that A[i] contains this value. If no value occurs
with this frequency, return null.

Navarro and Thankachan show that the encoding complexity isΩ(τ log(1/τ)n)
bits and give a data structure that takes O((n/τ) log∗ n) bits of space and an-
swers queries in O(log n) time.

Encoding Data Structures 5

Range Maximum-segment Sum. We are given an array A[1..n] that contains
positive and negative numbers. We wish to answer the following query:

RMSS(l, r): Return l′, r′, l ≤ l′ ≤ r′ ≤ r such that
∑r′

i=l′ A[i] is maximised.

Nicholson and Gawrychowski [9] showed that an encoding using Θ(n) bits can
be used to answer such queries in O(1) time.

3.2 2D Range Maximum Queries

The input to this problem is a two dimensional m × n array A, containing a
permutation of {1, . . . , N} where N = m · n. Assume that m ≤ n. We wish to
answer the following query:

RMQ(q): where q = [i1 · · · i2] × [j1 · · · j2] returns the position of the maximum
element in the query range, i.e., RMQ(q) = argmax(i,j)∈qA[i, j].

Brodal et al. [1], following on the work of Demaine et al. [5] showed that the
encoding complexity must be Ω(N logm) bits. Brodal et al. [1] later gave an
encoding of size O(N logm) bits, but this encoding does not yield a fast data
structure. Golin et al. [10] showed that the expected effective entropy (assuming a
random permutation in A) is O(N) bits and gave a constant-time data structure
with this space usage. Finally, for the case m = 2, Golin et al. gave a minimal
encoding using 5n − O(log n) bits. They also gave a data structure that takes
(5 + ε)n+ o(n) bits, for any 0 < ε ≤ 1 and answers queries in O(1/ε) time.

3.3 Nearest Larger Values

Again, given an array A[1..n] containing (not necessarily distinct) values from
{1, . . . , n}, we wish to answer the following query:

BNLV(i): return j > i such that A[j] > A[i] and j − i is minimized, and j′ < i
such that A[j′] > A[i] and i− j′ is minimized.

Fischer [6] gave a minimal encoding for this problem that required at most 2.54n
bits, and gave a corresponding data structure that answers queries in O(1) time.
The two-dimensional version of this problem, where A is an n × n matrix, was
recently considered by Jayapaul et al. [13] and Jo et al. [14]. The latter authors
gave an asymptotically optimal encoding data structure using O(n2) bits that
answers queries in O(1) time.

4 Conclusion

We have introduced the topic of encoding data structures. This topic is recently
gaining interest, not only as a way to obtain more space-efficient data structures,
but also due to the interesting combinatorial questions that arise. As can be seen

6 R. Raman

even at this early stage, the tight space restrictions of encodings sometimes make
it challenging to create efficient data structures with these space bounds. The
topic is wide open – any data structuring question can be cast into the encoding
framework, provided only that the queries considered do not allow the input to
be reconstructed completely, no matter how many queries are asked of the data
structure.

References

1. Brodal, G.S., Davoodi, P., Rao, S.S.: On space efficient two dimensional range min-
imum data structures. Algorithmica 63(4), 815–830 (2012), http://dx.doi.org/
10.1007/s00453-011-9499-0

2. Brodnik, A., López-Ortiz, A., Raman, V., Viola, A. (eds.): Ianfest-66. LNCS,
vol. 8066. Springer, Heidelberg (2013),
http://dx.doi.org/10.1007/978-3-642-40273-9

3. Davoodi, P., Navarro, G., Raman, R., Satti, S.R.: Encoding range minima and
range top-2 queries. Philosphical Transactions of the Royal Society A 372, 20130131
(2014), http://hdl.handle.net/2381/28856

4. Davoodi, P., Raman, R., Satti, S.R.: On succinct representations of binary trees.
CoRR abs/1410.4963 (2014), http://arxiv.org/abs/1410.4963 , preliminary ver-
sion in COCOON 2012, LNCS 7434

5. Demaine, E.D., Landau, G.M., Weimann, O.: On cartesian trees and range mini-
mum queries. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S.,
Thomas, W. (eds.) ICALP 2009, Part I. LNCS, vol. 5555, pp. 341–353. Springer,
Heidelberg (2009), http://dx.doi.org/10.1007/978-3-642-02927-1_29

6. Fischer, J.: Combined data structure for previous- and next-smaller-values. Theor.
Comput. Sci. 412(22), 2451–2456 (2011),
http://dx.doi.org/10.1016/j.tcs.2011.01.036

7. Fischer, J., Heun, V.: Space-efficient preprocessing schemes for range minimum
queries on static arrays. SIAM J. Comput. 40(2), 465–492 (2011),
http://dx.doi.org/10.1137/090779759

8. Gabow, H.N., Bentley, J.L., Tarjan, R.E.: Scaling and related techniques for ge-
ometry problems. In: DeMillo, R.A. (ed.) Proceedings of the 16th Annual ACM
Symposium on Theory of Computing, April 30 - May 2, 1984, Washington, DC,
USA. pp. 135–143. ACM (1984), http://doi.acm.org/10.1145/800057.808675

9. Gawrychowski, P., Nicholson, P.K.: Optimal encodings for range min-max and
top-k. CoRR abs/1411.6581 (2014), http://arxiv.org/abs/1411.6581

10. Golin, M.J., Iacono, J., Krizanc, D., Raman, R., Rao, S.S.: Encoding 2-d range max-
imum queries. CoRR abs/1109.2885 (2011), http://arxiv.org/abs/1109.2885,
preliminary version in Asano, T., Nakano, S.-I., Okamoto, Y., Watanabe, O. (eds.)
ISAAC 2011. LNCS, vol. 7074, pp. 180–189. Springer, Heidelberg (2011)

11. Grossi, R., Iacono, J., Navarro, G., Raman, R., Rao, S.S.: Encodings for range se-
lection and top-k queries. In: Bodlaender, H.L., Italiano, G.F. (eds.) ESA 2013.
LNCS, vol. 8125, pp. 553–564. Springer, Heidelberg (2013),
http://dx.doi.org/10.1007/978-3-642-40450-4_47

12. Jacobson, G.: Space-efficient static trees and graphs. In: 30th Annual Sympo-
sium on Foundations of Computer Science, Research Triangle Park, North Car-
olina, USA, October 30-November 1, pp. 549–554. IEEE Computer Society (1989),
http://doi.ieeecomputersociety.org/10.1109/SFCS.1989.63533

http://dx.doi.org/10.1007/s00453-011-9499-0
http://dx.doi.org/10.1007/s00453-011-9499-0
http://dx.doi.org/10.1007/978-3-642-40273-9
http://hdl.handle.net/2381/28856
http://arxiv.org/abs/1410.4963
http://dx.doi.org/10.1007/978-3-642-02927-1_29
http://dx.doi.org/10.1016/j.tcs.2011.01.036
http://dx.doi.org/10.1137/090779759
http://doi.acm.org/10.1145/800057.808675
http://arxiv.org/abs/1411.6581
http://arxiv.org/abs/1109.2885
http://dx.doi.org/10.1007/978-3-642-40450-4_47
http://doi.ieeecomputersociety.org/10.1109/SFCS.1989.63533

Encoding Data Structures 7

13. Jayapaul, V., Jo, S., Raman, V., Satti, S.R.: Space efficient data structures for
nearest larger neighbor. In: Proc. IWOCA 2014 (to appear, 2014)

14. Jo, S., Raman, R., Satti, S.R.: Optimal encodings and indexes for nearest larger
value problems. In: Rahman, M.S., Tomita, E. (eds.) WALCOM 2015. LNCS,
vol. 8973, Springer, Heidelberg (2015)

15. Kurtz, S.: Reducing the space requirement of suffix trees. Softw., Pract. Ex-
per. 29(13), 1149–1171 (1999), http://dx.doi.org/10.1002/(SICI)1097-024X

(199911)29:13<1149::AID-SPE274>3.0.CO;2-O

16. Navarro, G., Raman, R., Satti, S.R.: Asymptotically optimal encodings for range
selection. In: Proc. 34th IARCS Annual Conference on Foundations of Software
Technology and Theoretical Computer Science (FSTTCS 2014). Schloss Dagstuhl
- Leibniz-Zentrum fuer Informatik (2014)

17. Vuillemin, J.: A unifying look at data structures. Commun. ACM 23(4), 229–239
(1980), http://doi.acm.org/10.1145/358841.358852

http://dx.doi.org/10.1002/(SICI)1097-024X(199911)29:13$<$1149::AID-SPE274$>$3.0.CO;2-O
http://dx.doi.org/10.1002/(SICI)1097-024X(199911)29:13$<$1149::AID-SPE274$>$3.0.CO;2-O
http://doi.acm.org/10.1145/358841.358852

Fast Algorithms for Constrained Graph

Density Problems�

Venkatesan Chakaravarthy1, Neelima Gupta2, Aditya Pancholi2,
and Sambuddha Roy3

1 IBM Research, Bangalore
tcvenkat@in.ibm.com

2 University of Delhi, Delhi
ngupta@cs.du.ac.in, aditya.cs.du@gmail.com

3 Amazon, Bangalore
shombuddho@gmail.com

Abstract. We consider the question of finding communities in large so-
cial networks. In literature and practice, “communities” refer to a well-
connected subgraph of the entire network. For instance, the notion of
graph density has been considered as a reasonable measure of a commu-
nity. Researchers have also looked at the minimum degree of a subgraph
as a measure of the connectedness of the community.

Typically, a community is meaningful in the context of a social net-
work if it is of somewhat significant size. Thus, earlier work has consid-
ered the densest graph problem subject to various co-matroid constraints.
Most of these algorithms utilize an exact dense subgraph procedure as
a subroutine; such a subroutine involves computing maximum flows or
solving LPs. Consequently, they are rather inefficient when considered
for massive graphs. For massive graphs, we are constrained to run in
near-linear time, while producing subgraphs that provide reasonable ap-
proximations to the optimal solutions.

Our current work presents efficient greedy algorithms for the prob-
lem of graph density subject to an even more general class of con-
straints called upward-monotone constraints (these subsume co-matroid
constraints). This generalizes and extends earlier work significantly. For
instance, we are thereby able to present near-linear time 3-factor approx-
imation algorithms for density subject to co-matroid constraints; we are
also able to obtain 2-factor LP-based algorithms for density subject to 2
co-matroid constraints.

Our algorithms heavily utilize the core decomposition of a graph.

1 Introduction

Given an undirected graph G = (V,E), the density d(S) of a subgraph on vertex

set S is defined as the quantity |E(S)|
|S| , where E(S) is the set of edges in the

subgraph induced by the vertex set S. The densest subgraph problem is to find
the subgraph S of G that maximizes the density.

� Work done while at IBM Research, India.

M.S. Rahman and E. Tomita (Eds.): WALCOM 2015, LNCS 8973, pp. 8–19, 2015.
c© Springer International Publishing Switzerland 2015

Fast Algorithms for Constrained Graph Density Problems 9

The concept of graph density is ubiquitous, more so in the context of social
networks. In the context of social networks, the problem is to detect communities:
collections of individuals who are relatively well connected as compared to other
parts of the social network graph.

The notion of graph density has been fruitfully applied to finding communities
in the social network graph (or even web graphs, gene annotation graphs [17],
problems related to the formation of most effective teams [8], etc.). Also, note
that graph density appears naturally in the study of threshold phenomena in
random graphs, see [1].

Motivated by applications in social networks, the graph density problem and
its variants have been well studied. Goldberg [9] (also see [14]) proved that the
densest subgraph problem can be solved optimally in polynomial time: he showed
this via a reduction to a series of max-flow computations. Later, others [5,12]
have given new proofs for the above result, motivated by considerations to extend
the result to some generalizations and variants.

Researchers also looked at the graph density problem subject to size con-
straints. In the k-densest subgraph problem, the objective is to find the densest
subgraph induced over precisely k vertices. The problem is notoriously hard:
while it was shown to be NP-hard by [7], Khot [11] shows that that there does
not exist any PTAS for the k-densest subgraph problem under a reasonable com-
plexity assumption. In the direction of upper bounds, [7] provide an algorithm
with an approximation factor of O(nθ) where θ < 1/3. More recently, [3] give an
algorithm for the k-densest subgraph with an approximation factor of O(n1/4).

Andersen and Chellapilla [2] considered two variants of the k-densest sub-
graph problem (they show both of the variants to be NP-hard). In one variant,
the integer k provided along with the input specifies an upper bound on the size
of the dense subgraph. They prove that this problem is almost as hard as the k-
densest subgraph problem. The other variant they consider is where k specifies a
lower bound on the size of the dense subgraph. Thus, here, the input includes an
integer k and the goal is to find the densest subgraph S subject to the constraint
|S| � k. This corresponds to finding sufficiently large dense subgraphs in social
networks. Khuller and Saha [12] give two alternative algorithms for this problem:
one of them is a greedy procedure that involves a dense subgraph subroutine,
while the other is LP-based. Both the algorithms have 2-factor guarantees. How-
ever, these algorithms do not scale to large graphs such as web graphs because
of the prohibitive runtime for the (exact) dense subgraph routine (or the LP
solving routine). In this context, Andersen and Chellapilla [2] give an efficient
approximation for this problem. They show that the problem may be approxi-
mated within a factor of 3 in linear time. Their algorithm is based on the core
decomposition of a graph (see [13]).

Gajewar and Sarma [8] consider a further generalization, motivated by as-
pects of team formation (also see [16]). Call this the team-formation variant
of graph density. Here, the input includes a partition of the vertex set into
U1, U2, · · · , Ut, and non-negative integers r1, r2, · · · , rt. The goal is to find the
densest subgraph S subject to the constraint that for all 1�i�t, |S ∩ Ui| � ri.

10 V. Chakaravarthy et al.

They gave a 3-approximation algorithm by extending the greedy procedure of
Khuller and Saha [12] (and thus involves an exact dense subgraph routine and
has a prohibitive runtime).

Chakaravarthy et al. [4] vastly generalize the Gajewar & Sarma setting to
that of co-matroid constraints (the precise definition of co-matroid constraints
appears in Section 3). Co-matroid constraints capture both the cardinality con-
straints considered in [2,12] as well as the partition constraints considered in [8].
Chakaravarthy et al. provide a 2-factor approximation algorithm for the densest
subgraph problem subject to arbitrary co-matroid constraints thereby improving
the approximation factor of [8]. Their algorithm heavily utilizes an exact dense
subgraph routine.

The work in [4] also considers another class of constraints called dependency
constraints (this class of constraints generalize subset constraints as considered
by [17]). They show that the problem of finding the densest subgraph subject to
such constraints is in polynomial time - this involves finding solutions to LPs.

Summarizing the above discussion, we see that efficient linear time algorithms
exist for the vanilla version of graph density and the variant where the size of
the solution subgraph is lower bounded by k. For other variants, such as the
team-formation variant, or the more general co-matroid constraint variant, the
existing algorithms depend on an exact graph density routine. In turn, the exact
graph density routines typically depend on certain maximum flow formulations
on derived directed graphs (see, for instance [12]). To date, we do not know
linear time (or even nearly linear time) algorithms for these specific maximum
flow formulations; this is why the exact graph density routines (and consequently,
the algorithms for the co-matroid constrained versions of graph density), to have
prohibitive runtimes.

In this context, it ought to be mentioned that various recent papers (e.g.
[19,10], see also [6]) exhibit an exciting line of work that provide near-linear time
algorithms for nearly maximum flow; however, these results apply to undirected
graphs.

To summarise, the principal motivation of the current work is the following:
to devise efficient (i.e. near linear) algorithms for these general variants of graph
density.

We may also ask a stronger question: can we replace the exact densest sub-
graph routine with an efficient approximate routine and still preserve the overall
approximation guarantee?

Two Related Objectives. As an aside, let us remark on a related objective
that has been looked at previously in the context of community detection. Given
a subgraph H of G, note that twice the density of H is precisely the average
degree of the subgraph H . Thus the densest subgraph problem may also be
restated as the problem of finding the subgraph maximizing the average degree.
Given this, a related objective may also be of finding the subgraph maximizing
the minimum degree.

Thus, while the densest subgraph problem corresponds to the problem of
finding a subgraph where the degrees of the vertices are large, on average, the

Fast Algorithms for Constrained Graph Density Problems 11

problem of maximizing the minimum degree corresponds to finding a subgraph
where the degrees of the vertices are large in the worst-case.

It turns out that the worst-case problem is significantly simpler than the
average case question; in fact the core decomposition procedure [13] yields a
subgraph with the maximum minimum degree - this was first proven by Mat-
ula & Beck [15]. Thus, the minimum degree objective may be solved in linear
time, while an (exact) solution to the average degree objective involves solving
a maximum flow problem (see [12]).

Since a subgraph with the maximum minimum degree is also a reasonable
notion of community, various authors have studied this problem under different
constraints. An upward-monotone constraint is such that if S is feasible, then
any superset S′ ⊇ S is also feasible. Sozio & Gionis [20] show that the problem
of maximizing the minimum degree subject to any upward-monotone constraint
is solvable in linear time.

While we have generalizations to this latter result (to be presented in the full
version of this paper), in this paper we primarily focus on the average degree
objective.

2 Main Contributions

The principal message of our work is conceptual. Thus far in literature, most of
the work on graph density has focused on specific constraints such as co-matroid
constraints, dependency constraints, etc. (see, for instance, [4]). We explore the
nature of constraints subject to which we may expect to have reasonable ap-
proximations for graph density. In the realm of upward-monotone constraints
C, the answer that we obtain has the following pleasing form. We are able to
demonstrate a reduction from the problem of constrained graph density to that
of a certain Extension problem for the constraints C (denoted as ExtendC). The
ExtendC(S) problem is to extend a partial set S to one that is minimally fea-
sible for the constraints C, the objective being to minimize the number of extra
elements added; see Figure 3 for details.

Theorem 1. Suppose for some class of upward-monotone constraints C, the
problem ExtendC(S) admits a f -factor approximation. Then there is a (f +1)-
factor approximation algorithm for the densest subgraph problem subject to con-
straints C.

Similarly, suppose the problem ExtendC(S) admits an efficient f -factor ap-
proximation. Then there is an efficient (f +2)-factor approximation algorithm
for the densest subgraph problem subject to constraints C.

We believe that the aspect that the result holds even when we are considering
efficient (i.e. near-linear time) algorithms is the novel technical contribution of
this paper.

This allows us to approach the domain of web-scale graphs in the context of
such constrained graph density problems. We prove Theorem 1 in Section 4.

We may instantiate the above general result with various constraints as in the
corollaries below.

12 V. Chakaravarthy et al.

Corollary 1. There is a linear time algorithm for the densest subgraph problem
subject to co-matroid constraints that achieves a 3-factor approximation guaran-
tee.

Note that the problem ExtendC(S) in this case has an optimal (i.e. 1-factor)
linear-time algorithm; we observe that the algorithm presented in [4] (see Lemma
9 therein) actually runs in linear time.

To exhibit the generality of our result, consider the following (perhaps con-
trived) problem. Given a graph, we are given the task of finding the densest
subgraph that also forms a vertex cover. We can prove:

Corollary 2. There is a 3-factor LP-based algorithm and a 4-factor linear time
algorithm for this problem.

In this case, the ExtendC(S) problem is a vertex cover instance and has a
2-factor approximation.

To the best of our knowledge, the question of achieving approximation algo-
rithms for graph density subject to a combination of two co-matroid constraints
has not been considered before.

Two Co-matroid Constraints

– Consider the densest subgraph problem subject to two co-matroid con-
straints. Hithertofore, no approximation algorithms were given for this. We
prove that this densest subgraph variant admits an LP-based 2-factor ap-
proximation (here, the ExtendC routine corresponds to matroid intersec-
tion).

– For the specific case of the 2 co-matroid constraints corresponding to a bipar-
tite matching, the densest subgraph problem admits a 3-factor linear time
algorithm.

Knapsack Constraints
For a knapsack constraint (see Section 1.2 in [4]), the densest subgraph problem
admits a 3-factor greedy linear time algorithm (the corresponding ExtendC
routine admits an efficient 1-factor approximation).

3 Preliminaries

Given a graph G, we will denote the set of vertices of the graph as V (G) and the
set of edges as E(G). If the graph G is clear from the context, then we may refer
to the set of vertices (or edges) as V (or E). Given a graph G, the minimum
degree in G is denoted by MinDeg(G).

Supermodular Functions
A set function f : 2U → R+ over a universe U is called supermodular if the
following holds for any two sets A,B ⊆ U : f(A) + f(B) � f(A∪B) + f(A∩B).

In this paper, we will use the following equivalent definition of supermodu-
larity (the “increasing marginal returns” perspective). Given disjoint sets A,B

Fast Algorithms for Constrained Graph Density Problems 13

and C: f(A + C) − f(A) � f(A + B + C) − f(A + B). The main fact that we
will use in this paper is that: given a graph G = (V,E), the set function E(S)
consisting of the edges within vertices of the set S is supermodular.

Core Decomposition
Our algorithms heavily use the concept of a core. Given a graph G and a degree
parameter d ∈ N, the core C(G, d) of the graph G is the maximal subgraph
H of G such that the minimum degree of a vertex v ∈ V (H) in the induced
subgraph H is at least d. It is easy to notice that there is a unique such maximal
subgraph, so that the notion of a core is well defined. We will utilize the actual
core decomposition as a subroutine in our algorithm for Theorem 1, and the core
decomposition algorithm is presented there in Figure 2.

The core decomposition of a graph is obtained via the minimum degree (MD)
ordering of the graph. The MD ordering of the vertices of the graph is one in
which the vertices are ordered sequentially by successively removing the mini-
mum degree vertex in the residual graph, see [15] for details.

It is well known that every core is some suffix of the MD ordering (see [15,13,5]
for more facts about cores).

Upward-Monotone Constraints
An upward-monotone constraint is one such that if S is feasible, every superset
of S is also feasible.

Co-matroid constraints (defined next) are a prominent subclass of upward-
monotone constraints.

Co-matroid Constraints
A matroid is a pair M = (U, I) where I ⊆ 2U , and

1. (Hereditary Property) ∀B ∈ I, A ⊂ B =⇒ A ∈ I.
2. (Extension Property) ∀A,B ∈ I : |A| < |B| =⇒ ∃x ∈ B \A : A+ x ∈ I

Typically the sets in I are called independent sets, in keeping with the notions of
linear algebra (see the excellent text by Schrijver [18] for details). A co-matroid
constraint is defined as follows. Given a matroidM = (U, I), a set S is considered
feasible iff the complement of S is independent in I. Two commonly encountered
matroids are cardinality matroids and partition matroids.

Structure of the Density Problem
It may be observed that most algorithms [4,12,2] for graph density (subject to
upward-monotone constraints) work in two phases. Our main algorithm (see Fig-
ure 1) also follows a similar two-phase paradigm. The first phase of the algorithm
may be viewed as aiming to construct the unconstrained densest subgraph, and
the second phase performs augmentations to the candidate solutions from the
first phase in order to obtain feasible solutions for the constrained problem. This
raises the question: is it always true that there is a constrained optimum that
contains the unconstrained optimum? The (affirmative) answer is given by the
following lemma; this is new to the best of our knowledge.

14 V. Chakaravarthy et al.

Lemma 1. Consider the upward-monotone constrained density problem for
graph G = (V,E) and let H denote an unconstrained optimum (i.e. a subgraph
with the highest density). Then there exists a constrained optimum solution C
such that H ⊆ C.

This lemma may be viewed as justification for the two-phase approaches al-
luded to above. This may also be interpreted as a reason as to why density
problems subject to upward-monotone constraints seem easier than when sub-
ject to upper bound constraints (as in the k-densest subgraph problem, which is
known to be equivalent to the at-most-k densest subgraph problem, see [12]).

Proof. Consider a constrained optimum solution C. We will prove that one of
two things has to happen: either H ⊆ C in which case we have nothing to prove,
or that H ∪C is also a constrained optimum solution. We proceed to prove this
last statement.

Clearly, H ∪ C is feasible for the upward-monotone constraints. We need to
show that the subgraph induced by H ∪ C has density at least that of C. Let
the unconstrained density be du and the constrained maximum density be dc
(where du � dc). Note that

E(H ∪ C)	+	E(H ∩C)	�	E(H)	+	E(C)
E(H)	= du	H				
E(C)	= dc	C				

|E(H ∩C)| � du|H ∩ C|

where the last inequality is because du is the maximum density. Thereby we get

|E(H ∪ C)| � du(|H | − |H ∩ C|) + dc|C|
� dc(|H | − |H ∩ C|) + dc|C|
= dc|H ∪ C|

Thus, H ∪ C has density at least as much as of C. Since C is the constrained
optimum, so also is H ∪ C. This proves a subclaim that there is a constrained
optimum (namely H ∪C) that contains the unconstrained optimum. In order to
prove that any constrained optimum contains H , we will have to work slightly
more.

Note the equality cases of the inequalities in the lemma. Since C is the opti-
mum, so also is the set H ∪ C, and the inequalities above are all tight. But this
implies that the supermodular inequality is tight, as also that du = dc or that
|H | = |H ∩C| (which means that H is already a subset of C). Thus, if du �= dc,
then any constrained optimum has to contain the unconstrained optimum.

4 Proof of Theorem 1

The algorithm consists of two principal routines: ConstructCandidates(G)
and ExtendC(S). Interesting, the ConstructCandidates routine does not re-
quire the specific set of constraints C. The ConstructCandidates routine out-
puts a list of candidate subsets D1, D2, · · · , Dr. In fact, this is a chain: that

Fast Algorithms for Constrained Graph Density Problems 15

Density(G, C)
Input: a graph G, an upward-monotone constraint C
Output: a (dense) subgraph H .

D1, · · · , Dr ← ConstructCandidates(G)
for i ∈ {1, 2, · · · , r} do

D′
i ← ExtendC(Di)

end for
H ← the subgraph among D′

i (for i = 1, · · · , r) with the highest
density
Output H

Fig. 1. Generic Algorithm

is, D1 ⊆ D2 ⊆ · · ·Dr. Although the generic algorithm as presented in Figure 1
does not explicitly utilize this fact, it turns out, that given this sequence one only
need consider the first feasible solution in this chain along with the ExtendC-ed
solutions.

We also assume that there is a near-linear time algorithm for the ExtendC
routine, that outputs a f -factor approximation.

We may implement the ConstructCandidates routine by repeatedly solving
LP’s; this is the approach adopted by earlier papers (see for instance [4]). Such
an approach is possible for the current scenario with general upward-monotone
constraints and would result in a (f+1)-factor approximation. However, such an
algorithm would be costly, involving several LP-solving/max-flow steps. In the
current work, we save over the costly LP-solving steps, incurring only a slightly
worse (f + 2)-factor, achieving this in near linear time.

Our efficient algorithms use the core decomposition routine (presented in Fig-
ure 2). Given this, we prove only the latter half (the part dealing with efficient
algorithms) of Theorem 1.

Proof. Let H∗ be the optimal densest subgraph (of density d∗) subject to the
constraints C.

We will prove that some subgraph amongD′
i (for i = 1, · · · , r) has the correct

density, i.e. has density �d∗/(f + 2).
Note that, by construction, the sets in the sequence D1 ⊆ D2 ⊆ · · · ⊆ Dr

satisfy the following relation: MinDeg(D1) > MinDeg(D2) > · · · > MinDeg(Dr).
We may also note that the maximum minimum degree over a subgraph of G is
attained by D1.

In fact, we will be able to prove a sharper statement. Given the ordered
sequence D1 ⊆ D2 ⊆ · · ·Dr, let L be the least index (1�L�r) such that DL is
feasible. We will then prove that some subgraph amongD′

i (for i = 1, · · · , (L−1))
and DL has the correct density (i.e. density �d∗/(f + 2)).

We will consider the subgraph D� such that the following holds (the boundary
condition): The minimum degree in the subgraph Di is at least 2d

∗/(f + 2) for
i = 1 · · · 	 and the minimum degree in the subgraph D�+1 is < 2d∗/(f + 2).

16 V. Chakaravarthy et al.

ConstructCandidates(G) ← Core(G)
Input: a graph G.
Output: subsets D1, D2, · · · , Dr of vertices of G.
i ← 1
Ki ← G
while Ki �= ∅ do

H ← Ki

while MinDeg(H)�MinDeg(Ki) do
v ← vmin(H)
H ← H \ {v}

end while
i ← i+ 1
Ki ← H

end while
Let the sets constructed be K1 ⊇ · · · ⊇ Kr

Rename the sets as Di = Kr+1−i, so that D1 ⊆ · · · ⊆ Dr.

Fig. 2. Routine Core(G)

ExtendC(S)
Input: a set S, and a collection of upward-monotone constraints
C.
Output: a set T such that S ⊆ T and T is minimal feasible for
the constraints C.

Fig. 3. Routine ExtendC(S)

Why should such an 	 even exist? Given that there is a subgraph in G of
density d∗, the densest subgraph (without constraints) has density at least d∗.
Let H denote the unconstrained densest subgraph of density at least d∗. It is
easy to check that MinDeg(H)�d∗. Thus, G has a subgraph of minimum degree
at least d∗; thus the maximum minimum degree of G (that is attained by the
subgraph D1) is at least d

∗ > 2d∗/(f + 2).
If 	 = L (i.e. if D� is feasible), then note that MinDeg(D�)�2d∗/(f +2); thus,

the density of the subgraph D� is �d∗/(f + 2).
Thus, suppose that 	 < L, so that D� is not feasible. In this case, we will

prove that the set D′
� has the correct density i.e. d(D′

�)�d∗/(f + 2).
To this end, we will prove two lemmas about the set D�:

Lemma 2. The following holds:

|E(D�)| − |E(D� ∩H∗)|� d∗

(f + 2)
(|D�| − |D� ∩H∗|)

Proof. Let X denote the vertices in D� \H∗. Note that |X | = |D�| − |D� ∩H∗|.
Also, since X ⊆ D�, every vertex in X has degree at least 2d∗/(f + 2), by
definition of the subset D�.

Fast Algorithms for Constrained Graph Density Problems 17

The sum
∑

v∈X DegD�
(v) counts each edge e ∈ E(D� \H∗) twice and every

edge e ∈ δ(D�\H∗) once. Thus, we have that
∑

v∈X DegD�
(v) = 2|E(D�\H∗)|+

|δ(D� \H∗)|. Hence, it also holds that

2(|E(D�)| − |E(D� ∩H∗)|) = 2|E(D� \H∗)|+ 2|δ(D� \H∗)|�
∑
v∈X

DegD�
(v)

� 2d∗

(f + 2)
|X |.

This proves the statement of the lemma.

The next lemma attempts to lowerbound the value of |E(D� ∪H∗)|.

Lemma 3. The following holds:

|E(D� ∪H∗)| − |E(D�)| <
2d∗

(f + 2)
(|H∗| − |D� ∩H∗|)

Proof. Consider the set D� ∪H∗ \D�. Assume that there are k vertices in this
set; thus, k = |H∗|− |D�∩H∗|. We will prove that these vertices may be ordered
as {h1, h2, · · · , hk} such that for any i, the number of edges between hi+1 and
D� ∪ {h1, h2, · · · , hi} is less than 2d∗

(f+2) . Note that this would prove the lemma;

the quantity |E(D� ∪ H∗)| − |E(D�)| may be decomposed as
∑k

i=1 |E(hi, D� ∪
{h1, h2, · · · , hi−1})|.

To this end, we will consider the reverse of the MD ordering of the vertices
of G = {v1, v2, · · · , vn}. Thus vn is the vertex of minimum degree in G. Ac-
cording to this notation let D� = {v1, v2, · · · , vs} for some s; also D� is the core
corresponding to some degree d�2d∗/(f + 2).

Also by definition of D�, for any set {v1, v2, · · · , vi} (for i > s), it holds that
the degree of vi in the set is < 2d∗/(f + 2). Rephrased, this means that the
number of edges between vi and {v1, v2, · · · , vi−1} is < 2d∗/(f + 2).

But now, the ordering of the hi’s is clear: it corresponds to the order in which
the vertices hi appear in the ordering {v1, v2, · · · , vn}. If a specific hi+1 is vt in
this ordering, then the number of edges between hi+1 and D� ∪ {h1, h2, · · · , hi}
is at most the number of edges between vt and {v1, v2, · · · , vt−1}. However by
the argument above, this is less than 2d∗/(f + 2).

This completes the proof of this lemma.

Thus we may claim the following:

Lemma 4.

|E(D� ∩H∗)|� 2d∗

(f + 2)
|D� ∩H∗|+ fd∗

(f + 2)
|H∗|

Proof. Consider the following statement that follows from supermodularity of
the E(·) function (using the increasing marginal returns perspective):

|E(H∗)| − |E(D� ∩H∗)|�|E(D� ∪H∗)| − |E(D�)|

18 V. Chakaravarthy et al.

Thus, Lemma 3 implies that

|E(H∗)| − |E(D� ∩H∗)|� 2d∗

(f + 2)
(|H∗| − |D� ∩H∗|)

Now, using that E(H∗) = d∗|H∗| (since H∗ is the densest constrained sub-
graph), and simplifying, we get that

|E(D� ∩H∗)|� 2d∗

(f + 2)
|D� ∩H∗|+ fd∗

(f + 2)
|H∗|

as required.

Now adding the statements of Lemma 4 and Lemma 2, we get that

|E(D�)|�
d∗

(f + 2)
(|D� ∩H∗|+ |D�|+ f |H∗|)

Given that D� is infeasible, the ExtendC subroutine in the algorithm augments
the set D� with some number of vertices in order to make it feasible (and the
feasible solution is denoted as D′

�).
We note that the number of extra vertices needed by the ExtendC routine is

upper bounded by f |H∗| - this follows because, by assumption, we are given a f -
factor approximation for the problem ExtendC for the constraints C. Thus, this
means that the number of vertices in the subgraph D′

� is at most |D�|+ f |H∗|.
The above inequality then implies that (after dropping the term corresponding
to d∗

(f+2) |D� ∩H∗|):

|E(D′
�)|�

d∗

(f + 2)
(|D�|+ f |H∗|)� d∗

(f + 2)
|D′

�|

so that the augmented set D′
� has density at least d∗/(f + 2).

This concludes the proof of Theorem 1.

Runtime Analysis
Deferred to the full version of the paper.

Remarks
It is interesting to compare the current result with the earlier work by Andersen
& Chellapilla [2]. They showed a greedy 3-factor approximation algorithm for
problem of finding a dense subgraph subject to a cardinality constraint |S|�k.
Their algorithm in a nutshell is this: consider the core decomposition of the
graph; each core is a candidate solution. Look only at the cores that are feasible
(i.e. has size �k), and output the densest of these subgraphs as the final solution.

However, when we consider general upward-monotone constraints (in fact,
even constraints as simple as |S ∩ A|�k), we are unable to claim such a per-
formance guarantee by just restricting ourselves to looking only at the feasible
solutions from the core decomposition.

In the general scenario of upward-monotone constraints, it appears that it
is essential that we consider the cores in the reverse order, i.e. consider the
infeasible cores and augment them to render them feasible.

Fast Algorithms for Constrained Graph Density Problems 19

References

1. Alon, N., Spencer, J.H.: The Probabilistic Method. Wiley, New York (1992)
2. Andersen, R., Chellapilla, K.: Finding dense subgraphs with size bounds. In:

Avrachenkov, K., Donato, D., Litvak, N. (eds.) WAW 2009. LNCS, vol. 5427,
pp. 25–37. Springer, Heidelberg (2009)

3. Bhaskara, A., Charikar, M., Chlamtac, E., Feige, U., Vijayaraghavan, A.: Detecting
high log-densities: an o(n1/4) approximation for densest k-subgraph. In: STOC,
pp. 201–210 (2010)

4. Chakaravarthy, V.T., Modani, N., Natarajan, S.R., Roy, S., Sabharwal, Y.: Density
functions subject to a co-matroid constraint. In: FSTTCS, pp. 236–248 (2012)

5. Charikar, M.: Greedy approximation algorithms for finding dense components
in a graph. In: Jansen, K., Khuller, S. (eds.) APPROX 2000. LNCS, vol. 1913,
pp. 84–95. Springer, Heidelberg (2000)

6. Eisenstat, D., Klein, P.N.: Linear-time algorithms for max flow and multiple-source
shortest paths in unit-weight planar graphs. In: Symposium on Theory of Comput-
ing Conference, STOC 2013, Palo Alto, CA, USA, June 1-4, pp. 735–744 (2013)

7. Feige, U., Kortsarz, G., Peleg, D.: The dense k-subgraph problem. Algorithmica 29,
2001 (1999)

8. Gajewar, A., Sarma, A.D.: Multi-skill collaborative teams based on densest sub-
graphs. In: SDM, pp. 165–176 (2012)

9. Goldberg, A.V.: Finding a maximum density subgraph. Technical report, UC
Berkeley (1984)

10. Kelner, J.A., Lee,Y.T.,Orecchia, L., Sidford,A.:An almost-linear-time algorithm for
approximatemax flow in undirected graphs, and itsmulticommodity generalizations.
In: Proceedings of the Twenty-Fifth Annual ACM-SIAMSymposium onDiscrete Al-
gorithms, SODA 2014, Portland, Oregon, USA, January 5-7, pp. 217–226 (2014)

11. Khot, S.: Ruling Out PTAS for Graph Min-Bisection, Dense k-Subgraph, and Bi-
partite Clique. SIAM J. Comput. 36(4), 1025–1071 (2006)

12. Khuller, S., Saha, B.: On finding dense subgraphs. In: Albers, S., Marchetti-
Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009, Part
I. LNCS, vol. 5555, pp. 597–608. Springer, Heidelberg (2009)

13. Kortsarz, G., Peleg, D.: Generating sparse 2-spanners. J. Algorithms 17(2), 222–236
(1994)

14. Lawler, E.: Combinatorial optimization - networks and matroids. Holt, Rinehart
and Winston, New York (1976)

15. Matula, D.W., Beck, L.L.: Smallest-last ordering and clustering and graph coloring
algorithms. J. ACM 30(3), 417–427 (1983)

16. Rangapuram, S.S., Bühler, T., Hein, M.: Towards realistic team formation in social
networks based on densest subgraphs. In: Proceedings of the 22nd International
Conference on World Wide Web, WWW 2013, pp. 1077–1088 (2013)

17. Saha, B., Hoch, A., Khuller, S., Raschid, L., Zhang, X.-N.: Dense subgraphs with
restrictions and applications to gene annotation graphs. In: Berger, B. (ed.) RE-
COMB 2010. LNCS, vol. 6044, pp. 456–472. Springer, Heidelberg (2010)

18. Schrijver, A.: Combinatorial Optimization - Polyhedra and Efficiency. Springer
(2003)

19. Sherman, J.: Nearly maximum flows in nearly linear time. In: 54th Annual IEEE
Symposium on Foundations of Computer Science, FOCS 2013, Berkeley, CA, USA,
October 26-29, pp. 263–269 (2013)

20. Sozio, M., Gionis, A.: The community-search problem and how to plan a successful
cocktail party. In: KDD, pp. 939–948 (2010)

The Directed Ring Loading with Penalty Cost

Li Guan, Jianping Li, Xuejie Zhang, and Weidong Li�

Yunnan University, Kunming 650091, PR China
{guanli,jianping,xjzhang,weidong}@ynu.edu.cn

Abstract. We study the directed ring loading problem with penalty
cost, which is to select some of given multicast requests represented by
hyperedges with different demands and embed them in a directed ring,
such that the sum of the maximum congestion among all links on the
ring and the total penalty cost of the unselected multicast requests is
minimized. We prove that this problem is NP -hard even if the demand
is divisible, and then design a 1.582-approximation algorithm for the
demand divisible case and a 3-approximation algorithm for the demand
indivisible case, respectively. As a consequence, for any ε > 0, we present
a (1.582+ε)-approximation algorithm for the case where every multicast
request contains exactly one sink.

Keywords: Approximation algorithms, Directed ring loading, Directed
hypergraph embedding, Penalty cost.

1 Introduction

Arising in automated electronic circuit design, specifically in routing nets around
a rectangle where the objective is to route within a minimum area rectangle
[2], Ganley and Cohoon [3] proposed the problem of hypergraph embedding in
a cycle (HEC, for short). The HEC problem is to embed the hyperedges in a
hypergraph as paths in a cycle on the same number of vertices, such that the
maximum load among all links in the cycle is minimized, where the load of a
link is the number of paths that use it. HEC is a challenging problem and has
many applications in various areas such as communication, computer networks,
and parallel computation.

Ganley and Cohoon [3] proved that the HEC problem is NP -hard and gave a
3-approximation algorithm for it. Gonzalez [5] constructed an integer linear pro-
gramming for the HEC problem and designed two 2-approximation algorithms.
Gu and Wang [6] proposed an improved 1.8-approximation algorithm to solve
the HEC problem by a reembedding technique. Finally, Li, Deng and Xu [9] de-
signed a polynomial time approximation scheme (PTAS) for the HEC problem
by a randomized rounding approach, which is generalized by Yang and Li [16]
to a more general case where the links on the ring have different weights. If the
hyperedges have different demands, Lee and Ho [8] proposed a 2-approximation
algorithm, which is improved by the same authors [7]. When every hyperedge

� Corresponding author.

M.S. Rahman and E. Tomita (Eds.): WALCOM 2015, LNCS 8973, pp. 20–31, 2015.
c© Springer International Publishing Switzerland 2015

The Directed Ring Loading with Penalty Cost 21

contains exactly two nodes, the HEC problem with different demands is exactly
the ring loading problem [13], which possesses a PTAS. Recently, Li, Li and
Guan [12] studied a generalized version of the ring loading problem where the
requests can be rejected, and presented some approximation algorithms.

Motivated by the multicast communication applications where a multicast re-
quest asks to send a message from a source to many sinks, Li and Wang [11] pro-
posed the problem of directed hypergraph embedding on a directed ring (DHER),
and presented a PTAS for it, which is generalized by Li, Li and Wang [10] to
a more general case where the links on the ring have different weights. If the
hyperedges have different demands, Wang et al. [14] designed a 2-approximation
algorithm. When every directed hyperedge contains exactly one sink, the DHER
problem is exactly the directed ring loading problem [1], which possesses a PTAS.

In this paper, we consider the directed ring loading problem with penalty
cost (DRLPC, for short), which is defined as follows. Given a set of m multicast
connection requests, each multicast request j has a demand dj and a penalty
pj , and it must be routed in one of the several possible ways around the ring
or be rejected with penalty pj . The objective is to minimize the sum of the
maximum load among all links on the ring and the total penalty cost of the
requests rejected, where the load of a link is the sum of the demands of requests
that use it.

This paper is organized as follows. In Section 2, we present some basic nota-
tions. In Section 3, we show that the DRLPC problem with divisible demand is
NP -hard and present a 1.582-approximation algorithm by using a randomized
rounding technique. In Section 4, we consider the DRLPC problem with indivis-
ible demand, and design a 3-approximation algorithm for the general case and a
(1.582 + ε)-approximation algorithm for the special case where each hyperedge
contains exactly one sink. Finally, we summarize and describe some possible
directions for future work.

2 Preliminaries

A directed ring is a directed network R = (V,A), where V = {1, 2, . . . , n} is
the set of n nodes, and A = {e+i = (i, i + 1), e−i = (i + 1, i)| i = 1, 2, . . . , n}
is the set of directed links. Throughout, we treat the node n + i as the node i
for 1 ≤ i ≤ n. In communication applications, a request j is represented by a
directed hyperedge hj = (uj , Sj), where uj ∈ V is indicated as the source of the

directed hyperedge hj and Sj = {ij1, i
j
2, . . . , i

j
kj
} ⊆ V \ {uj} is the set of sinks

(here, kj = |Sj |). The request j asks to send a message from uj to every vertex in
Sj . Let DH = {h1, h2, . . . , hm} be the set of m directed hyperedges (requests).
For each hyperedge hj = (uj, Sj) ∈ DH , let dj , pj ∈ R+ be its demand and
penalty cost, respectively.

For convenience,we use ij0 to denoteuj . Assume that the kj+1vertices ij0, i
j
1, . . . ,

ijkj
follow the clockwise order on the ringR. For each k = 0, 1, . . . , kj − 1, let P j

k be
the embedding of directed hyperedge hj which is obtained by deleting the links

22 L. Guan et al.

on the ring between ijk and ijk+1 in clockwise direction, and P j
kj

be the embed-

ding which is obtained by deleting the links between ijkj
and ij0 in clockwise di-

rection. For example, given a hyperedge hj = (1, {2, 6}) with V = {1, 2, 3, 4, 5, 6},
we have P j

0 = {(1, 6), (6, 5), (5, 4), (4, 3), (3, 2)}, P j
1 = {(1, 2), (1, 6)}, and P j

2 =
{(1, 2), (2, 3), (3, 4), (4, 5), (5, 6)}. Three embedding ways are described in
Figure 1.

1 1 1

2 2 2

3 3 3

4 4 4

5 5 5

6 6 6

P j
0 embedding P j

1 embedding P j
2 embedding

Fig. 1. Three embedding ways

The problem of directed ring loading with penalty cost is to route the hyper-
edges accepted (may not all) such that the total flow for each hyperedge hj is dj .
The objective is to minimize the sum of the maximum congestion of links and
the total penalty cost of the rejected hyperedges, where the congestion of a link
is the total flow of embedding paths that use it. We distinguish between divisible
where each accepted hyperedge hj can be embedded in several ways such that∑kj

k=0 f(P
j
k) = dj and indivisible where each accepted hyperedge hj can only be

embedded in one way P j
k such that f(P j

k) = dj , where f(P j
k) is the amount of

demands (or flows) sending along the path P j
k .

Consider an example with n = 6, m = 3, h1 = {1, {2, 6}}, h2 = {2, {1}},
and h3 = {6, {2, 3, 5}}. The demands are d1 = 7, d2 = 3, and d3 = 10. The
penalty costs are p1 = 6, p2 = 2, and p3 = 1. When the demand is divisible,
an optimal solution whose objective value is 4.5 with h3 rejected is described
in the Figure 2 (a). When the demand is indivisible, an optimal solution whose
objective value is 8 with h3 rejected is described in the Figure 2 (b).

1 1

2 2

3 3

4 4

5 5

6 6
(a) flows

f(P 1
0) = 3.5

f(P 1
2) = 3.5

f(P 2
0) = 3

f = 3

f = 7

(a) The divisible case (b) The indivisible case

Fig. 2. Optimal solutions

The Directed Ring Loading with Penalty Cost 23

3 The DRLPC Problem with Divisible Demand

In this section, we consider the case where the demand is infinite divisible, which
means each accepted request hj can be routed in several ways satisfying that the
sum of all flows is dj . We prove that this problem is NP -hard, and formulate this
problem as a mixed integer linear programming. Then, by rounding the optimal
solution of its relaxation, we find a desired feasible solution whose objective value
is close to the optimal value.

3.1 NP -hardness

Theorem 1. The DRLPC problem with divisible demand is NP -hard, even if
kj = |Sj | = 1 for every multicast request hj = (uj , Sj), where j = 1, 2, . . ., n.

Proof. We demonstrate a polynomial reduction from the partitionproblem
[4]. Given an instance I of the partition problem with a set S = {a1,a2, . . .,
an} of positive integers and a positive integer a =

∑n
j=1 aj/2, one should decide

whether there is a subset S′ ⊂ S satisfying
∑

aj∈S′ aj = a. Construct an instance

τ(I) with m = n + 4 requests for the DRLPC problem with divisible demand
as follows. Define a directed ring R = (V,A) with V = {1, 2, 3} and A = {(1, 2),
(2, 3), (3, 1), (2, 1), (3, 2), (1, 3)}. For j = 1, 2, . . . , n, the request hj = (1, {2})
has a demand dj = 4aj and a penalty cost pj = aj . The remaining requests
hn+1 = (2, {3}), hn+2 = (3, {2}), hn+3 = (3, {1}) and hn+4 = (1, {3}) have
the same demand 4a and penalty cost 5a + 1. We claim that the instance I of
the partition problem has a feasible solution if and only if there is a feasible
solution for the instance τ(I) with objective value no more than 5a.

If the instance I has a feasible solution S′ ⊂ S satisfying
∑

aj∈S′ aj = a,

let D(S′) = {j | aj ∈ S′}. For each j ∈ D(S′), the request hj is rejected.
The total penalty cost of the rejected requests is a, as pj = aj . For j ∈
D(S \S′), the request hj is routed in the clockwise path P j

1 = {(1, 2)} with flow
4aj. The requests hn+1 = (2, {3}) and hn+3 = (3, {1}) are routed in the clock-
wise paths Pn+1

1 = {(2, 3)} and Pn+3
1 = {(3, 1)} with flow 4a, respectively.

The requests hn+2 = (3, {2}) and hn+4 = (1, {3}) are routed in the counterclock-
wise paths Pn+2

0 = {(3, 2)} and Pn+4
0 = {(1, 3)} with demand 4a, respectively.

The maximum load among all links on the ring is 4a (see Figure 3). Thus, we
obtain a feasible solution for instance τ(I) with objective value 5a.

If there is a feasible solution F for the instance τ(I) with objective value
at most 5a, the last four requests hn+j (j = 1, 2, 3, 4) can not be rejected.
Clearly, the maximum load among all links used by the last four requests hn+j

(j = 1, 2, 3, 4) in any feasible routing is at least 4a. Let B denote the maximum
load among all links in the feasible solution F , then B ≥ 4a. Let R be the set
of the rejected requests in F and D(R) = {j | hj ∈ R}. The total penalty cost
of the rejected requests, denoted by X , satisfies

X ≤ 5a−B ≤ 5a− 4a = a. (1)

24 L. Guan et al.

Note that the sum of demands of the accepted requests hj (j ≤ n) is 4(2a−X).
Since all requests are parallel, by Proposition 2 in [15], we can assume that at
most one accepted request hj (j ≤ n) is routed in two ways. It implies hn+j

(j = 1, 2, 3, 4) is routed in the shortest way as in Figure 3.

1

23

hj

hn+1hn+2

hn+3

hn+4

f(P j
1) = 4aj ,

for j ∈ D(S \ S′);

f(Pn+1
1) = 4a;

f(Pn+2
0) = 4a;

f(Pn+3
1) = 4a;

f(Pn+4
0) = 4a.

Fig. 3. Reduction

Since the accepted requests hj (j ≤ n) must use at least one link in {e+1 =
(1, 2), e−3 = (1, 3)}, we have

B ≥ 4a+
4(2a−X)− 4a

2
= 6a− 2X.

It implies that the objective value of F is at lest X + 6a − 2X = 6a − X .
From the assumption that the objective value of F is at most 5a, it follows
that 6a − X ≤ 5a, and then X ≥ a. Combining with (1), we have X = a. Let
S′ = {aj | j ∈ D(R)}, and then

∑
aj∈S′ aj = X = a. Thus S′ is a feasible

solution of the instance I. Since the partition problem is NP -hard [4], so is
the DRLPC problem.

3.2 An Approximation Algorithm

For each multicast request hj , we introduce kj + 1 variables xj
k ∈ [0, 1] (k =

0, 1, . . . , kj), where xj
k means that the amount of flow f(P j

k) of path P j
k used by

hj is djx
j
k, i.e., the source uj sends f(P j

k) = djx
j
k messages to every sink using

path P j
k . For convenience, let zj =

∑kj

k=0 x
j
k ∈ {0, 1}. If the multicast request

hj is accepted, then zj = 1. Otherwise, zj = 0. For i = 1, 2, . . . , n, let P+
ij

(P−
ij , resp.) be the set of embeddings P j

k of hj that use link e+i (e−i , resp.), and

P+
i = ∪m

j=1P+
ij (P−

i = ∪m
j=1P−

ij , resp.). Thus, the DRLPC problem with divisible
demand can be formulated as the following mixed integer linear programming
(MILP).

min B +
m∑
j=1

pj(1− zj)

The Directed Ring Loading with Penalty Cost 25∑
P j

k :P
j
k∈P+

i

djx
j
k ≤ B, i = 1, 2, . . . , n;

∑
P j

k :P
j
k∈P−

i

djx
j
k ≤ B, i = 1, 2, . . . , n;

kj∑
k=0

xj
k = zj , j = 1, 2, . . . ,m;

zj ∈ {0, 1}, j = 1, 2, . . . ,m;

xj
k ≥ 0, j = 1, 2, . . . ,m, k = 0, 1, . . . , kj .

Replacing the constraints zj ∈ {0, 1} by 0 ≤ zj ≤ 1, we obtain the relaxation
of MILP, which is a linear programming, and can be solved in polynomial time.
Let (x̃, z̃) be the optimal solution for the relaxation of MILP. We randomly
choose a threshold α from the uniform distribution over [1/e, 1]. If z̃j ≤ α, set

z̄j = x̄j
0 = · · · = x̄j

kj
= 0, and otherwise set z̄j = 1, and x̄j

k = x̃j
k/z̃j, for

k = 0, 1, . . . , kj . Thus, we obtain a feasible solution (x̄, z̄) for the MILP.

Lemma1.The expected objective value of the solution (x̄, z̄) is at most e
e−1OPT ,

where OPT denotes the optimal value for the MILP.

Proof. Let B̃ = max{
∑

P j
k :P

j
k∈P+

i
dj x̃

j
k,
∑

P j
k :P

j
k∈P−

i
dj x̃

j
k|i = 1, 2, . . . , n} be the

maximum load among all links in the solution (x̃, z̃), and B̄ = max{
∑

P j
k :P

j
k∈P+

i

dj x̄
j
k,
∑

P j
k :P

j
k∈P−

i
dj x̄

j
k|i = 1, 2, . . . , n} the maximum load of the links in the solu-

tion (x̄, z̄). Clearly, for any α ∈ [1/e, 1], we have x̄j
k ≤ x̃j

k/α for k = 0, 1, . . . , kj ,

and then B̄ ≤ B̃/α. Therefore, E[B̄] ≤
∫

1
1
e

B̃
α dα

1− 1
e

= e
e−1 B̃.

If z̃j ≤ 1
e , we have E[pj(1 − z̄j)] = pj ≤ 1−z̃j

1− 1
e

pj = e
e−1pj(1 − z̃j); If z̃j > 1

e ,

we have E[pj(1 − z̄j)] = pj · Pr[z̃j ≤ α] + 0 · Pr[z̃j > α] = e
e−1pj(1 − z̃j). Thus,

E[B̄ +
∑m

j=1 pj(1− z̄j)] ≤ e
e−1 B̃ + e

e−1

∑m
j=1 pj(1 − z̃j) ≤ e

e−1OPT.
Note that there are at most m critical values z̃j (j = 1, 2, . . . ,m) for the

threshold parameter α, which implies that the above algorithm can be deran-
domized by the standard method in polynomial time.

Theorem2.There exists a e
e−1 ≈ 1.582-approximationalgorithm for theDRLPC

problem with divisible demand.

4 The DRLPC Problem with Indivisible Demand

In this section, we consider the DRLPC problem with indivisible demand, where
each accepted multicast request hj must be routed in only one of the kj + 1
possible ways with flow dj . If pj =

∑m
j=1 dj + 1 and kj = 1 for each multicast

request hj , which implies that no requests will be rejected in the optimal solution,
the DRLPC problem with indivisible demand is exactly the directed ring loading

26 L. Guan et al.

problem in [1]. Since the directed ring loading problem is NP -hard, then the
DRLPC problem with indivisible demand is also NP -hard.

In this section, we design two approximation algorithms for the DRLPC prob-
lem with indivisible demand. For general integers kj , we formulate this problem
as a mixed integer linear programming as in Section 3. Then, by exploiting the
properties of the hyperedge embedding, we round the optimal solution of its
relaxation to find a desired feasible solution whose objective value is no more
than 3OPT . When kj = 1 for all multicast requests hj , combining the method
in Section 3 and the rounding method in [1], we find a feasible solution whose
objective value is no more than 1.582OPT .

4.1 General Cases

As in Section 3, the DRLPC problem with indivisible demand can be formulated
as the following integer linear programming (ILP), where we need to round more
variables xj

k.

min B +

m∑
j=1

pj(1 − zj)∑
P j

k :P
j
k∈P+

i

djx
j
k ≤ B, i = 1, 2, . . . , n;

∑
P j

k :P
j
k∈P−

i

djx
j
k ≤ B, i = 1, 2, . . . , n;

kj∑
k=0

xj
k = zj, j = 1, 2, . . . ,m;

xj
k, zj ∈ {0, 1}, j = 1, 2, . . . ,m, k = 0, 1, . . . , kj .

Replacing the constraints xj
k, zj ∈ {0, 1} by 0 ≤ zj ≤ 1 and 0 ≤ xj

k ≤ 1, we
obtain the relaxation of ILP, which is a linear programming, and can be solved
in polynomial time. Let (x̃, z̃) be the optimal solution for the relaxation of ILP.
If z̃j ≤ 2/3, set z̄j = x̄j

0 = · · · = x̄j
kj

= 0, and set z̄j = 1, otherwise. For each

multicast request hj with z̄j = 1, find the minimum τ ∈ {0, 1, . . . , kj} such that∑
P j

k :P
j
k∈P+

i
j
τ j

x̃j
k ≤ 1/3, and set x̄j

τ = 1, x̄j
k = 0 for k ∈ {0, 1, . . . , kj} \ {τ}.

For example, consider the multicast request hj = (1, {2, 6}) satisfying x̃j
0 =

x̃j
1 = 1/4, and x̃j

2 = 1/3, as shown in Figure 4. It is to verify that z̃j = 5/6 > 2/3,

τ = 1, and x̄j
1 = 1.

Theorem 3. The objective value of (x̄, z̄) is no more than 3OPT , where OPT
denotes the optimal value for the ILP.

Proof. For each multicast request hj , if z̃j ≤ 2/3, then 1 − z̄j = 1 ≤ 3(1 − z̃j)

and x̄j
k = 0 ≤ 3x̃j

k for k = 0, 1, . . . , kj . For convenience, let Load(e+i , hj) =∑
P j

k :P
j
k∈P+

ij
dj x̄

j
k (Load(e−i , hj) =

∑
P j

k :P
j
k∈P−

ij
dj x̄

j
k, resp.) denotes the load of

link e+i (e−i , resp.) resulting from the embedding of hj in the solution (x̄, z̄).

The Directed Ring Loading with Penalty Cost 27

ij0 ij0

ij1 ijτ

3 3

4 4

5 5

ij2 ij2

(a) flows

f(P j
0) = dj/4

f(P j
1) = dj/4

f(P j
2) = dj/3

f(P j
1) = dj

(a) The partial solution x̃j (b) The partial solution x̄j

Fig. 4. Rounding method

If z̃j > 2/3, then 1 − z̄j = 0 ≤ 3(1 − z̃j). Clearly, for each link e+i /∈ P j
τ , we

have Load(e+i , hj) = 0 ≤ 3
∑

P j
k :P

j
k∈P+

ij
dj x̃

j
k. It also holds for the links such that

e−i /∈ P j
τ .

If there is a link e+i ∈ P j
τ , by the definition of P j

τ , we have i ∈ {ij0, i
j
0 +

1, . . . , ijτ − 1}. From the choice of τ , we have
∑

P j
k :P

j
k∈P+

i
j
τ−1

j

x̃j
k > 1/3. For every

i ∈ {ij0, i
j
0 + 1, . . . , ijτ − 1}, based on the observation that every embedding of hj

using e+
ijτ−1

must pass through the link e+i , we have

∑
P j

k :P
j
k∈P+

ij

x̃j
k ≥

∑
P j

k :P
j
k∈P+

i
j
τ−1

j

x̃j
k > 1/3.

Thus, for every link e+i ∈ P j
τ ,

Load(e+i , hj) = dj ≤ dj · 3
∑

P j
k :P

j
k∈P+

ij

x̃j
k = 3

∑
P j

k :P
j
k∈P+

ij

dj x̃
j
k.

If there is a link e−i ∈ P j
τ , by the definition of P j

τ , we have i ∈ {ijτ+1, i
j
τ+1 +

1, . . . , ij0 − 1}. From the choice of τ and the definition of embedding, we have∑
P j

k
:P j

k
∈P+

i
j
τ+1

−1,j

x̃j
k =

∑
P j

k
:P j

k
∈P+

i
j
τ j

x̃j
k ≤ 1/3.

Combining the fact that every embedding of hj either pass through e+
ijτ+1−1

or

e−
ijτ+1

, we have

∑
P j

k :P
j
k∈P−

i
j
τ+1

j

x̃j
k = z̃j −

∑
P j

k :P
j
k∈P+

i
j
τ+1

−1,j

x̃j
k > 2/3−

∑
P j

k :P
j
k∈P+

i
j
τ+1

−1j

x̃j
k > 1/3.

28 L. Guan et al.

For every i ∈ {ijτ+1, i
j
τ+1 + 1, . . . , ij0 − 1}, based on the observation that every

embedding of hj using e−
ijτ+1

must pass through the link e−i , we have

∑
P j

k :P
j
k∈P−

ij

x̃j
k ≥

∑
P j

k :P
j
k∈P−

i
j
τ+1

j

x̃j
k > 1/3.

Thus, for every link e−i ∈ P j
τ , we have

Load(e−i , hj) = dj ≤ dj · 3
∑

P j
k :P

j
k∈P−

ij

x̃j
k = 3

∑
P j

k :P
j
k∈P−

ij

dj x̃
j
k.

Let Ō be the objective value of (x̄, z̄), we have

Ō = max{
m∑
j=1

Load(e+i , hj),
m∑
j=1

Load(e−i , hj)} +
m∑
j=1

pj(1− z̄j)

≤ 3max{
m∑
j=1

∑
P j

k :P
j
k∈P+

ij

dj x̃
j
1,

m∑
j=1

∑
P j

k :P
j
k∈P−

ij

dj x̃
j
1|i = 1, 2, . . . , n}+3

m∑
j=1

pj(1−z̃j)

≤ 3OPT.

4.2 A Special Case when kj = 1

In this subsection, we consider the case when kj = |Sj | = 1 for every multicast
request hj, which implies that there are only two ways to embed hj: clockwise
and counterclockwise. From now on, for convenience, we use the request rj =
(sj , tj) to denote the multicast request hj = (uj , {Sj}). We will combine the
previous methods and the rounding technique in [1,13] to design a (1.582 + ε)-
approximation algorithm for the DRLPC problem with kj = 1, where ε ∈ (0, 1)
is a constant.

We say that the request rj = (sj , tj) is routed the long way if it is routed the
longer of the two paths connecting sj and tj in the ring R. Using the method in
the last subsection, we can find a feasible solution with objective value Ō, which
satisfies

Ō

3
≤ OPT ≤ Ō. (2)

For any ε > 0, let H = {rj | dj > 2εŌ/9, j = 1, 2, . . . ,m} be the set of heavy
requests whose demands are more than 2εŌ/9, and L = {rj | dj ≤ 2εŌ/9, j =
1, 2, . . . ,m} be the set of light requests. Since each long way in the ring uses at
least n/2 links, we have

Lemma 2. In any optimal routing, there are at most 18/ε accepted requests in
H routed in the long way.

The Directed Ring Loading with Penalty Cost 29

Proof. Let q be the number of heavy requests that are routed long-way in the

optimal solution. By pigeonhole principle, we have OPT ≥ q· n2 · 29 εŌ
2n = q · εŌ

18 ≥
q · εOPT

18 , where the second inequality follows from the fact Ō ≥ OPT . Hence,
q ≤ 18/ε.

For a subset Sheavy ⊆ H , let cheavy(e
+
i) (cheavy(e

−
i), resp.) denote the conges-

tion of the link e+i (e−i , resp.) resulting from routing the requests in Sheavy

in the long-way. For convenience, we assume the long way of every request
rj ∈ Ω = H \Sheavy is in the clockwise direction, which implies that xj

1 = 0, for
every rj ∈ Ω. For each subset Sheavy ⊆ H with |Sheavy | ≤ 18/ε, we construct
an integer linear programming denoted as ILPSheavy

as follows:

min B +
∑
rj∈Ω

pj(1− zj) +
∑
rj∈L

pj(1 − zj)

cheavy(e
+
i) +

∑
j:e+i ∈P j

1 ,rj∈L

djx
j
1 ≤ B, i = 1, 2, . . . , n;

cheavy(e
−
i) +

∑
j:e−i ∈P j

0 ,rj∈Ω

djx
j
0 +

∑
j:e−i ∈P j

0 ,rj∈L

djx
j
0 ≤ B, i = 1, 2, . . . , n;

xj
0 + xj

1 = zj, rj ∈ Ω ∪ L;

xj
1 = 0, rj ∈ Ω;

xj
0, x

j
1, zj ∈ {0, 1}, rj ∈ Ω ∪ L.

Replacing the constraints xj
0, x

j
1, zj ∈ {0, 1} by 0 ≤ xj

0, x
j
1, zj ≤ 1, we obtain

the relaxation of ILPSheavy
, which is a linear programming, and can be solved in

polynomial time. Let (x̃, z̃)Sheavy
with objective value ˜OPTSheavy

be an optimal
solution for the relaxation of the ILPSheavy

. As in the last section, we randomly
choose a threshold α from the uniform distribution over [1/e, 1]. For each request
rj ∈ Ω, if z̃j ≤ α, set z̄j = x̄j

0 = x̄j
1 = 0, and otherwise set z̄j = x̄j

0 = 1, x̄j
1 = 0.

For each request rj ∈ L, if z̃j ≤ α, set z̄j = x̄j
0 = x̄j

1 = 0, and otherwise set

z̄j = 1, x̄j
0 = x̃j

0/z̃j, x̄
j
1 = x̃j

1/z̃j . Let (x̄, z̄)Sheavy
be the resulting solution whose

expected objective value is not more than 1.582 ˜OPTSheavy
, following from the

proof of Lemma 1. By using the derandomization method, we can find a solution
(x̄, z̄)Sheavy

with objective value no more than 1.582 ˜OPTSheavy
in deterministic

polynomial time.

Lemma 3. For any subset Sheavy ⊆ H with |Sheavy | ≤ 18/ε, there is a polyno-
mial rounding procedure of solution (x̄, z̄)Sheavy

, that gives an integer solution

(x̂, ẑ)Sheavy
with objective value no more than 1.582 ˜OPTSheavy

+ εOPT .

Proof. Note that in the solution (x̄, z̄)Sheavy
, the request rj ∈ L satisfying z̄j = 1

may be split, which means 0 < x̄j
0, x̄

j
1 < 1. Let SL(x̄) = {rj |0 < x̄j

0 < 1, rj ∈ L}
be the set of split light requests, and IL(x̄) = Sheavy ∪ {rj |z̄j = 1} \ SL(x̄) be
the set of accepted requests which are not split. Now, we only need to consider
the requests in SL(x̄), as for each request rj /∈ SL(x̄), either rj is rejected when

z̄j = 0, or exactly one of x̄j
0 and x̄j

1 is 1 when z̄j = 1.

30 L. Guan et al.

Let c̄IL(x̄)(e
+
i) (c̄IL(x̄)(e

−
i), resp.) be the congestion of e+i (e−i , resp.) resulting

from routing the requests in IL(x̄) in only one way according to x̄j . For the split
request set SL(x̄), construct the following linear programming LPSL(x̄):

min B +

m∑
j=1

pj(1− z̄j)

s.t. c̄IL(x̄)(e
+
i) +

∑
j:e+i ∈P j

1 ,rj∈SL(x̄)

djx
j
1 ≤ B, i = 1, 2, . . . , n;

c̄IL(x̄)(e
−
i) +

∑
j:e−i ∈P j

0 ,rj∈SL(x̄)

djx
j
0 ≤ B, i = 1, 2, . . . , n;

xj
0 + xj

1 = 1, rj ∈ SL(x̄);

xj
1, x

j
0 ∈ [0, 1], rj ∈ SL(x̄).

As
∑m

j=1 pj(1− z̄j) is a constant, it is easy to verify that LPSL(x̄) is equivalent

to the linear program LPS (Page 441 in [1]) and x̄j (rj ∈ SL(x̄)) is an optimal
fractional solution to LPSL(x̄). Using the LP-rounding method in the proof of
Lemma 12 [1], we can convert the fractional solution x̄j (rj ∈ SL(x̄)) into a
feasible integer solution x̂j (rj ∈ SL(x̄)) with the maximum load among all
links increasing at most an additional load of 3/2 times the maximum demand
of the requests in SL(x̄). In other words, the objective value of the new solution
(x̂, z̄)Sheavy

is no more than 1.582 ˜OPTSheavy
+ 3/2 · 2εŌ/9≤ 1.582 ˜OPTSheavy

+
εOPT , where the inequality follows from Ō ≤ 3OPT .

Theorem 4. When kj = 1 for every rj , there exists a (1.582+ε)-approximation
algorithm for the DRLPC problem with indivisible demand, where ε ∈ (0, 1).

Proof. By Lemma 2 and Lemma 3, considering all possible subsets Sheavy ⊆ H
with |Sheavy | ≤ 18

ε and choosing the best solution, we can find a feasible solution
with objective value no more than (1.582+ ε)OPT . It is easy to verify that the
running time is polynomial in m and n, for any fixed constant ε > 0.

5 Conclusions

We have given a 1.582-approximation algorithm for the DRLPC problem with
divisible demand where each multicast request can be routed in several ways. It
is desired to design a better approximation algorithm. We guess that the DRLPC
problem with divisible demand possesses a PTAS.

We have given a 3-approximation algorithm for the DRLPC problem with
indivisible demand where each multicast request can only be routed in one way.
It is desired to design an efficient algorithm with approximation ratio less than
2. When each hyperedge contains exactly one sink, it is desired to design a PTAS
for the DRLPC problem with indivisible demand.

The Directed Ring Loading with Penalty Cost 31

Acknowledgements. The work is supported in part by the Tianyuan Fund
for Mathematics of the National Natural Science Foundation of China [No.
11126315], the National Natural Science Foundation of China [Nos. 11301466,
11461081, 61170222], and the Natural Science Foundation of Yunnan Province
of China [No. 2014FB114].

References

1. Becchetti, L., Ianni, M.D., Spaccamela, A.M.: Approximation algorithms for rout-
ing and call scheduling in all-optical chains and rings. Theoretical Computer Sci-
ence 287(2), 429–448 (2002)

2. Frank, A., Nishizeki, T., Saito, N., Suzuki, H., Tardos, E.: Algorithms for routing
around a rectangle. Discrete Applied Mathematics 40(3), 363–378 (1992)

3. Ganley, J.L., Cohoon, J.P.: Minimum-congestion hypergraph embedding in a cycle.
IEEE Transactions on Computers 46(5), 600–602 (1997)

4. Garey, M.R., Johnson, D.S.: Computer and Intractability: A Guide to The Theory
of NP-Completeness. W. H. Freeman and Company, San Francisco (1979)

5. Gonzalez, T.: Improved approximation algorithm for embedding hyperedges in a
cycle. Information Processing Letters 67(5), 267–271 (1998)

6. Gu, Q., Wang, Y.: Efficient algorithms for minimum congestion hypergraph em-
bedding in a cycle. IEEE Transactions on Parallel and Distributed Systems 17(3),
205–214 (2006)

7. Ho, H., Lee, S.: Improved approximation algorithms for weighted hypergraph em-
bedding in a cycle. SIAM Journal on Optimization 18(4), 1490–1500 (2008)

8. Lee, S., Ho, H.: On minimizing the maximum congestion for weighted hypergraph
embedding in a cycle. Information Processing Letters 87(5), 271–275 (2003)

9. Li, G., Deng, X., Xu, Y.: A polynomial time approximation scheme for embedding
hypergraph in a cycle. ACM Transactions on Algorithms 5(2), Article No 20 (2009)

10. Li, J., Li, W., Wang, L.: A polynomial time approximation scheme for embedding
a directed hypergraph on a weighted ring. Journal of Combinatorial Optimiza-
tion 24(3), 319–328 (2012)

11. Li, K., Wang, L.: A polynomial time approximation scheme for embedding a di-
rected hypergraph on a ring. Information Processing Letters 97(5), 203–207 (2006)

12. Li, W., Li, J., Guan, L.: Approximation algorithms for the ring loading problem
with penalty cost. Information Processing Letters 114(1-2), 56–59 (2014)

13. Schrijver, A., Seymour, P., Winkler, P.: The ring loading problem. SIAMReview 41,
777–791 (1999)

14. Wang, Q., Liu, X., Zheng, X., Zhao, X.: A 2-approximation algorithm for weighted
directed hypergraph embedding in a cycle. In: The 4th International Conference
on Natural Computation, pp. 377–381 (2008)

15. Wilfong, G., Winkler, P.: Ring routing and wavelength translation. In: Proceedings
of the Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 333–341
(1998)

16. Yang, C., Li, G.: A polynomial time approximation scheme for embedding hy-
pergraph in a weighted cycle. Theoretical Computer Science 412(48), 6786–6793
(2011)

Edge-Colorings of Weighted Graphs

(Extended Abstract)

Yuji Obata and Takao Nishizeki

Kwansei Gakuin University, 2-1 Gakuen, Sanda 669-1337, Japan
{bnb86950,nishi}@kwansei.ac.jp

Abstract. Let G be a graph with a positive integer weight ω(v) for each
vertex v. One wishes to assign each edge e of G a positive integer f(e) as
a color so that ω(v) ≤ |f(e)− f(e′)| for any vertex v and any two edges
e and e′ incident to v. Such an assignment f is called an ω-edge-coloring
of G, and the maximum integer assigned to edges is called the span of
f . The ω-chromatic index of G is the minimum span over all ω-edge-
colorings of G. In the paper, we present various upper and lower bounds
on the ω-chromatic index, and obtain three efficient algorithms to find an
ω-edge-coloring of a given graph. One of them finds an ω-edge-coloring
with span smaller than twice the ω-chromatic index.

1 Introduction

An ordinary edge-coloring of a graph G assigns different colors to any two ad-
jacent edges. The paper extends the concept to an edge-coloring of a weighted
graph.

Let G = (V,E) be a graph with a positive integer weight ω(v) ∈ N for each
vertex v ∈ V , where N is the set of all positive integers. Indeed G may be a
multigraph. Figure 1 illustrates such a graph G, in which each vertex v is drawn
as a circle and the weight ω(v) is written in it. One wishes to assign each edge
e ∈ E a positive integer f(e) as a color so that ω(v) ≤ |f(e) − f(e′)| for any
vertex v ∈ V and any two edges e and e′ incident to v. Such a function f : E → N

is called an edge-coloring of a graph G with a weight function ω or simply an
ω-edge-coloring of G. An ω-edge-coloring f of a graph G is illustrated in Fig. 1,
where f(e) is attached to each edge e.

The span span(f) of an ω-edge-coloring f of a graphG is the maximum integer
assigned to edges by f , that is, span(f) = maxe∈E f(e). An ω-edge-coloring f
of G is called optimal if span(f) is minimum among all ω-edge-colorings of G.
The ω-edge-coloring in Fig. 1 is optimal, and its span is 7. The span of an optimal
ω-edge-coloring of a graph G is called the ω-chromatic index χ′

ω(G) of G. The
ω-edge-coloring problem is to find an optimal ω-edge-coloring of a given graph.

An ω-edge-coloring often appears in a task scheduling problem [12]. Each
vertex v of a graph G represents a processor, while each edge e = (u, v) of G
represents a task, which can be executed within a unit time with the cooperation
of the two processors represented by vertices u and v. Each processor v needs an

M.S. Rahman and E. Tomita (Eds.): WALCOM 2015, LNCS 8973, pp. 32–43, 2015.
c© Springer International Publishing Switzerland 2015

Edge-Colorings of Weighted Graphs 33

�

�
�

�

�

�
� �

�

�
�

�
�

�
�

�
�

�
��

�

�

�

�
�

�
�

�
�

�
�

�
�

�

�

�

Fig. 1. An optimal ω-edge-coloring f of a graph G

idle time ω(v) between any two tasks executed by v. Then an optimal ω-edge-
coloring of G corresponds to a scheduling with the minimum makespan.

If ω(v) = 1 for every vertex v of a graph G, then an ω-edge-coloring of G is
merely an ordinary edge-coloring of G and the ω-chromatic index χ′

ω(G) of G
is equal to the ordinary chromatic index χ′(G) of G. Since an ordinary edge-
coloring problem is NP-complete [4], the ω-edge-coloring problem is strongly
NP-complete and does not look to be solved in polynomial time or in pseudo
polynomial time. So it is desired to obtain an efficient approximation algorithm
for the ω-edge-coloring problem.

In this paper we present various upper and lower bounds on the ω-chromatic
index, and obtain three efficient approximation algorithms for the ω-edge-coloring
problem. The first algorithm Delta finds an ω-edge-coloring f of a given graph
G such that span(f) ≤ Δ′

1ω(G) + 1, where Δ′
1ω(G) is the maximum “uni-

directional ω-edge-degree” of G. The second algorithm Degenerate finds an
ω-edge-coloring f such that span(f) ≤ k+1 for any “k-edge-degenerated graph.”
Delta and Degenerate have approximation ratios smaller than two and four,
respectively. We also show that an optimal ω-edge-coloring can be easily obtained
for a graph G with the maximum degree Δ(G) at most two. The third algorithm
Factor first decomposes a given graph G into several subgraphs G1, G2, ..., Gr,
each having the maximum degree at most two, then finds optimal ω-edge-
colorings of G1, G2, ..., Gr, and finally combines them to an ω-edge-coloring of
G. The approximation ratio of Factor is near to 3/2 for many graphs.

2 Preliminaries

In this section, we define several terms, present simple lower and upper bounds
on the ω-chromatic index, and show that an optimal ω-edge-coloring of a graph
G can be easily obtained if Δ(G) ≤ 2.

We denote by G = (V,E) a graph with vertex set V and edge set E. G
is a so-called multigraph, which has no selfloops but may have multiple edges.

34 Y. Obata and T. Nishizeki

We denote by (u, v) an edge joining vertices u and v. Let n = |V | and m = |E|
throughout the paper. One may assume that G has no isolated vertex and hence
m ≥ n/2. Let ω : V → N be a weight function of G.

We denote by E(v) the set of all edges incident to a vertex v in a graph
G = (V,E). The degree of a vertex v is |E(v)| and is denoted by d(v,G) or
simply d(v). The maximum degree of vertices in G is called the maximum degree
of G, and denoted by Δ(G) or simply Δ. Every ω-edge-coloring f of G satisfies

1 + (d(v) − 1)ω(v) ≤ max
e∈E(v)

f(e)

for every vertex v. We thus define the ω-degree dω(v) of a vertex v as follows:

dω(v) = 1 + (d(v) − 1)ω(v). (1)

The maximum ω-degree of vertices in G is called the maximum ω-degree Δω(G)
of G. It should be noted that Δω(G) = Δ(G) if ω(v) = 1 for every vertex
v. Clearly Δω(G) ≤ span(f) for every ω-edge-coloring f of G. Therefore, the
following lower bound holds for the ω-chromatic index χ′

ω(G):

Δω(G) ≤ χ′
ω(G). (2)

The graph G in Fig. 1 satisfies Δω(G) = dω(v1) = 7, the ω-edge-coloring f in
Fig. 1 has span 7, and hence f is optimal. In Section 3 we will present an upper
bound: χ′

ω(G) ≤ 2Δω(G) − 1 for every graph G.

Since the weight of a vertex of degree 1 is meaningless, we define the largest
weight ωl(G) of a graph G as follows:

ωl(G) = max{ω(v) | v ∈ V, d(v) ≥ 2}

where ωl(G) is defined to be zero if Δ(G) = 1. Since 1 + ωl(G) ≤ Δω(G), Eq.
(2) implies the following lower bound:

1 + ωl(G) ≤ χ′
ω(G) (3)

We often denote ωl(G) simply by ωl.

Suppose that a graph G is ordinarily edge-colored by colors 1, 2, ..., c, where
c ≥ χ′(G). Replace colors 1, 2, ..., c by 1, 1 + ωl, ..., 1 + (c− 1)ωl, respectively.
Then the resulting coloring is an ω-edge-coloring of G. Thus we have an upper
bound:

χ′
ω(G) ≤ 1 + (χ′(G)− 1)ωl (4)

for every graph G.

Edge-Colorings of Weighted Graphs 35

V. G. Vizing showed that χ′(G) ≤ Δ(G) + 1 for every simple graph G, which
has no multiple edges [14,15]; and it is known that such an edge-coloring of G
can be found in time O(mn), O(mΔ logn) or O(m

√
n logn) [3]. Therefore, by

Eq. (4) we have
χ′
ω(G) ≤ 1 +Δωl

for every simple graph G, and such an ω-edge-coloring can be found in time
O(mn), O(mΔ logn) or O(m

√
n logn).

D. König showed that χ′(G) = Δ(G) for every bipartite graph G [14,15], and
it is known that such an edge-coloring can be found in time O(m logΔ) [1].
Therefore, by Eq. (4) we have

χ′
ω(G) ≤ 1 + (Δ− 1)ωl

for every bipartite graph G, and such an ω-edge-coloring can be found in time
O(m logΔ). Since Δω(G) ≤ χ′

ω(G) by Eq. (2), such an ω-edge-coloring of a
bipartite graph G is optimal if

Δω(G) = 1 + (Δ− 1)ωl. (5)

A graph G satisfies Eq. (5) if and only if G has a vertex v such that d(v) = Δ
and ω(v) = ωl, and does for example if either G is a regular graph or ω(v) = 1
for every vertex v.

We then present another lower bound 1 + ωs(G) on χ′
ω(G). An odd cycle C

in G has an odd number of vertices. We define ωs(C) as follows:

ωs(C) = min{ω(u) + ω(v) | vertices u and v consecutively appear in C}.

We define ωs(G) as follows:

ωs(G) = max{ωs(C) | C is an odd cycle in G}

where ωs(G) is defined to be zero if G has no odd cycle. We often denote ωs(G)
simply by ωs. One can easily prove the following lemma for a lower bound on
χ′
ω(G).

Lemma 1. For every graph G

1 + max{ωl, ωs} ≤ χ′
ω(G).

We then show that if Δ(G) ≤ 2 then χ′
ω(G) is equal to the rather trivial lower

bound in Lemma 1 and an optimal ω-edge-coloring of G can be easily obtained.
One may assume that G is connected. Then G is a path or cycle. If G is a path
or an even cycle, then a coloring of G in which edges are colored alternately by 1
and 1+ωl is an optimal ω-edge coloring and hence χ′

ω(G) = 1+ωl. One may thus
assume that G is an odd cycle. Let the vertices v1, v2, ..., vn appear in G in this
order, where n (≥ 3) is an odd number. One may further assume that ωs(G) =
ω(v2) + ω(v3). Color the consecutive three edges e1 = (v1, v2), e2 = (v2, v3)
and e3 = (v3, v4) by 1, 1 + ω(v2) and 1 + max{ωl, ωs}, respectively, and color

36 Y. Obata and T. Nishizeki

the remaining n − 3 edges alternately by 1 and ωl. Then the resulting coloring
f of G is obviously an ω-edge-coloring of G, and span(f) = 1 + max{ωl, ωs}.
Since χ′

ω(G) ≥ 1 + max{ωl, ωs} by Lemma 2.1, f is optimal and χ′
ω(G) =

1 +max{ωl, ωs}.
We thus have the following theorem.

Theorem 1. If G is a graph with Δ(G) ≤ 2, then χ′
ω(G) = 1 + max{ωl, ωs}

and an optimal ω-edge-coloring of G can be found in linear time.

For two integers α and β, we denote by [α, β] the set of all integers z with
α ≤ z ≤ β. Let f be an ω-edge-coloring of a graph G. Let e = (u, v) be an edge
in G, let e′ be an edge adjacent to e, and let x be a vertex to which both e and
e′ are incident. Then x is u or v. Neither the consecutive ω(x) integers greater
than or equal to f(e′) nor those smaller than or equal to f(e′) can be assigned
to e. Therefore

f(e) /∈ B(e, e′, x)

where

B(e, e′, x) = [f(e′)− ω(x) + 1, f(e′) + ω(x) − 1].

Clearly |B(e, e′, x)| = 2ω(x)−1. G has d(u)−1 edges adjacent to e at end u and
d(v) − 1 edges adjacent to e at end v. Therefore, there are at most (d(u) − 1)
(2ω(u)− 1) + (d(v) − 1)(2ω(v)− 1) integers that cannot be assigned to e. This
number is called a bi-directional ω-edge-degree d2ω(e,G) of e, and hence

d2ω(e,G) = (d(u)− 1)(2ω(u)− 1) + (d(v)− 1)(2ω(v)− 1). (6)

The maximum bi-directional ω-edge-degree of edges in G is called the maximum
bi-directional edge-degree Δ′

2ω(G) of G. Then one can easily prove by induction
on the number m of edges that the following upper bound on χ′

ω(G) holds for
every graph G:

χ′
ω(G) ≤ Δ′

2ω(G) + 1.

For the graph G in Fig. 1, Δ′
2ω(G) = d2ω(e1) = 19.

Let f be an ω-edge-coloring of a graph G. Let e = (u, v), let e′ be adjacent
to e, and let x be a vertex to which both e and e′ are incident. Suppose that
f(e′) < f(e). Then

f(e) /∈ B1(e, e
′, x)

where
B1(e, e

′, x) = [f(e′), f(e′) + ω(x)− 1]

and
|B1(e, e

′, x)| = ω(x).

Therefore we have

f(e) /∈
(⋃

e′
B1(e, e

′, u)
)⋃(⋃

e′
B1(e, e

′, v)
)

(7)

Edge-Colorings of Weighted Graphs 37

where e′ runs over every edge such that e′ is adjacent to e and f(e′) < f(e). In
this sense we define the uni-directional ω-edge-degree d1ω(e) of an edge e = (u, v)
as follows:

d1ω(e) = (d(u)− 1)ω(u) + (d(v) − 1)ω(v). (8)

The maximum uni-directional ω-degree of edges in G is called the maximum
uni-directional ω-edge-degree Δ′

1ω(G) of G:

Δ′
1ω(G) = max

e∈E
d1ω(e).

Clearly Δ′
1ω(G) ≤ Δ′

2ω(G) for every graph G. For the graph G in Fig. 1,
Δ′

1ω(G) = d1ω(e1) = 12. We will show in Section 3 that the following upper
bound holds for every graph G:

χ′
ω(G) ≤ Δ′

1ω(G) + 1.

3 Algorithm Delta

In this section we present an algorithm Delta to find an ω-edge-coloring f of a
given graph G such that span(f) ≤ Δ′

1ω(G) + 1, and show that the approxima-
tion ratio of Delta is smaller than two.

For an ω-edge-coloring f of a graph G = (V,E), one may assume that

f(e1) ≤ f(e2) ≤ ... ≤ f(em) (9)

for some numbering e1, e2, ..., em of the edges in E. Let 2 ≤ i ≤ m, and let
ei = (u, v). We define Ei(u) as follows:

Ei(u) = {ej ∈ E(u) | 1 ≤ j < i}.

We similarly define Ei(v). Then Eq. (7) implies that

f(ei) ≥ max{ max
ej∈Ei(u)

(f(ej) + ω(u)), max
ej∈Ei(v)

(f(ej) + ω(v))}. (10)

Algorithm Delta finds a numbering e1, e2, ..., em satisfying Eq. (9) and deter-
mines f(e1), f(e2), ..., f(em) in this order so that f(e1) = 1 and Eq. (10) holds
in equality, that is,

f(ei) = max{ max
ej∈Ei(u)

(f(ej) + ω(u)), max
ej∈Ei(v)

(f(ej) + ω(v))}.

Delta is similar to the Dijkstra’s shortest path algorithm [2], and its details are
as follows, where P is the set of edges e for which f(e) have been decided.

38 Y. Obata and T. Nishizeki

Algorithm. Delta(G, f)

for every edge e ∈ E, let f(e) := 1; (initialization)
P:=∅;
for i1 until m do

{
let ei = (u, v) be an edge e ∈ E\P with minimum f(e);
P := P

⋃ {ei}; (f(ei) is decided)
for every edge e ∈ E(u)\P , let f(e) := max{f(e), f(ei) + ω(u)}; (update f(e))
for every edge e ∈ E(v)\P , let f(e) := max{f(e), f(ei) + ω(v)}; (update f(e))
}

end for

Clearly Delta correctly finds an ω-edge-coloring f of G. For the graph G in
Fig. 1, Delta finds the coloring f in Fig. 1 such that span(f) = 7 = Δω(G),
and hence f happens to be optimal. Delta decides f(e1), f(e2), ..., f(e7) in this
order for the edge-numbering e1, e2, ..., e7 depicted in Fig. 1.

We then prove that the coloring f obtained by Delta satisfies

span(f) ≤ Δ′
1ω(G) + 1.

Obviously f(e1) = 1 and span(f) = f(em). Let em = (u, v), and let j be any
integer in [1, span(f)− 1]. Since j is not assigned to em by f , either f(ei) ≤ j ≤
f(ei) + ω(u)− 1 for some edge ei ∈ Em(u) or f(ei) ≤ j ≤ f(ei) + ω(v) − 1 for
some edge ei ∈ Em(v). Therefore,

[1, span(f)− 1] ⊆
(⋃

ei∈Em(u)

B1(em, ei, u)

)⋃(⋃
ei∈Em(v)

B1(em, ei, v)

)

and hence

span(f)− 1 ≤ (d(u)− 1)ω(u) + (d(v) − 1)ω(v) = d1ω(em).

We have thus proved

span(f) ≤ d1ω(em) + 1 ≤ Δ′
1ω(G) + 1. (11)

From Eqs. (1), (2), (8) and (11) we have

span(f) ≤ d1ω(em) + 1

≤ dω(u) + dω(v) − 1

≤ 2Δω(G)− 1

≤ 2χ′
ω(G)− 1.

Thus Delta has an approximation ratio smaller than two.
Using a binary heap [2], one can implement Delta so that it takes time

O(mΔ logm), similarly as the Dijkstra’s shortest path algorithm.
We thus have the following theorem.

Edge-Colorings of Weighted Graphs 39

Theorem 2. For every graph G

χ′
ω(G) ≤ Δ′

1ω(G) + 1 ≤ 2Δω(G) − 1.

Algorithm Delta finds in time O(mΔ logm) an ω-edge-coloring of G such that
span(f) ≤ Δ′

1ω(G) + 1, and its approximation ratio is smaller than two.

4 Edge-Degenerated Graphs

It is known that a “k-degenerated graph” has a vertex-coloring with k+1 colors
[5]. In this section, we define a “k-edge-degenerated graph,” and present an
algorithm Degenerate to find an ω-edge-coloring f of a k-edge-degenerated
graph such that span(f) ≤ k + 1.

A graph G is called k-edge-degenerated for a non-negative integer k if G has
an edge-numbering e1, e2, ..., em such that d2ω(ei, Gi) ≤ k for every index i,
1 ≤ i ≤ m, where Gi is a subgraph of G induced by edges e1, e2, ..., ei.

Since G1 consists of a single edge e1, we have d2ω(e1, G1) = 0 ≤ k and hence
span(f) = 1 ≤ k + 1 for an ω-edge-coloring f of G1 such that f(e1) = 1.
This coloring f of G1 can be extended to an ω-edge-coloring f of G2 such that
span(f) ≤ k + 1. Repeating such an extention, Degenerate obtains an ω-edge-
coloring f of G = Gm such that span(f) ≤ k + 1.

We shall prove that an ω-edge-coloring f of Gi, i ≥ 1, with span(f) ≤ k + 1
can be extended to an ω-edge-coloring f of Gi+1 with span(f) ≤ k + 1. Let
ei+1 = (u, v), then an integer j ∈ [1, k + 1] can be chosen as f(ei+1) for the
extention if and only if

j /∈
(⋃

el

B(ei+1, el, u)
)⋃(⋃

el

B(ei+1, el, v)
)

(12)

where the unions are taken over all edges el of Gi+1 that are adjacent to ei+1,
and hence 1 ≤ l ≤ i. The cardinality of the set in the right hand side of Eq. (12)
is bounded above by

d2ω(ei+1, Gi+1) = (d(u,Gi+1)− 1)(2ω(u)− 1) + (d(v,Gi+1)− 1)(2ω(v)− 1),

and d2ω(ei+1, Gi+1) ≤ k since G is k-edge-degenerated. Therefore, there always
exists an integer j ∈ [1, k + 1] which can be chosen as f(ei+1), and hence f can
be extended to an ω-edge-coloring of Gi+1 with span(f) ≤ k + 1.

Algorithm Degenerate successively finds ω-edge-colorings of G1, G2, ...,
Gm(= G) in this order. Indeed it employs a simple greedy technique; when
extending an ω-edge-coloring of Gi to that of Gi+1, 1 ≤ i ≤ m− 1, Degenerate
always chooses, as f(ei+1), the smallest positive integer j satisfying Eq. (12).
For every edge el adjacent to ei+1 in Gi+1, let

B(ei+1, el, x) = [α(el, x), β(el, x)]

where x is u or v, α(el, x) = f(el)−ω(x)+1 and β(el, x) = f(el)+ω(x)−1. Sorting
the set {α(el, x) | x is u or v, el is adjacent to ei+1 in Gi+1 } of d(u,Gi+1) +

40 Y. Obata and T. Nishizeki

d(v,Gi+1)−2 integers, one can find the smallest integer j above in time O((d(u)+
d(v)) log(d(u) + d(v))). Thus Degenerate takes time O(mΔ logΔ).

The ω-edge-degeneracy kω(G) of a graph G is defined to be the minimum
integer k such that G is k-edge-degenerated. Then, similarly as the case of the
“vertex-degeneracy” [5], one can compute kω(G) as follows. Let Gm = G, and
let em be an edge e in Gm with minimum d2ω(e,Gm). Let Gm−1 be the graph
obtained from Gm by deleting em, and let em−1 be an edge e in Gm−1 with mini-
mum d2ω(e,Gm−1). Repeating the operation, one can obtain an edge-numbering
e1, e2, ..., em of G, and kω(G) = max1≤i≤m d2ω(ei, Gi).

Using a binary heap, one can compute kω(G) in time O(mΔ logm). Using a
Fibonacci heap [2], one can improve the time complexity to O(mΔ+m logm).

Clearly kω(G) ≤ Δ′
2ω(G). Let Δ′

2ω(G) = d2ω(e) for an edge e = (u, v), then
by Eqs. (1), (2) and (6) we have

Δ′
2ω(G) + 1 = (d(u)− 1)(2ω(u)− 1) + (d(v) − 1)(2ω(v)− 1) + 1

= 2(dω(u) + dω(v)) − d(u)− d(v)− 1

< 4Δω(G)

≤ 4χω(G).

We thus have the following theorem.

Theorem 3. Algorithm Degenerate finds in time O(mΔ logΔ) an ω-edge-
coloring f of a k-edge-degenerated graph G such that span(f) ≤ k + 1. When
k = kω(G), the approximation ratio of Degenerate is smaller than four.

5 Algorithm Factor

C. E. Shannon showed that every graph G can be edge-colored with at most
3Δ(G)/2 colors [13], and it is known that such a coloring can be found in time
O(m(n+Δ)) [9]. Therefore, by Eq. (4) we have

χ′
ω(G) ≤ 1 + (3Δ/2− 1)ωl

for every graphG, and an ω-edge-coloring f of G with span(f) ≤ 1+(3Δ/2−1)ωl

can be found in time O(m(n+Δ)). In this section we present an algorithmFactor
of time complexity O(m logΔ).

One may assume that a graph G = (V,E) is connected. Our third algorithm
Factor finds an ω-edge-coloring f of G as follows.
(Step 1)
Partition E into r(= �Δ/2�) subsets Ei, 1 ≤ i ≤ r, so that the subgraph Gi of
G induced by Ei satisfies Δ(Gi) ≤ 2, and hence Gi consists of vertex-disjoint
paths and cycles. (Such a partition is called a factorization of G to subgraphs
Gi with Δ(Gi) ≤ 2.)
(Step 2)
Using the algorithm in Section 2, obtain an optimal ω-edge-coloring fi of Gi for
each index i, 1 ≤ i ≤ r.

Edge-Colorings of Weighted Graphs 41

(Step 3)
Obtain an ω-edge-coloring f of G by combining fi, 1 ≤ i ≤ r.

We now describe the details of these three steps.

[Step 1]
G contains an even number of vertices of odd degree. Join them pairwise by
dummy edges, and let G′ be the resulting Eulerian graph. (G′ may have multi-
ple edges even if G has no multiple edges.) Then the maximum degree Δ(G′) of
G′ is an even number. More precisely, Δ(G′) = 2r for an integer

r = �Δ(G)/2�. (13)

Let C be an Eulerian circuit of G′, which passes through every edge of G′ ex-
actly once. We then construct a bipartite graph B = (VB , EB) according to the
direction of edges in C. The left vertices of B are the vertices of G, and the
right vertices are their copies. All edges of B are copies of the edges of G. B has
an edge joining a left vertex u and a right vertex v if and only if the Eulerian
circuit C passes through an edge (u, v) of G from u to v. (A similar construction
of B has appeared in [6].) For every vertex v ∈ V , at most r edges emanate
from v in C and at most r edges enter to v. Therefore, Δ(B) ≤ r and hence B
has an ordinary edge-coloring with r colors. Let EB1 , EB2 , ..., EBr be the color
classes of the edge-coloring of B. Let E1, E2, ..., Er be the subsets of E which
correspond to EB1 , EB2 , ..., EBr , respectively. Then the subgraph Gi, 1 ≤ i ≤ f ,
of G induced by Ei satisfies Δ(Gi) ≤ 2 since EBi is a matching in B.

[Step 2]
By Theorem 1 one can find an optimal ω-edge-coloring fi : Ei → N of Gi in
linear time, and fi satisfies

span(fi) = 1 +max{ωl(Gi), ωs(Gi)} (14)

for every index i, 1 ≤ i ≤ r.

[Step 3]
When combining fi, 1 ≤ i ≤ r, to f , we shift up fi(e) uniformly for every edge
e ∈ Ei. More precisely, let

fi(e) := fi(e) + span(f1) + (ωl(G) − 1) + span(f2) + (ωl(G)− 1)

+ ...+ span(fi−1) + (ωl(G)− 1)

for each index i, 2 ≤ i ≤ r. Then, simply superimposing f1, f2, ..., fr, one can
obtain an ω-edge-coloring f of G; f(e) = fi(e) if e ∈ Ei.

We then evaluate span(f) for the coloring f obtained by Factor. Clearly

span(f) =

r∑
i=1

span(fi) + (r − 1)(ωl(G)− 1). (15)

42 Y. Obata and T. Nishizeki

Since ωs(G) ≤ 2ωl(G) and ωl(Gi) ≤ ωl(G) and ωs(Gi) ≤ ωs(G) for every index
i, 1 ≤ i ≤ r, by Eqs. (13), (14) and (15) we have

span(f) ≤ r(1 + max{ωl(G), ωs(G)}) + (r − 1)(ωl(G)− 1)

= 1 + r(ωl(G) + max{ωl(G), ωs(G)})− ωl(G)

≤ 1 + (3r − 1)ωl(G)

= 1 + (3�Δ(G)/2� − 1)ωl(G). (16)

Assume now that G satisfies Eq. (5). Then, by Eqs. (5) and (16) we have

span(f) ≤
{
3Δω/2 + (ωl(G) − 1)/2 if Δ is even;
3Δω/2 + 2ωl(G) − 1/2 otherwise.

(17)

Since Δω ≤ χ′
ω by Eq. (2), the approximation ratio of Factor is near to 3/2.

Especially when Δ is even, one may assume that Δ ≥ 4, and hence by Eqs. (5)
and (17) we have

span(f) ≤ (5Δω − 2)/3 < 5χ′
ω/3

and hence the approximation ratio is smaller than 5/3.
The most time-consuming part of Factor is Step 1, in which one must find

an ordinary edge-coloring of a bipartite graph B = (VB , EB) with Δ(B) colors.
The coloring can be found in time O(|EB| logΔ(B)) [1]. Since |EB| = m and
Δ(B) ≤ r = �Δ(G)/2�, Factor takes time O(m logΔ).

We thus have the following theorem.

Theorem 4. For every graph G, algorithm Factor finds in time O(m logΔ)
an ω-edge-coloring f of G such that span(f) ≤ 1 + (3�Δ/2� − 1)ωl. If Δω(G) =
1 + (Δ− 1)ωl, then

span(f) ≤
{
3Δω/2 + (ωl − 1)/2 if Δ is even;
3Δω/2 + 2ωl − 1/2 otherwise.

If Δω(G) = 1+(Δ−1)ωl and Δ is even, then the approximation ratio is smaller
than 5/3.

References

1. Cole, R., Ost, K., Schirra, S.: Edge-coloring bipartite multigraphs in O(E logD)
time. Combinatorica 21(1), 5–12 (2001)

2. Corman, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms.
MIT Press and McGraw Hill, Cambridge (2001)

3. Gabow, H.N., Nishizeki, T., Kariv, O., Leven, D., Terada, O.: Algorithms for edge-
coloring graphs, Tech. Rept. TRECIS 41-85, Tohoku Univ. (1985)

4. Holyer, I.J.: The NP-completeness of edge coloring. SIAM J. on Computing 10,
718–721 (1981)

5. Jensen, T.R., Toft, B.: Graph Coloring Problems. John Wiley & Sons, New York
(1995)

Edge-Colorings of Weighted Graphs 43

6. Karloff, H., Shmoys, D.B.: Efficient parallel algorithms for edge-coloring problems.
J. of Algorithms 8(1), 39–52 (1987)

7. McDiamid, C.: On the span in channel assignment problems: bounds, computing
and counting. Discrete Math 266, 387–397 (2003)

8. McDiamid, C., Reed, B.: Channel assignment on graphs of bounded treewidth.
Discrete Math 273, 183–192 (2003)

9. Nakano, S., Nishizeki, T.: Edge-coloring problems for graphs. Interdisciplinary In-
formation Sciences 1(1), 19–32 (1994)

10. Nishikawa, K., Nishizeki, T., Zhou, X.: Bandwidth consecutive multicolorings of
graphs. Theoretical Computer Science 532, 64–72 (2014)

11. Obata, Y., Nishizeki, T.: Approximation Algorithms for Bandwidth Consecutive
Multicolorings. In: Chen, J., Hopcroft, J.E., Wang, J. (eds.) FAW 2014. LNCS,
vol. 8497, pp. 194–204. Springer, Heidelberg (2014)

12. Pinedo, M.L.: Scheduling: Theory. Springer Science, New York (2008)
13. Shannon, C.E.: A theorem on coloring the lines of a network. J. Math. Physics 28,

148–151 (1949)
14. Stiebitz, M., Scheide, D., Toft, B., Favrholdt, L.M.: Graph Edge Coloring. Wiley,

Hoboken (2012)
15. West, D.B.: Introduction to Graph Theory. Prentice-Hall, Englewood Cliffs (1996)

Unit Covering in Color-Spanning Set Model

Ehsan Emamjomeh-Zadeh1, Mohammad Ghodsi2, Hamid Homapour2,
and Masoud Seddighin2

1 Department of Computer Science, University of Southern California,
Los Angeles, USA
emamjome@usc.edu

2 Department of Computer Engineering, Sharif University of Technology,
Tehran, Iran

ghodsi@sharif.edu

{homapour,mseddighin}@ce.sharif.edu

Abstract. In this paper, we consider two new variants of the unit cov-
ering problem in color-spanning set model: Given a set of n points in
d-dimensional plane colored with m colors, the MinCSBC problem is to
select m points of different colors minimizing the minimum number of
unit balls needed to cover them. Similarly, the MaxCSBC problem is
to choose one point of each color to maximize the minimum number of
needed unit balls. We show that MinCSBC is NP-hard and hard to ap-
proximate within any constant factor even in one dimension. For d = 1,
however, we propose an ln(m)-approximation algorithm and present a
constant-factor approximation algorithm for fixed f , where f is the max-
imum frequency of the colors. For the MaxCSBC problem, we first prove
its NP-hardness. Then we present an approximation algorithm with a
factor of 1/2 in one-dimensional case.

Keywords: Unit Covering, Color-Spanning Set, Computational Geom-
etry, Computational Complexity, Approximation Algorithm.

1 Introduction

Given a set of n points, the unit covering (UC) problem is to cover them with
minimum number of unit balls. This problem is NP-hard in Euclidean plane [3],
while for constant-dimensional cases, it admits polynomial-time approximation
schemes (PTAS) [5]. The UC problem has been studied extensively due to wide
applications in many fields such as data management in terrains and wireless
networks [2,1,4,11].

Recently, many researchers address geometric problems in the situation where
the input data is imprecise [8]. One common approach for modeling imprecise
points is to use a set of finite points for possible locations that a single im-
precise point may appear. In computational geometry, this problem is named
color-spanning set model. In this model, we are given n points colored with m
colors. Points with the same color refer to possible locations of an imprecise

M.S. Rahman and E. Tomita (Eds.): WALCOM 2015, LNCS 8973, pp. 44–52, 2015.
c© Springer International Publishing Switzerland 2015

Unit Covering in Color-Spanning Set Model 45

Given points MinCSBC MaxCSBC

Fig. 1. Three different color selections of given points and their corresponding unit
covering (i.e., to cover them using minimum number of unit balls)

point. Imprecise inputs lead to imprecision of output. One of the widely studied
problems in this model is to compute bounds on output [8].

In this paper, we discuss the unit covering problem in color-spanning set
model. This model can be applied to the case when for each term, at least
one of its alternatives should be covered. As an example, consider n different
networks and suppose that we want to connect these networks to the Internet
with minimum number of access points. Each access point can cover nodes in
the certain distance, and a network is connected to the Internet if and only if at
least one of its nodes is close enough to an access point, i.e., it is “covered” by
the ball corresponding to the access point.

Given a set P = {p1, p2, ..., pn} of n points in d dimensions colored with m ≤ n
colors in C = {c1, c2, ..., cm}, a color selection of P is a subset of m points,
one from each color.

We define the following two problems:

Problem 1 (MinCSBC). Find a color selection S of P that minimizes the number
of balls in unit covering of S. This problem is called the Minimum Color-spanning
Set Ball Covering.

Problem 2 (MaxCSBC). Find a color selection S of P that maximizes the num-
ber of balls in unit covering of S. This problem is called the Maximum Color-
spanning Set Ball Covering.

In Figure 1, three different color selections for a set of points and their corre-
sponding unit covering depicted.

2 Preliminaries and Notation

Suppose that P is a set of points given as the input for either MinCSBC or
MaxCSBC and C = {c1, . . . , cm} is the set of colors of elements in P . For each
ci ∈ C, define the frequency of ci as the number of points colored with ci. We
refer to the maximum frequency as fP (and omit the subscript P when it is clear
from the context), so that no more than fP points are of the same color. Since
there exists only one color selection for f = 1, we assume that f ≥ 2.

Except explicitly specified, we restrict our discussion to one-dimensional case.
In this case, a unit ball turns into a unit interval.

46 E. Emamjomeh-Zadeh et al.

G = {x1, x2, x3, x4} F = {S1, S2, S3, S4}

S3 = {x2, x3, x4} S4 = {x1, x4}

S1 = {x1, x3} S2 = {x2, x3}

x1 x2 x3 x4

c1 c2 c3 c4

S1 S2 S3 S4

Fig. 2. An instance of MinCSBC

Given a color selection S of P , let U(S) denote the set of intervals in the unit
covering of S. Recall that unit covering uses the minimum number of intervals
to cover the points. We have the following simple observation:

Observation 1. There is an optimal covering U(S) such that the left endpoint
of each interval corresponds to a point in S and all intervals in U(S) are disjoint.

Proof. Let U(S) = {I1, I2, ..., Ik} be the set of intervals sorted by their left
endpoints. Starting from I1, for each interval Ii, shift Ii until its left endpoint
lies on the first point that is not covered by intervals I1, ..., Ii−1. Clearly, the
resulting set of shifted intervals satisfies the required property. ��

In the rest of the paper, U(S) refers to an optimal covering with the prop-
erty in Observation 1. We define OPTmin and OPTmax as the color selection
regarding MinCSBC and MaxCSBC, respectively (for explicitly mentioned P or
whenever it is clear from the context).

3 MinCSBC

3.1 Hardness of MinCSBC

Theorem 1. MinCSBC is NP-hard.

Proof. We show that the problem is NP-hard even in one dimension using a
reduction from the Set Cover. Consider an instance of Set Cover with ground
set G = {x1, x2, ..., xm}, covering family F = {S1, S2, ..., Sk} and OPTsc ⊆ F
as the optimal cover. For each xj ∈ G, consider color cj in MinCSBC instance,
and for each subset Si, specify a unit segment on x-axis Celli in a way that the
distance between the endpoints of different segments is more than 1. Next, for
each element xj ∈ Si, put a point with color cj in Celli as illustrated in Figure 2.

Suppose that P is the set of created points in the MinCSBC instance. Since
the distance between each two cells is more than 1, each interval in U(OPTmin)

Unit Covering in Color-Spanning Set Model 47

covers points in only one cell. Moreover, if two intervals intersect the same cell,
it is possible to replace them with one interval which includes the whole cell
contradicting the minimality ofOPTmin. We return the sets whose corresponding
cells in MinCSBC instance intersect the intervals in U(OPTmin). Let R denote
the set of returned subsets. Since at least one point of each color is covered
by intervals in U(OPTmin), R is a feasible solution to the Set Cover instance.
Consequently, we have |U(OPTmin)| ≥ |OPTsc|.

On the other hand, consider the cells corresponding to subsets in OPTsc and
find a color selection using points in these cells. Since OPTsc covers all elements
in G, such a color selection exists. Obviously, this color selection can be covered
by |OPTsc| unit intervals, so |U(OPTmin)| ≤ |OPTsc|.

As a consequence, |U(OPTmin)| = |OPTsc| which, keeping in mind NP-
hardness of the Set Cover problem, implies MinCSBC to be NP-hard as well. ��

Note that the Set Cover problem is NP-hard even when the frequency of each
xj ∈ G is at most 2, i.e., xj appears in at most two subsets in F . Therefore,
using the same reduction for this restricted version of the Set Cover problem,
we can claim that one-dimensional MinCSBC is NP-hard even when f = 2.

Furthermore, it can be concluded from the above reduction that any constant-
factor approximation algorithm for MinCSBC yields an approximation for the
Set Cover problem with the same factor. Taking into account that there is no
approximation algorithm with a constant factor for the Set Cover problem unless
P=NP, we obtain the following corollary.

Corollary 1. MinCSBC admits no polynomial-time approximation algorithm
with a constant factor unless P = NP .

3.2 Approximation Algorithms for MinCSBC

Theorem 2. There is an ln(m)-approximation algorithm for MinCSBC in one
dimension.

Proof. Let I = {I1, I2, ..., In} be the set of intervals, where Ii is the unit interval
whose left endpoint lies on point pi. By Observation 1, for any color selection,
there exists an optimal covering using intervals in I. Therefore, the MinCSBC
problem is basically to find I ⊆ I of the minimum size such that I covers at
least one point of each color, and then choose a color selection from the covered
points.

In order to represent this problem with the Set Cover problem:

– let G be the set of all colors;
– for each Ii ∈ I, define a subset of G containing the colors covered by Ii.

There is a well-known greedy approximation algorithm for the Set Cover prob-
lem with factor ln(Δ), whereΔ is the maximum size of the subsets in the covering
family [6]. Since in above reduction, the size of each covering subset is at most m,
applying this ln(Δ)-approximation algorithm results in an ln(m)-approximation
algorithm for MinCSBC.

��

48 E. Emamjomeh-Zadeh et al.

Theorem 3. There is a 2f -approximation algorithm for MinCSBC in one di-
mension.

Proof. First, find a set I of unit intervals, with |I| ≤ n, satisfying the following
two conditions.

– All of the n points are covered.
– No two intervals in I intersect, i.e., all the intervals are disjoint.

Then, consider the following problem which is similar to MinCSBC but with
an additional restriction.

The Modified MinCSBC Problem: Find a subset of I with minimum size
that covers at least one point of each color.

Lemma 1. |SI | ≤ 2|U(OPTmin)|, where SI is the optimal solution to the mod-
ified MinCSBC problem with respect to I.

Proof. Since intervals lie on x-axis, for each u ∈ U(OPTmin), there exists I
′ ⊆ I

with |I ′| ≤ 2 such that I ′ covers all points covered by u. Consequently, by re-
placing each interval in U(OPTmin) with at most two intervals in I, one can
obtain a family S′ ⊆ I of intervals covering all points that are covered by
U(OPTmin). Since |SI | ≤ |S′| and |S′| ≤ 2|U(OPTmin)|, we obtain that |SI | ≤
2|U(OPTmin)|. ��

As a consequence of Lemma 1, any f -approximation algorithm for modified
MinCSBC yields an approximation algorithm for MinCSBC with factor 2f .

Note that, an instance of the modified MinCSBC problem can be considered
as an instance of the Set Cover problem. So, the f -approximation algorithm for
Set Cover [10] leads to an 2f -approximation algorithm for MinCSBC. ��

4 MaxCSBC

4.1 Hardness of MaxCSBC

Theorem 4. MaxCSBC is NP-hard.

Proof. We show that MaxCSBC is NP-hard even in one dimension for f > 2 by
reduction from a restricted version of normal CNF 3SAT in which each variable
occurs at most twice in positive form and once in negative form. This problem
which we name 3-Occurrence SAT is known to be NP-complete 1.

Given an instance of 3-Occurrence SAT, for each variable xi, specify two dis-
joint segments Celli and Celli, each of length 3. These two segments correspond

1 It is worth mentioning that in 3-Occurrence SAT problem, if each clause has to have
exactly 3 distinct variables, the formula is always satisfiable and thus, the problem
is not hard anymore. However, we allow clauses to have less than 3 variables, see [9]
for more details.

Unit Covering in Color-Spanning Set Model 49

Φ = (x1 ∨ ¬x2 ∨ x3) ∧ (¬x1 ∨ x2 ∨ x3)

φ1

φ2

x1

x2

x3

Cell1 Cell3Cell2

Cell1 Cell2 Cell3

Fig. 3. Reduction to an instance of MaxCSBC

to xi and xi, respectively. The cells have to be placed in a way that no two cells
intersect. Next, assign distinct colors to each variable and each clause. Denote
the color assigned to variable xi by ci and the color which is corresponding to
clause φj by c′j .

For each variable xi, place two points colored with ci at the middle of Celli
and Celli. Since these two points are the only points which are colored with ci,
any color selection must include at least one of them. Selecting the middle point
of a cell is interpreted as setting the corresponding literal to 0. In other words,
if the middle point of Celli is selected, then xi = 0, while selecting the middle
point of Celli means that xi = 0 or, equivalently, xi = 1.

Next, for each clause φj , place three points colored with c′j in the cells cor-

responding to its literals at the distance of 3
4 from the middle. Note that at

most two clause-points are placed in the same cell (by the definition of 3-
Occurrence SAT). If two points corresponding to different clauses are placed
in the same cell, they have to be placed at the different sides of the middle
point. See the example depicted in Figure 3.

Lemma 2. The instance of 3-Occurrence SAT is satisfiable if and only if there
exists a color selection for the corresponding MaxCSBC instance in which the
distance between any pair of points is greater than 1.

Proof. Suppose that a color selection S exists with the distance between each
two points in S more than 1. For each color ci, if the middle point of Celli is in
S, set xi = 0, otherwise (i.e., if the middle point of Celli is in S) set xi = 0. Note
that for each clause φj , there is one point pj of color c′j in S. Since the distance
between pj and the middle point of the cell that pj lies in, is less than 1, this
middle point cannot be in S, and so there exists a literal in φj whose value is 1.

On the other hand, we prove that any satisfying assignment for the 3-
Occurrence SAT instance can result in a color selection in which the distance
between any pair of points is greater than 1. For each variable xi, the middle
point of either Celli or Celli should be chosen in order to have a color selection.
If xi = 0, select the middle point of Celli. Otherwise, select the middle point of
Celli. Since for each clause φj , there is at least one literal in φj satisfying it, a

50 E. Emamjomeh-Zadeh et al.

cell containing a point with color c′j exists whose middle point is not selected,
so it is possible to select a point of color c′j . ��
Observation 2. In an instance of MaxCSBC, |U(OPTmax)| = m if and only
if there exists a color selection in which the distance between any pair of points
is greater than 1.

Taking into account Observation 2, we can claim that the instance of 3-
Occurrence SAT is satisfiable if and only if |U(OPTmax)| = m. Notice that
|U(OPTmax)| is never strictly larger than m. ��

4.2 Approximation Algorithm for MaxCSBC

Now, we present an O(n logn)-time approximation algorithm with factor 1
2 for

MaxCSBC in one dimension.

Algorithm 1. Approximation Algorithm for MaxCSBC

Input: A set P of n points colored with m colors
Output: A color selection of P
1: M = ∅, T = ∅, T ′ = ∅
2: while |M| < n do
3: p = the leftmost point in P \M
4: M = M∪ {p}
5: T = T ∪ {p}
6: for each point q ∈ P \M with the same color as p do
7: M = M∪ {q}
8: end for
9: for each point q ∈ P \M where dist(p, q) ≤ 1 do
10: M = M∪ {q}
11: end for
12: end while
13: for each color c with no candidate in T do
14: insert an arbitrary point of color c in T ′

15: end for
16: return T ∪ T ′

Theorem 5. Algorithm 1 is a 1
2 -approximation algorithm.

Proof. Clearly T ∪ T ′ needs at least |T | unit intervals to be covered since the
distance between any two points in T is greater than 1. By Observation 1, all
the intervals in U(OPTmax) are disjoint and the left endpoint of any interval in
U(OPTmax) is one of the input points. Let T be a set of these points. We claim

that |T | ≥ |T |
2 .

To this end, we show that by adding p to T , at most two points of T that
have been left unmarked2 yet, can be inserted to M. Note that when we add
point p to T ,

2 A point is marked if it is in set M and unmarked otherwise.

Unit Covering in Color-Spanning Set Model 51

– only one of the points in T can be of the same color with p because all points
in T have different colors;

– there is at most one unmarked point in T within the distance at most 1 to p
as any two points in T are within the distance greater than 1. Recall that p
is the left-most unmarked point, so all points at the left-hand side of p have
been already marked.

Therefore, by adding p to T , at most two unmarked points of T might be
inserted to M. At the end of the algorithm, all points in T are marked, so

|T | ≥ |T |
2 . Thus the output of Algorithm 1 is within a factor 1

2 of the optimal
solution. ��

5 Conclusion

In this paper, we investigated on the problem of unit covering in the color-
spanning set model.

For MinCSBC, we showed the NP-hardness and also hardness of approx-
imation within any constant factor. In addition, we presented an ln(m)-
approximation algorithm for this problem and also an approximation algorithm
for one-dimensional case with factor 2f . While one-dimensional MinCSBC is
NP-hard even when f = 2, the latter algorithm results in a constant-factor
approximation algorithm for fixed f .

For MaxCSBC, we proved the NP-hardness and proposed an approximation
algorithm with constant factor 2 when d = 1.

Here are some open questions.

1. Is there any algorithm with approximation factor better than 2f for
MinCSBC? For special case when f = 2, the proposed algorithm leads to a
4-approximation algorithm. In this case (f = 2), a reduction from the Ver-
tex Cover problem shows that assuming the Unique Game Conjecture, the
problem does not admit any approximation algorithm with a factor better
than 2 [7]. There is still a gap between these lower bounds and our factor,
however.

2. Is there any approximation algorithm for MinCSBC and MaxCSBC in higher
dimensions?

3. Having considered our reduction from 3-Occurrence SAT, we showed that
MaxCSBC is NP-hard for f > 2 even in one-dimensional case, but the
complexity of the problem for f = 2 is still unknown.

References

1. Claude, F., Das, G.K., Dorrigiv, R., Durocher, S., Fraser, R., López-Ortiz, A.,
Nickerson, B.G., Salinger, A.: An improved line-separable algorithm for discrete
unit disk cover. Discrete Mathematics, Algorithms and Applications 2(01), 77–87
(2010)

52 E. Emamjomeh-Zadeh et al.

2. Das, G.K., Fraser, R., Lòpez-Ortiz, A., Nickerson, B.G.: On the discrete unit disk
cover problem. In: Katoh, N., Kumar, A. (eds.) WALCOM 2011. LNCS, vol. 6552,
pp. 146–157. Springer, Heidelberg (2011)

3. Fowler, R.J., Paterson, M.S., Tanimoto, S.L.: Optimal packing and covering in the
plane are np-complete. Information Processing Letters 12(3), 133–137 (1981)

4. Funke, S., Kesselman, A., Kuhn, F., Lotker, Z., Segal, M.: Improved approximation
algorithms for connected sensor cover. Wireless Networks 13(2), 153–164 (2007)

5. Hochbaum, D.S., Maass, W.: Approximation schemes for covering and pack-
ing problems in image processing and vlsi. Journal of the ACM (JACM) 32(1),
130–136 (1985)

6. Johnson, D.S.: Approximation algorithms for combinatorial problems. In: Proceed-
ings of the Fifth Annual ACM Symposium on Theory of Computing, pp. 38–49.
ACM (1973)

7. Khot, S., Regev, O.: Vertex cover might be hard to approximate to within 2- ε.
Journal of Computer and System Sciences 74(3), 335–349 (2008)

8. Löffler, M.: Data imprecision in computational geometry (2009)
9. Tovey, C.A.: A simplified np-complete satisfiability problem. Discrete Applied

Mathematics 8(1), 85–89 (1984)
10. Vazirani, V.V.: Approximation algorithms, pp. 118–119. Springer (2001)
11. Yang, D., Misra, S., Fang, X., Xue, G., Zhang, J.: Two-tiered constrained relay

node placement in wireless sensor networks: efficient approximations. In: 2010 7th
Annual IEEE Communications Society Conference on Sensor Mesh and Ad Hoc
Communications and Networks (SECON), pp. 1–9. IEEE (2010)

Compact Encodings and Indexes for the Nearest

Larger Neighbor Problem

Seungbum Jo1, Rajeev Raman2, and Srinivasa Rao Satti1

1 Seoul National University, Seoul, South Korea
sbcho@tcs.snu.ac.kr, ssrao@cse.snu.ac.kr

2 University of Leicester, Leicester, UK
r.raman@leicester.ac.uk

Abstract. Given a d-dimensional array, for any integer d > 0, the near-
est larger value (NLV) query returns the position of the element which
is closest, in L1 distance, to the query position, and is larger than the
element at the query position. We consider the problem of preprocessing
a given array, to construct a data structure that can answer NLV queries
efficiently. In the 2-D case, given an n × n array A, we give an asymp-
totically optimal O(n2)-bit encoding that answers NLV queries in O(1)
time. When A is a binary array, we describe a simpler O(n2)-bit encod-
ing that also supports NLV queries in O(1) time. Using this, we obtain
an index of size O(n2/c) bits that supports NLV queries in O(c) time,
for any parameter c, where 1 ≤ c ≤ n, matching the lower bound. For
the 1-D case we consider the nearest larger right value (NLRV) problem
where the nearest larger value to the right is sought. For an array of
length n, we obtain an index that takes O((n/c) log c) bits, and supports
NLRV queries in O(c) time, for any any parameter c, where 1 ≤ c ≤ n,
improving the earlier results of Fischer et al. and Jayapaul et al.

1 Introduction and Motivation

We consider cases of the following general problem. We are given a d-dimensional
array A consisting of (possibly not all distinct) items from an ordered universe.
After preprocessing A we are given a series of queries, each of which specifies an
element of A, and our objective is to return the element of A nearest to the query
element that is strictly larger than the query element. One may also restrict that
the answer to the query comes from some particular sub-array (e.g. a quadrant)
of A. Specifically, we consider the two queries below:

NLRV: Given a 1-D array A and an index i, returns the first larger element to
i’s right, i.e., returns min{j > i|A[j] > A[i]} (and is undefined if this set is
empty). The query NLLV is defined analogously to i’s left.

NLV: Given a d-dimensional array A and an index p = (i1, i2 . . . , id), returns
an index q = (i′1, i

′
2 . . . , i

′
d) such that A[q] > A[p] and the distance between

p and q, dist(p, q) = |i1 − i′1| + |i2 − i′2|+ · · ·+ |id − i′d|, is minimized (note
that we use the L1 metric). In case of many equidistant larger values, ties
can be broken arbitrarily. If there is no larger value, then it is undefined.

M.S. Rahman and E. Tomita (Eds.): WALCOM 2015, LNCS 8973, pp. 53–64, 2015.
c© Springer International Publishing Switzerland 2015

54 S. Jo, R. Raman, and S.S. Rao

Encoding and indexing models. We consider these problems in two different
models that have been studied in the succinct data structures literature, namely
the indexing and encoding models. In both these models, the data structure is
created after preprocessingA. In the indexing model, the queries can be answered
by probing the data structure as well as the input data, whereas in the encoding
model, the query algorithm cannot access the input data.

Previous Work and Motivation. The off-line version of this problem: given A,
to compute nearest larger values for all entries of A (the ANLV problem), has
been studied previously1. In the 1-D case, Berkman et al. [3] noted that the
best highly-parallel solutions to a number of tasks including answering range
minimum queries, triangulating monotone polygons and matching parentheses,
are obtained by reducing to the ANLV problem, and efficient parallel solutions to
the ANLV problem were also given by the same authors. A number of plausible
applications, and algorithms, for the ANLV problem in 2 and higher dimensions
were given by Asano et al. [1], and time-space tradeoffs for the 1-D case were
given by Asano and Kirkpatrick [2].

Fischer et al. [10] considered the problem of supporting NLRV and NLLV in
the 1-D case, and showed how a data structure supporting these two queries
is essential to a space-efficient compressed suffix tree. They also considered the
problem of supporting NLRV and NLLV in the indexing model, and gave a space-
time tradeoff (the precise result is given later). Fischer [9] gave a structure in
the encoding model that uses 2.54n+ o(n) bits and supports NLRV and NLLV
queries in O(1) time.

Jayapaul et al. [12] considered the problem of encoding and indexing NLV in
the 2-D case. Below, we describe the directly relevant results from their work.

Our results. We obtain new results for encoding and/or indexing 1-D and 2-D
nearest larger value queries. In all the 2-D results we assume L1 distances.

– We show that 2-D NLV can be encoded in the asymptotically optimal O(n2)
bits in the general case. Jayapaul et al. showed this only for the case where
all elements of A are distinct. Distinctness is a strong assumption in these
kinds of problems. For example, in the 1-D case with distinct values, NLRV
and NLLV can both be trivially encoded by the Cartesian tree (giving a
2n− O(log n) bit encoding). By contrast, if we do not assume distinctness,
the optimal space is about 2.54n bits, and the data structure achieving this
bound is also more complex [9]. Also, Asano et al. [1] remark that the ANLV
problem for any dimension is “simplified considerably” if one assumes dis-
tinctness. In fact, for the general case, Jayapaul et al. were only able to give
an encoding with size Θ(n2 log logn) bits and O(1) query time.

1 The terminology varies considerably. Berkman et al. studied the all nearest smaller
values (ANSV) problem, which is symmetric to the ANLV problem. The previ-
ous/next smaller value (PSV/NSV) problems of Fischer et al. are symmetric to the
NLLV/NLRV problems. Asano et al. and Jayapaul et al. call the NLV problem the
nearest larger neighbour (NLN) problem: we consider the term “neighbour” to be
mildly misleading, as the answer may not be a neighbour of the query element in A.

Compact Encodings and Indexes for the Nearest Larger Neighbor Problem 55

We also remark that in 1-D case, the NLRV and NLLV problems are closely
connected to the range minimum query (RMQ) problem (see e.g. [9]), another
problem of wide interest. In the 1-D case, there is no asymptotic difference
between the encoding complexity of RMQ and NLRV/NLLV. The 2-D RMQ
problem has received a great deal of attention lately [7,6,5,4]. It is known
that any 2-D RMQ encoding takes Ω(n2 logn) bits [7,6]; thus, this result
shows that NLV is different from RMQ in the 2-D encoding scenario.

– For the special case where A comprises 0-1 values, we provide an optimal
trade-off. Specifically, given an n×n array A and any 1 ≤ c ≤ n, we describe
an index of size O(n2/c) bits that can answer NLV queries in O(c) time.

– For indexing 1-D NLRV and NLLV, we give an index that takes O((n/c) log c)
bits and answers these queries in O(c) time. This improves the two previous
trade-offs for this problem:

• Fischer et al. [10] showed that, for any 1 ≤ c, 	 ≤ n, one can use:

O

(
n

c
log c+ 	

n log logn

logn
+

n logn

c�

)
bits of space and answer queries in O(c) time. As given, they are unable
to go below O(n log logn/ logn) space, and use more space than we do
whenever c = ω(logn). To attain O((n/c) log c) space for c = O(log n),
observe that for c = (logn)Ω(1), one can choose 	 = O(1) and obtain
O(c) time. For smaller values of c, the middle term in the space usage will
never dominate for reasonable values of 	 (clearly, we must always choose
c ≥ 2 and 	 = O(log logn) in this range) and it suffices (and is optimal)
to choose 	 = O(logc logn) = O(log logn − log log c). Thus, for any c =
O(log n) their running time for space O((n/c) log c) is O(c(log logn −
log log c)), and our solution is better for small enough c.

• Jayapaul et al. [12] gave a solution that uses O((n/c) log c+(n logn)/c2)
bits andO(c) time; this space usage equals ours for c = Ω(logn/ log logn)
but is worse otherwise.

Our solution is a minor modification of the approach of Fischer et al.: we
replace a data structure they use by a slower one to obtain the result.

We assume a standard word RAM model with word size Θ(lg n), and we count
space in terms of the number of bits used.

2 Indexing NLRV on 1-dimensional Arrays

In this section, we give a new time-space trade-off for the indexing model for
supporting NLRV queries in 1-D arrays. The approach follows closely the proof
of Fischer et al. [10], which in turn adapts ideas from Jacobson’s representation
of balanced parentheses sequences [11], and is given in full for completeness.

We begin with some definitions. Given a string X over an alphabet Σ, define
the following operations:

56 S. Jo, R. Raman, and S.S. Rao

– rankα(X, i) returns the number of occurrences of α in the first i positions of
X , for any α ∈ Σ.

– selectα(X, i) returns the position of the ith α in X , for any α ∈ Σ.

Lemma 1 ([13]). Given a string X over {0,1} with length n, containing m 1s,
it can be represented in O(m log(n/m)) bits such that rank1 and select1 can be
supported in O(n/m) time.

Lemma 2 ([10]). There exists a data structure in the encoding model that solves
NLRV queries using 2n+ o(n) bits in O(1) time.

Theorem 1. Given a 1-D array A of size n, there exists a data structure which
supports NLRV queries in the indexing model in O(c) time using O((n/c) lg c)
bits for any parameter 2 ≤ c ≤ n.

Proof. Divide A into n/c blocks of size c. For any value 1 ≤ i ≤ n, if i and
NLRV(i) are in the same block, say that i is a near value, otherwise say that i is
a far value. Consider a block B and suppose that one or more of its far values
have an NLRV in a block B′. Then the leftmost far value in B whose NLRV is in
B′ is called a pioneer, and its NLRV is called its match. It is known that there
are O(n/c) pioneers in A [11].

We maintain a bit-vector V in which the i-th bit is a 1 if A[i] is a pioneer or a
match of one, and 0 otherwise. This bit-vector has length n and weight O(n/c)
so by Lemma 1, we can store it in O((n/c) lg c) bits and perform rank/select
queries on it in O(c) time. Next, we take the sub-sequence SP consisting of all
pioneers and their matches. This subsequence is of length O(n/c). We represent
this sequence using Lemma 2 using O(n/c) bits, to support NLRV queries in
O(1) time. We claim that for any pioneer in the list, its NLRV in the sequence
of pioneers/matches is the same as its NLRV in the original sequence. Suppose
that this claim is not true. This means there is a pioneer ip such that NLRV(ip)
is the value between ip and the match of ip. It cannot be the case that ip and
NLRV(ip) are in the same block, since ip is a far value. If ip and NLRV(ip) are
in different blocks, then NLRV(ip) is the match of ip. So the claim is true.

To answer the query NLRV(i), we first check to see if the answer is in the
same block as i taking O(c) time. If so, we are done. Else, (assuming wlog that
A[i] is not a pioneer value) we find the first pioneer pi before position i by
doing rank/select on V . As A[i] < A[pi], NLRV(i) is less than or equal to the
match of pi. Since i is the far value in this case, NLRV(i) and NLRV(pi) are in
the same block. We find NLRV(pi) using the NLRV encoding of SP and find the
corresponding position iap in A using rank/select on V . Finally we scan left from
iap to find NLRV(i). The overall time taken to answer the query is O(c). ��

3 NLV on 2-D Binary Arrays

In this section, we first give an optimal encoding for NLV, and using this obtain
an almost optimal trade-off for an NLV index for a 2-D binary array. We use the
following lemma:

Compact Encodings and Indexes for the Nearest Larger Neighbor Problem 57

Lemma 3 ([8]). Given a string X of length n over an alphabet Σ, |Σ| = O(1),
there is an encoding of X using O(n) bits, that supports rankα and selectα in
O(1) time, for any α ∈ Σ.

Theorem 2. There is an encoding for an n × n binary array A which takes
O(n2) bits and supports NLV queries in O(1) time.

Proof. We compute the NLV by computing the nearest larger value in all four
quadrants induced by a vertical and a horizontal line that pass through the query
position, and then returning the closest of these four positions to the query.
Thus, it is enough to describe a structure that supports NLV in the upper-right
quadrant. Given a query position p = (i, j), let q = (i′, j′) be its NLV in the
upper-right quadrant. There are four possibilities: (1) A[p] = 1 (q is not defined);
(2) i = i′; (3) j = j′; or (4) i < i′ and j < j′. The encoding will simply store, for
each position, which case it belongs to. Then, in Case (2), we can find its answer
by following the positions (i, j + k), for k = 1, 2, . . . (i.e., elements in the same
row) till we reach a position that belongs to Case (1). Also, one can easily show
that all the intermediate elements also belong to Case (2). Analogously, in Case
(3), we follow the positions in the same column until we reach a position that
belongs to Case (1). Finally, in Case (4), we first follow the positions (i+k, j+k),
for k = 1, 2, . . . till we reach the first position (i+ 	, j +) that does not belong
to Case (4), and then find the answer using the algorithm for Case (2) or (3), or
return the position (i+ 	, j+) if it belongs to Case (1). To support the queries
faster, we build rank/select structures (Lemma 3) for the encoding of each row,
each column and each diagonal. The total space usage is clearly O(n2) bits. Now,
queries can be supported in constant time by using rank/select to jump to the
appropriate positions as described in the above procedures. ��

Now we describe an index for a given 2-D binary array. We begin by in-
troducing some notation that will be used later. Suppose we divide an n ×
n array A into blocks of size c × c, for 0 < c ≤ n, and divide each block
into c sub-blocks of size

√
c ×

√
c. We define an (i, j)-block as the sub-array

A[(i − 1)c + 1 . . . ic][(j − 1)c . . . jc] and an (i, j, k, l)-sub-block as the sub-array
A[(i− 1)c+ (k− 1)

√
c . . . (i− 1)c+ k

√
c][(j − 1)c+ (l− 1)

√
c . . . (j − 1)c+ l

√
c].

For each (i, j)-block, we define eight regions, consisting of sets of blocks (some
of which can be empty) as follows: the region
N(i, j) consists of all (i, l)-blocks with l > j;
S(i, j) consists of all (i, l)-blocks with l < j;
E(i, j) consists of all (k, j)-blocks with k > i;
W (i, j) consists of all (k, j)-blocks with k < i;
NE(i, j) consists of all (k, l)-blocks with k > i and l > j;
SE(i, j) consists of all (k, l)-blocks with k > i and l < j;
NW (i, j) consists of all (k, l)-blocks with k < i and l > j; and
SW (i, j) consists of all (k, l)-blocks with k < i and l < j.
Similarly, for each (i, j, k, l)-sub-block, we also define the regions Ni,j(k, l),
Si,j(k, l),Ei,j(k, l),Wi,j(k, l),NEi,j(k, l),NWi,j(k, l), SEi,j(k, l) and SWi,j(k, l).

58 S. Jo, R. Raman, and S.S. Rao

We construct an n/c × n/c array A′[1 . . . n/c][1 . . . n/c] such that A′[i][j] =
1 if there exists at least a single 1 in the (i, j)-block, and 0 otherwise. We
also construct another n/

√
c × n/

√
c array A′′[1 . . . n/

√
c][1 . . . n/

√
c] such that

A′′[i][j] = 1 if there exists at least a single 1 in the (�i/√c�, �j/√c�, i mod√
c, j mod

√
c)-sub-block, and 0 otherwise.

Theorem 3. Given an n× n binary array A[1 . . . n][1 . . . n] one can construct
an index of size O(n2/c) bits to support NLV queries in O(c) time for 0 < c ≤ n.

Proof. We divide the array A into blocks and sub-blocks as mentioned earlier.
Suppose the query q is in the (i, j, k, l)-sub-block. If A′′[ic+k, jc+l] = 1, scanning
O(1) sub-blocks is enough to find the NLV of q, and this takes O(c) time.

Now, consider the case when A′′[ic + k, jc + l] = 0 but A′[i, j] = 1. In this
case, it is clear that we can identify O(c) sub-blocks in which the answer may lie
– namely all the sub-blocks in its block, and in the eight neighbouring blocks.
We find the potential answer in each of the eight directions (E, W, N, S, NE,
NW, SE, and SW), and then compare their positions to find the actual answer.
To find the the answer in E direction, we scan the bits in A′′ that are to the
right of the current sub-block, till we find a 1. We then scan this sub-block,
and the sub-block to its right to find the potential answer in this direction.
Similarly, we can find the potential answers in the W, S, and N directions. Next,
we find the nearest 1 to the query in the NEi,j(k, l) region. This element is the
nearest 1 from the bottom-left conner of (i, j, k+1, l+1)-sub-block. The nearest
1 from the bottom-left conner of (a, b, c, d)-sub-block in the NEa,b(c, d) region
is same as either the nearest 1 in the same block, or is the nearest 1 from the
bottom-left corners of one of these three blocks: (1) (a, b, c+1, d)-sub-block, (2)
(a, b, c, d+1)-sub-block, or (3) (a, b, c+1, d+1)-sub-block. Therefore we encode
each sub-blocks using 2 bits indicating the case it belongs to ((1), (2) or (3)),
which takes a total of O(n2/c) bits. Now, to find the answer in the NE direction,
we scan O(c) sub-blocks to find the sub-block which contains the nearest 1 from
q in NE(i, j, k, l). Once we find the corresponding sub-block, finding the nearest
1 from the bottom-left conner in the sub-block takes O(c) time. We can find the
nearest 1 in the NWij(k, l), SEij(k, l) and SWij(k, l) regions in the same way.
Then NLV of q is the closest one among these eight candidates.

Finally, consider the case when A′[i, j] = 0. By storing the encoding of Theo-
rem 2 for the array A′ using O(n2/c2) bits, we can find the nearest block to the
query position which contains a 1, in O(1) time. Let this block be the (i′, j′)-
block, let 	 be the L1 distance from (i, j) to (i′, j′) in A′. The value 	c is an
estimate (within an additive factor of 2c) for the L1 distance from q to its NLV.
Assume, wlog, that (i′, j′) is in the NE(i, j) region. We first describe how to
find the nearest 1 in NE(i, j) region. Define d(i, j) as the set of blocks in the
top-left to the bottom-right diagonal that contains the (i, j)-block and define
the array D(i,j) of size at most n/c such that D(i,j)[m] is the distance from the
bottom-left element to the nearest 1 in the m-th block in d(i, j). Now we con-
struct a linear-bit RMQ (range minimum query) data structure for each D(i,j)

(using a total of O(n2/c) bits), so that RMQ queries can be supported in O(1)
time. Now, we find the two potential blocks in NE(i, j) region that may have

Compact Encodings and Indexes for the Nearest Larger Neighbor Problem 59

Fig. 1. Suppose the nearest block that contains 1 from (2,2)-block is (4,3)-block, Then
d(4, 3) are the blocks colored by green and we can find the nearest 1 in NE(2,2) using
RMQ for D4,3[2, 3] and D4,4[1 . . . 3]

the nearest 1 from q by performing RMQs on D(i′,j′) and D(i′,j′+1) among all
the blocks that are contained in the NE(i, j) region (it is easy to see that they
form a consecutive range). We then choose the closer one between these two
from the q. (Figure 1 shows the example). Note that if (i′, j′) is in a different
region from NE(i, j), then we may not find any potential answer in NE(i, j),
as all the ‘relevant’ blocks in D(i′,j′) and D(i′,j′+1) may be empty. We can find
the nearest 1 in NW (i, j), SE(i, j) and SW (i, j) in a similar way.

Next, we describe how to find the nearest 1 in the N(i, j) region (analogous
for S(i, j), E(i, j) and W (i, j) regions). For each position in the bottom row
of an (a, b)-block with A′[a, b] = 1, we store two bits indicating whether its
answer within the block is in (1) the same column (H), or (2) some column to
the left (L), or (3) some column to the right (R). (The query algorithm simply
“follows” the L or R “pointers” till it reaches a H , and then scans the column
upwards till it finds a 1 in that column. Note that L and R cannot be in two
adjacent columns.) This takes O(c × n2/c2) = O(n2/c) bits over all the blocks.
This encoding enables us to find the closest 1 within the block from any column
in the bottom row of that block in O(c) time. Since 	 is the L1 distance between
(i, j) and (i′, j′) in A′, we know that all the blocks A[i, j − r], for 1 ≤ r < 	 are
empty (otherwise, we have a closer non-empty block than (i′, j′)). Let k be the
column corresponding to the query position q. We claim that the closest 1 to q
in the N(i, j) region is closest 1 to the bottom row and column k of the either
(i, j+)-block or (i, j+ 	+1)-block. These can be computed in O(c) time using
the above encoding, and then compared to find the required answer. Finally we
can find NLV of q by comparing these eight candidate answers. ��

4 Encoding of NLV on 2-D Arrays

In this section, we give an encoding which supports NLV queries in 2-D array
with O(n2) bits. We consider the 1-D array case first. Jayapaul et al. [12] showed
how to encode an array A with n distinct items using O(n) bits to answer NLV
queries. We give an alternate proof of this, based on ideas from [2,12]:

60 S. Jo, R. Raman, and S.S. Rao

Lemma 4. There exists an encoding of an array A[1 . . . n] that uses O(n) bits
while supporting NLV queries, provided all elements are distinct.

Proof. We write down the sequence d(1), d(2), . . . , d(n) explicitly, where d(i) =
|i − NLV(i)|, for 1 ≤ i ≤ n, together with a sequence of n bits that indicate if
i < NLV(i) or i > NLV(i). Because for k > 0, the elements in A are distinct,
there are ≥ n/2k elements for which d(i) ≤ 2k, and d(i) for these elements can

be encoded in O(k) bits. In all,
∑lgn

k=1(n/2
k · O(k)) = O(n) bits are used. ��

If the elements in A are not distinct, the above argument does not hold.
So instead of encoding the NLV of a position i explicitly as in Lemma 4, we
encode the distance between i and the nearest value which is ≥ A[i] in the
same direction as NLV(i). Formally, we define dl(i) = i− (maxj<i,A[j]≥A[i] j) and
dr(i) = (minj>i,A[j]≥A[i] j) − i and d(i) = dl(i) if NLV(i) < i and d(i) = dr(i)
otherwise. For each i, we encode d(i) and store a bit stating whether d(i) = dr(i)
or d(i) = dl(i), and view this as a “pointer” to j = i + dr(i) or j = i − dl(i)
respectively. Finally, we also store a bit indicating whether or not A[i] = A[j].
With this encoding, NLV(i) can be easily found by following the d(·) “pointers”
from i until we reach a position that is greater than A[i].

The following lemma says that this encoding still uses O(n) bits:

Lemma 5. For any array A[1 . . . n],
∑n

i=1 lg d(i) = O(n).

Proof. Consider the arrayA′[1 . . . n] of size n, where A′[i] = A[i]+εi if NLV(i) > i
and A′[i] = A[i] − εi if NLV(i) < i for some ε > 0. If we set ε small enough
then if A[i] > A[j] for some i, j then A′[i] > A′[j] as well, but all elements
in A′ are distinct. So if we define d′(i) and NLV′ on A′ analogously to d(i)
and NLV on A, D′ =

∑n
i=1 lg d

′(i) = O(n) by Lemma 4. We now show that
D =

∑n
i=1 lg d(i) ≤ 2D′.

To prove this claim, let 0 ≤ i0 < · · · < ir ≤ n with r > 0 be a maximal
sequence of indices such that A[i0] > A[i1], A[ir−1] < A[ir], A[i1] = A[i2] =
· · · = A[ir−1], and A[j] < A[i1] for all i0 < j < ir and j �∈ {ik|1 ≤ k ≤ r − 1}.
For 0 ≤ k ≤ r, let ik be the index such that NLV(il) = i0 for all 0 < l ≤ k
and NLV(il) = ir for all k < l ≤ r − 1 . Then by the definition of A′, for all
k < l ≤ r− 1, NLV′(il) = il+1 so d(il) = d′(il). For the elements to the left of ik,
we can consider the case that there exist 0 < m ≤ k such that NLV′(il) = il−1

for all 0 < l ≤ m− 1 and NLV′(il) = il+1 for m ≤ l ≤ k. Then:

D −D′ =
∑n

i=1
lg d(i)−

∑n

i=1
lg d′(i)

=
(∑m−1

i=1
lg d(i) +

∑r−1

i=k+1
lg d(i) +

∑k

j=m
lg(ij − ij−1)

)

−
(∑m−1

i=1
lg d′(i) +

∑r−1

i=k+1
lg d′(i) +

∑k

j=m
lg(ik+1 − ij)

)

=
∑k

j=m
lg(ij − ij−1)−

∑k

j=m
lg(ik+1 − ij)

≤ lg(im − im−1)− lg(ik+1 − ik) (∵ ij − jj−1 ≤ ik+1 − ij−1 for all 0 ≤ j ≤ k)

≤ lg(im − im−1) ≤ lg(im − i0) ≤ lg(ir − im) (∵ NLV(im) = i0)

Compact Encodings and Indexes for the Nearest Larger Neighbor Problem 61

≤ lg(ik+1 − im) +
∑r−1

j=k+1
lg(ij+1 − ij) (by the concavity of lg function)

≤
∑n

i=1
lg d′(i) = D′
�

We now extend this encoding to encode NLVs for a 2-D array A[1 . . . n][1 . . . n]
of size n2. In our encoding, each (i, j) “points to” another location (i′, j′), such
that A[i′, j′] ≥ A[i, j], as follows: |i − i′| is encoded using O(1 + lg |i′ − i|) (the
row cost of the pointer) and |j − j′| is encoded using O(1 + lg |j′ − j|) bits (the
column cost of the pointer), the direction from (i, j) to (i′, j′) is given using two
bits, and finally one extra bit indicates whether or not A[i′, j′] > A[i, j]. Now
we explain how to specify the pointers. Pick an element A[i, j] and wlog assume
that NLV(i, j) = (i∗, j∗) with i∗ ≥ i, j∗ ≥ j. We choose pointers as follows:
Case (1) Let i′ > i be the smallest value such that i′ ≤ i∗ and A[i, j] = A[i′, j].
If i′ exists, we store a pointer to (i′, j) and set the extra bit to 0.
Case (2) If not, let j′ > j be the smallest value such that j′ ≤ j∗ and A[i, j] =
A[i, j′]. If j′ exists, we store a pointer to (i, j′) and set the extra bit to 0.
Case (3) Otherwise we store a pointer to (i∗, j∗) and set the extra bit to 1.

We call this encoding scheme encoding2D. To obtain NLV(i, j), we follow
pointers starting from (i, j) until we follow one with the extra bit set to 1, and
return the position pointed to by this pointer. The correctness of this procedure
can be proved by induction on k; we omit the details due to lack of space.

Theorem 4. There exists an encoding of 2-D array A[1 . . . n][1 . . . n] that uses
O(n2) bits while supporting NLV queries.

Proof. We describe an encoding, called encodinggrid as follows. We first encode
each column and row of A using Lemma 5, using O(n2) bits. These pointers are
called grid pointers. However, the maximal values in each row and column do
not have pointers by Lemma 5, as their NLV is not defined. So, in addition, for
each row r which has (locally) maximum values in columns i1 < . . . < ik, we
store extra pointers in both directions from (r, ij) to (r, ij+1) for j = 0, . . . , k,
taking i0 = 0 and ik+1 = n + 1. The space taken by these extra pointers is

O(lg i1+
∑k−1

j=2 lg (ij − ij−1)+ lg (n+ 1− ik)) = O(n) bits for row r. We do this

for all rows and columns, at a cost of O(n2) bits overall.
Although encodinggrid does not encode NLV, we use it to upper bound the

space used by encoding2D. Let a grid pointer and a 2D pointer refer to a pointer
in encodinggrid and encoding2D respectively. For any 2D pointer, the cost of
encoding it can be upper-bounded by the cost of encoding (one or more) grid
pointers. Each grid pointer will be used O(1) times this way. Below, we show
how to upper bound all Case 2) 2D pointers and the row cost of all Case 3) 2D
pointers by grid pointers in rows, using each grid pointer at most thrice. The
costs of Case (1) 2D pointers and the column cost of Case (3) 2D pointers can
similarly be bounded by the costs of grid pointers in the columns. This will prove
the theorem.

We consider a fixed location (i, j), and assume wlog that NLV(i, j) = (i∗, j∗)
with i∗ ≥ i and j∗ > j (if j∗ = j then the pointer from (i, j) will have row
distance 0 and there is nothing to bound). There are four cases to consider.

62 S. Jo, R. Raman, and S.S. Rao

Fig. 2. Pointers in encoding2D and encodinggrid

Case (a) Let j′ > j be the minimum index such that A[i, j′] ≥ A[i, j]. Suppose
that j′ exists and there and there is a grid pointer from (i, j) to (i, j′) or
vice versa. There are two sub-cases:

(a.1) The 2D pointer from (i, j) points to (i, j′). We use the cost of the grid
pointer to upper bound the cost of this 2D pointer. Observe that if there is
a 2D pointer from (i, j) to (i, j′), there cannot be a 2D pointer from (i, j′) to
(i, j), so the grid pointer is used for upper-bounding only once in this case
(Case (a,1) in Figure 2).

(a.2) The 2D pointer from (i, j) points to (i∗, j∗). Observe that j′ ≥ j∗, since
otherwise either (i, j′) is a larger value that is closer than (i∗, j∗), a contra-
diction, or we would have a Case (2) 2D pointer from (i, j) to (i, j′). The grid
pointer between (i, j) and (i, j′) will only be used twice for upper-bounding
in this case (Case (a,2) in Figure 2).

Case (b) There is either no value A[i, j′] ≥ A[i, j] for j′ > j, or if there is, then
there are no grid pointers either from (i, j) to (i, j′) or vice versa. As before,
we consider two sub-cases.

(b.1) First suppose that the 2D pointer from (i, j) points to (i, j′), where j′ > j
is the smallest index such that A[i, j′] ≥ A[i, j], and there is no grid pointers
between (i, j) and (i, j′) in either direction.

If A[i, j] is a maximal value in row i, the cost of the pointer is upper-
bounded by the extra pointer between (i, j) and (i, j′). If not, the absence
of grid pointers between (i, j) and (i, j′) implies that the NLV of (i, j) in the
i-th row is (i, j0) for some j0 < j. Note that |j0 − j| ≥ dist((i, j), (i∗, j∗)),
otherwise NLV(i, j) would be (i, j0). As dist((i, j), (i

∗, j∗)) = |j − j′|+ |j′ −
j∗| + |i∗ − i|, |j0 − j| ≥ |j′ − j|. The path p between (i, j) and (i, j0) in
encodinggrid may comprise a number of grid edges. We can bound the cost
of the 2D edge from (i, j) to (i, j′) by the total cost of the grid edges on the
path p (since the log function is concave, the sum of the costs of the path p
is no less than the cost of a single edge from (i, j) to (i, j0)). Let p comprise
the elements j = jl, jl−1, . . . , j1, j0 (omitting the row number for brevity).

Compact Encodings and Indexes for the Nearest Larger Neighbor Problem 63

Note that for any 0 < k < l, no 2D pointer from (i, jk) can end up in Case
(b), so this path can only be used twice to upper-bound the cost of a 2D edge:
once from (i, j) and once (possibly) from (i, j0) (Case (b,1) in Figure 2).

(b.2) The 2D pointer from (i, j) points to (i∗, j∗), and either there is no value
≥ A[i, j] in locations A[i, j′] for j′ > j, or if there is, and j′ is the minimum
such value, then there is no grid pointer between (i, j) and (i, j′). If A[i, j]
is a maximal value in row i, then if j′ exists, then it must be that j′ > j∗,
and the row cost of the 2D pointer is bounded by the extra pointer between
(i, j) and (i, j′). On the other hand, if j′ does not exist, then the row cost of
the 2D pointer is bounded by the extra pointer from (i, j) to (i, n+ 1).

If A[i, j] is not maximal, then arguing as above, we see that the NLV of
(i, j) in the i-th row is (i, j0) for some j0 < j, that |j0 − j| ≥ |j − j∗|, and so
we can upper-bound the row cost of this 2D pointer by the total cost of all
the grid pointers between j and j0, and each of these grid pointers is used
at most twice (once each for the pointers out of (i, j) and (i, j0) in Case (b)
to upper bound a 2D pointer (Case (b,2) in Figure 2). ��

Now we describe the O(n2)-space data structure that supports NLV query in
constant time on 2-D array A[1 . . . n][1 . . . n]. To support this, first divide A into
blocks of size b×b and divide each block into sub-blocks of size s×s. By following
lemma, we can bound the number of distinct NLVs for all the maximal elements
in the block.

Lemma 6 ([12]). Given a block of size k×k, the maximal elements in the block
have at most O(k) distinct NLVs.

We divide the area outside each blocks (sub-blocks) into 8 regions (N, S, W,
E, NW, NE, SE, SW) as defined in Section 3. Now we prove the main theorem.

Theorem 5. There exists an encoding of 2-D array A[1 . . . n][1 . . . n] that uses
O(n2) bits while supporting NLV queries in O(1) time.

Proof. For each element A[i, j], we assign a color from the set {C1, C2, . . . , C9},
as follows. If NLV(i, j) is in one of the 8 regions, we give one of the colors from
C1 to C8; and if the answer is within the block containing (i, j), then we give the
color C9. Also for block B, let Bmax be the set of NLV of the maximal elements
in B. Then for each boundary element eB in block B, we store a pointer to an
element in Bmax which is closest to eB. These structures take O(b2+ b lgn) bits,
for each block by Lemma 6. For each sub-block, we maintain similar structure as
above using O(s2+s lg b) bits. (Note that a maximal element in a sub-block which
is not a maximal element in its block can have its answer outside the block, but
its distance to NLV is bounded by O(b). So, we can store the answer explicitly.)
Also for each element, we assign the color c1 to c9 by the position of its NLV
analogous to C1 to C9. To support NLV quries for non-maximal elements in a
sub-block, we encode each sub-block together with its 8 neighboring sub-blocks,
using the encoding of Theorem 4, using O(s2) bits. In addition, we construct a
precomputed table that is indexed by the above O(s2)-bit encoding of a sub-
block and a position within it, and returns the NLV for that position.

64 S. Jo, R. Raman, and S.S. Rao

We now describe the query algorithm. Consider the query q = A[i, j] and
let Bq (bq) be the block (sub-block) that contains q. We first check whether q
is a maximal element in bq. If q is not a maximal element in bq, we use the
precomputed table to find the answer, in O(1) time. Otherwise, if q is not a
maximal element in Bq, then NLV(q) can be answered in O(1) time by finding
the nearest boundary in the direction corresponding to q’s assigned color. If
q is a maximal element in Bq, we can find its NLV in O(1) time by a similar
procedure using colors C1 to C9. So total query time is O(1), and total space is

O(n2/b2× (b2+ b lgn)+n2/s2× (s2+ s lg b)+ 2O(s2)) bits. If we set b = lgn and
s = c

√
lgn, we can encode A with supporting NLV queries in O(n2) bits. ��

References

1. Asano, T., Bereg, S., Kirkpatrick, D.: Finding nearest larger neighbors. In: Albers,
S., Alt, H., Näher, S. (eds.) Efficient Algorithms. LNCS, vol. 5760, pp. 249–260.
Springer, Heidelberg (2009)

2. Asano, T., Kirkpatrick, D.: Time-space tradeoffs for all-nearest-larger-neighbors
problems. In: Dehne, F., Solis-Oba, R., Sack, J.-R. (eds.) WADS 2013. LNCS,
vol. 8037, pp. 61–72. Springer, Heidelberg (2013)

3. Berkman, O., Schieber, B., Vishkin, U.: Optimal doubly logarithmic parallel algo-
rithms based on finding all nearest smaller values. J. Algorithms 14(3), 344–370
(1993)

4. Brodal, G.S., Brodnik, A., Davoodi, P.: The encoding complexity of two dimen-
sional range minimum data structures. In: Bodlaender, H.L., Italiano, G.F. (eds.)
ESA 2013. LNCS, vol. 8125, pp. 229–240. Springer, Heidelberg (2013)

5. Brodal, G.S., Davoodi, P., Lewenstein, M., Raman, R., Srinivasa Rao, S.: Two
dimensional range minimum queries and fibonacci lattices. In: Epstein, L.,
Ferragina, P. (eds.) ESA 2012. LNCS, vol. 7501, pp. 217–228. Springer,
Heidelberg (2012)

6. Brodal, G.S., Davoodi, P., Rao, S.S.: On space efficient two dimensional range
minimum data structures. Algorithmica 63(4), 815–830 (2012)

7. Demaine, E.D., Landau, G.M., Weimann, O.: On cartesian trees and range mini-
mum queries. Algorithmica 68(3), 610–625 (2014)

8. Ferragina, P., Manzini, G., Mäkinen, V., Navarro, G.: Compressed representations
of sequences and full-text indexes. ACM Transactions on Algorithms 3(2) (2007)

9. Fischer, J.: Combined data structure for previous- and next-smaller-values. Theor.
Comput. Sci. 412(22), 2451–2456 (2011)

10. Fischer, J., Mäkinen, V., Navarro, G.: Faster entropy-bounded compressed suffix
trees. Theor. Comput. Sci. 410(51), 5354–5364 (2009)

11. Jacobson, G.: Space-efficient static trees and graphs. In: FOCS, pp. 549–554. IEEE
Computer Society (1989)

12. Jayapaul, V., Jo, S., Raman, V., Satti, S.R.: Space efficient data structures for
nearest larger neighbor. In: Proc. IWOCA 2014 (to appear, 2014)

13. Okanohara, D., Sadakane, K.: Practical entropy-compressed rank/select dictionary.
In: ALENEX (2007)

A Practical Succinct Data Structure

for Tree-Like Graphs

Johannes Fischer1 and Daniel Peters2

1 TU Dortmund, Germany
johannes.fischer@cs.tu-dortmund.de

2 Physikalisch-Technische Bundesanstalt (PTB), Germany
daniel.peters@ptb.de

Abstract. We present a new succinct data structure for graphs that are
“tree-like,” in the sense that the number of “additional” edges (w.r.t. a
spanning tree) is not too high. Our algorithmic idea is to represent a
BFS-spanning tree of the graph with a succinct data structure for trees,
and enhance it with additional information that accounts for the non-
tree edges. In practical tests, our data structure performs well for graphs
containing up to 10% of non-tree edges, reducing the space of a pointer-
based representation by a factor of ≈20, while increasing the worst-case
running times for the operations by roughly the same factor.

1 Introduction

Succinct data structures have been one of the key contributions to the algo-
rithms community in the past two decades. Their goal is to represent objects
from a universe of size u in information-theoretical optimal lg u bits of space.1

Apart from the bare representation of the object, fast operations should also be
supported, ideally in time no worse than with a “conventional” data structure
for the object. For this, one usually allows extra space o(lg u) bits.

A prime example of succinct data structures are ordered rooted trees, where
with n nodes we have u ≈ 4n. In 1989, Jacobson made a first step towards
achieving this goal, by giving a data structure using 10n+ o(n) bits, while sup-
porting the most common navigational operations in O(lg n) time [19]. This was
further improved to the optimal 2n + o(n) bits and optimal O(1) navigation
time by Munro and Raman [25]. Note that a conventional, pointer-based data
structure for trees requires Θ(n lg n) bits, which is off by a factor of lg n from
the information-theoretical minimum.

Since the work of Munro and Raman, the research on succinct data structures
has blossomed. We now have succinct data structures for bit-vectors [27], per-
mutations [23], binary relations [2], dictionaries [26], suffix trees [29], to name
just a few.

The practical value of those data structures has sometimes been disputed.
However, as far as we know, in all cases where genuine attempts were made at

1 Function lg denotes the binary logarithm throughout this paper.

M.S. Rahman and E. Tomita (Eds.): WALCOM 2015, LNCS 8973, pp. 65–76, 2015.
c© Springer International Publishing Switzerland 2015

66 J. Fischer and D. Peters

practical implementations, the results have mostly been successful [13,20,16, etc.,
to cite some recent papers presented in the algorithm engineering community].
Further examples of well-performing practical succinct tree implementations will
be mentioned throughout this paper.

1.1 Our Contribution

We focus on the succinct representation of a very practical class of graphs: graphs
that are “tree-like” in the sense that the number of edges, which can potentially
be Θ(n2) for an n-node graph, is much lower. We measure this tree-likeness by
introducing two additional parameters: (1) k, the number of “additional” edges
that have to be added to a spanning tree of the graph (note that k = m− n+1
if m denotes the total number of edges), and (2) h, the number of nodes having
more than one incoming edge (also called non-tree nodes in the following). This
definition of tree-likeness is similar in flavor to the k-almost trees by Gurevich
et al. [17], but in the latter the number of additional edges is counted separately
for each biconnected component, with k being the maximum of these.

We think that our definition of tree-likeness encompasses a large range of in-
stances arising in practice. One important example comes from computational
biology, where one models the ancestral relationships between species by phy-
logenetic trees. However, sometimes there are also non-bifurcating specification
events [18]. One approach to handle those events are phylogenetic networks,
which have an underlying tree as a basis, but with added cross-edges to model
the passing of genetic material that does not follow the tree.

Our first contribution (Sect. 3) is a theoretical formulation of a succinct data
structure for graphs with the above mentioned parameters n, m, k, and h. It
uses space at most (2n+m) lg 3+h lg n+ k lg h+ o(m+ k lg h) +O(lg lg n) bits,
which is close to the 2n + o(n) bits for succinct trees if k (and hence also m
and h) is close to n. This should be compared to the O((n +m) lgn) bits that
were needed if the graph was represented using a pointer-based data structure.
Our second contribution is that we show that the data structure is amenable to
a practical implementation (Sect. 4–5). We show that we can reduce the space
from a conventional pointer-based representation by a factor of about 20, while
the times for navigational operations (moving in either direction of the edges)
increase by roughly the same factor; such a space-time tradeoff is typical for
succinct data structures.

1.2 Further Theoretical Work on Succinct Graphs

Farzan and Munro [9] showed how to represent a general graph succinctly in

lg
(
n2

m

)
(1+o(1)) bits of space, while supporting the operations supported both by

adjacency lists and by adjacency matrices in optimal time. Other results exist for
special types of graphs: separable graphs [5], planar graphs [25], pagenumber-k
graphs [11], graphs of limited arboricity [21], and DAGs [8]. However, to the best
of our knowledge, only the approach on separable graphs has been implemented

A Practical Succinct Data Structure for Tree-Like Graphs 67

so far [6]. Also, none of the approaches can navigate efficiently to the sources of
the incoming edges (without doubling the space), as we do.

2 Preliminaries

In this section we introduce existing data structures that form the basis of our
new succinct graph representation. All these results (hence also our new one) are
in the word-RAM model of computation, where it is assumed that the machine
consists of words of width w bits that can be manipulated in O(1) time by a
standard set of arithmetic and logical operations, and further that the problem
size n is not larger than O(2w).

2.1 Succinct Data Structures

Let S[0, n) be a bit-string of length n. We define the fundamental rank - and
select -operations on S as follows: rank1(S, i) gives the number of 1’s in the prefix
S[0, i], and select1(S, i) gives the position of the i’th 1 in S, reading S from
left to right (0 ≤ i < n). Operations rank0(S, i) and select0(S, i) are defined
similarly for 0-bits. S can be represented in n + o(n) bits such that rank- and
select-operations are supported in O(1) time [25].

These operations have been extended to sequences over larger alphabets, at
the cost of slight slowdowns in the running times [14]: let S[0, n) be a string over
an alphabet Σ of size σ. Then S can be represented in n lg σ(1 + o(1)) bits of
space such that the operations ranka(S, i) and S[i] (accessing the i’th element)
take O(lg lg σ) time, and selecta(S, i) takes O(1) time (all for arbitrary a ∈ Σ
and arbitrary 0 ≤ i < n). Note that by additionally storing S in plain form,
the access-operation also takes O(1) time, at the cost of duplicating the space.
In some special cases the running times for the three operations is faster. For
example, when the alphabet size is small enough such that σ = wO(1) for word
size w, then Belazzougui and Navarro [3] proved that O(1) time for all three
operations is possible within O(n lg σ) bits of space.

2.2 The Level Order Unary Degree Sequence (LOUDS)

There are several ways to represent an ordered tree on n nodes using 2n bits [24,
4]; in this article, we focus on one of the oldest approaches, the level order unary
degree sequence [19], which is obtained as follows (the reasons for preferring
LOUDS over BPS [24] or DFUDS [4] will become evident when introducing
the new data structure in Sect. 3). For convenience, we first augment the tree
with an artificial super-root that is connected with the original root of the tree.
Now initialize B as an empty bit-vector and traverse the nodes of the tree level
by level (aka breadth-first). Whenever we see a node with k children during
this level-order traversal, we append the bits 1k0 to S, where 1k denotes the
juxtaposition of k 1-bits. See Fig. 1 for an example. In the LOUDS, each node
is represented twice: once by a ‘1,’ written when the node was seen as a child

68 J. Fischer and D. Peters

1

32 4

5 6 7

0

1110

100110

0100

0

10

8

(a) tree

1 0 1 1 1 0 1 0 0 1 1 0 0 1 0 0 0
1 2 3 4 5 6 7 80

1 2 3 4 5 6 7 8
B =

(b) LOUDS

Fig. 1. An ordered tree (a) and its level order unary degree sequence (b)

during the level-order traversal, and once by a ‘0,’ written when it was seen as
a parent. The number of bits in B is 2n+ 1.

We identify the nodes with their level-order number, since both the 1- and
the 0-bits appear in this order in B. It should be noted that all succinct data
structures for trees [19, 24, 4, 10, 7] must have the freedom to fix a particular
naming for the nodes; natural such namings are post- or pre-order [19, 24, 4],
in-order [7], and level-order [19], as here.2

If we now augment B with data structures for rank and select (see Sect. 2.1),
then the resulting space is 2n+ o(n) bits, but basic navigational operations on
the tree can be simulated in O(1) time: for moving to the parent node of i
(1 ≤ i ≤ n), we jump to the position y of the i’th 1-bit in B by y = select1(B, i),
and then count the number j of 0’s that appear before y in B by j = rank0(B, y);
j is then the level-order number of the parent of i. Conversely, listing the children
of i works by jumping to the position x of the i’th 0-bit in B by x = select0(B, i),
and then iterating over the positions x+1, x+2, . . . , as long as the corresponding
bit is ‘1.’ For each such position x+k with B[x+k] = 1, the level-order numbers
of i’s children are rank1(B, x) + k, which can be simplified to x− i+ k + 1.

3 New Data Structure

We now propose our new succinct data structure for tree-like graphs. Let G
denote a directed graph. We use the following characteristics of G:

– n, the number of nodes in G,
– m, the number of edges in G,
– c ≤ n, the number of strongly connected components with no incoming edge

from a different strongly connected component,
– k = m− n+ 1, the number of non-tree edges in G (the number of edges to

be added to a spanning tree of G to obtain G), and
– h ≤ k, the number of non-tree nodes in G (nodes with more than 1 incoming

edge).

2 If the naming is arbitrary (e.g., chosen by the user), then n lg n bits are inevitable,
since any memory layout of the nodes has n! possible namings.

A Practical Succinct Data Structure for Tree-Like Graphs 69

1

3

2

4

5

6

8

7

(a) A graph G

1

32

4 5

6 7 8

0

4

7

78

110

10210

110210

20020

10

(b) The resulting tree TG. Shadow
nodes are depicted as dashed lines.

1 0 1 1 0 1 0 2 1 0 1 1 0 2 1 0 2 0 0 2 0
1 2 3 4 4 5 6 7 7 8 8 7

1 20 3 4 5 6 7 8

B =

H =4,7,8,7

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0

(c) The resulting ternary LOUDS B and
the array H of non-tree edges

Fig. 2. Illustration of our new data structure. The nodes are numbered such that they
correspond to the level-order numbers in the chosen BFT-tree.

For simplicity, assume for now that there exists a node r inG from which a path
to every other node exists (i.e., c = 1). From r, perform a breadth-first traversal
(BFT) of G. Let TBFT

G denote the resulting BFT-tree. We augment TBFT
G as fol-

lows: for each node w that is inspected but not visited during the BFT at node v
(meaning that it has already been visited at an earlier point), we make a copy of
w and append it as a child of v in the BFT-tree TBFT

G . We call those nodes shadow
nodes. Finally, we add a super-root to r, and call the resulting tree TG, which has
exactlym+2 nodes. See Fig. 2a and 2b for an example ofG and TG. If no such node
r exists, we perform the BFT from c nodes r1, . . . , rc for every strongly connected
component with no incoming edge from a different such component, and obtain a
BFT-forest. All roots of this forest will be made children of the super-root. This
adds at most c additional edges to TG.

We now aim at representing the tree TG space efficiently, similar to the LOUDS
of Sect. 2.2. Since we need to distinguish between real nodes and shadow nodes,
we cannot construct a bit -vector anymore. Instead, we construct B as a sequence
of trits, namely values from {0, 1, 2}, as follows: again, B is initially empty, and
we visit the nodes of TG in level-order. For each visited node, the sequence
appended to B is constructed as in the original LOUDS, but now using a ‘2’
instead of a ‘1’ for shadow nodes. The shadow nodes are not visited again during
the level-order traversal and hence not represented by 0’s.3 We call the resulting

3 Listing the shadow nodes by 0’s would not harm, but does not yield any extra
information; hence we can omit them.

70 J. Fischer and D. Peters

Function children(i): find the nodes directly reachable from i.

x ← select0(B, i) + 1; // start of the list of i’s children

while B[x] �= 0 do
if B[x] = 1 then output rank1(B, x); // actual node

else output H [rank2(B,x)]; // shadow node

x ← x+ 1;
endw

Function parents(i): find the nodes from which i is directly reachable.

output rank0(B, select1(B, i)); // tree parent

j ← 1;
x ← selecti(H, j);
while x < k do

output rank0(B, select2(B, x+ 1)); // non-tree parent

j ← j + 1;
x ← selecti(H, j);

endw

trit-vector B the ternary LOUDS. The ternary LOUDS consists of n+m+ c+1
trits. See Fig. 2c for an example.

We also need an additional arrayH that lists the non-tree nodes in the order in
which they appear in B. This array will be used for the navigational operations,
as shown in Sect. 3.1. For the operations, besides accessing H , we will also
need select-support on H . For this, we use the data structures mentioned in
Sect. 2.1 [3, 14].

3.1 Algorithms

The algorithms for listing the children and parents of a node are shown in Func-
tions children(i) and parents(i). These functions follow the original LOUDS-
functions as closely as possible. Listing the children just needs to make the
distinction if there is a ‘1’ or a ‘2’ in the ternary LOUDS B; in the latter case,
array H storing the shadow nodes needs to be accessed.

Listing the parents is only slightly more involved. First, the (only) tree parent
can be obtained as in the original LOUDS. Then we iterate through the occur-
rences of i in H in a while-loop, using select-queries. For each occurrence found,
we go to the corresponding ‘2’ in B and count the number of ‘0’s before that ‘2’
as usual.

As in the original LOUDS, counting the number of children is faster than
traversing them: simply calculate select0(B, i+1)−select0(B, i)+1; this computes
the desired result in O(1) time.4

4 For calculating the number of parents in O(1) time, we would need to store those
numbers explicitly for hybrid nodes; for all other nodes it is 1.

A Practical Succinct Data Structure for Tree-Like Graphs 71

3.2 Space Analysis

The trit-vector B can be stored in (n + m + c)(lg 3 + o(1)) bits [27], while
supporting O(1) access on its elements. Support for rank and select-queries needs
additional o(n+m) bits [25].

There are several ways to store H . Storing it in plain form uses k lgn bits.
Using another k lgn(1 + o(1)) bits, we can also support selecta(H, i)-queries on
H in constant time [14]. This sums up to 2k lgn+ o(k lgn) bits.

On the other hand, since the number h of non-tree nodes can be much smaller
than k (the number of non-tree edges), this can be improved with a little bit of
more work: we store a translation table T [0, h) such that T [i] is the level order
number of the i’th non-tree node. Then H [0, k) can be implemented by a table
H ′[0, k) that only stores values from [0, h), such that H [i] = T [H ′[i]]. The space
for T and H ′ is k lg h+h lgn bits. To also support select-queries on H within less
than k lg n bits of space, we use the indexable dictionaries of Raman et al. [28]:
store a bit vector C[0, n) such that C[i] = 1 iff the i’th node in level order is a
non-tree node. C can be stored in h lgn+ o(h) + O(lg lg n) bits [28, Thm. 3.1],
while supporting select- and partial rank-queries (only rank1(C, i) with C[i] = 1,
which is what we need here) in constant time. Now we only need to prepare
H ′ for select-queries, this time using k lg h+ o(k lg h) bits. Queries selecta(H, i)
can be answered by selectrank1(C,a)(H

′, i), so H can be discarded. Since the data
structure of Raman et al. [28] automatically supports select-queries, we also do
not need to store T in plain form anymore, since T [i] = select1(C, i). Thus, the
total space for H using this second approach is h lgn + k lg h + o(h + k lg h) +
O(lg lg n) bits.

Summing up and simplifying (c ≤ n), the main theoretical result of this article
can be formulated as follows:

Theorem 1. A directed graph G with n nodes, m edges, and h non-tree nodes
(k = m− n+ 1 is the number of non-tree edges) can be represented in

(2n+m) lg 3 + h lgn+ k lg h+ o(m+ k lg h) +O(lg lg n)

bits such that listing the x incoming or y outgoing edges of any node can be done
in O(x) or O(y) time, respectively. Counting the number of outgoing edges can
be done in O(1) time.

4 Implementation Details

We now give some details of our implementation of the data structure from
Sect. 3, sometimes sacrificing theoretical worst-case guarantees for better results
in practice.

4.1 Representing Trit-Vectors

We first explain how we store the trit sequence B such that constant time access,
rank and select are supported. We group 5 trits together into one tryte, and store

72 J. Fischer and D. Peters

this tryte in a single byte. This results in space �(n+m+c)/5�·8 = �1.6 (n+m+
c)� bits for B, which is only ≈ 1% more than the optimal �(n +m + c) lg 3� ≈
�1.585 (n+ m + c)� bits. The individual trits are reconstructed using Horner’s
method, in just one calculation.5

For rank and select on B, we use an approach similar to the bit -vectors of
González et al. [15], but with a three-level scheme (instead of only 2), thus
favoring space over time. This scheme basically stores rank-samples at increasing
sample rates, and the fact that the bits are now intermingled with 2’s does not
cause any troubles. We used sample rates 25, 275, and 65725 trits, respectively,
which enable a fast byte-aligned layout in memory. On the smallest level we
divided a 25-trit block into five trytes. Using the table lookup technique [22] on
the trytes the calculation for rank on a 25-trit block is done in at most five steps
with an overhead of 35 = 243 bytes of space.

As in the original publication [15], select queries are solved by binary searches
on rank-samples, again favoring space over time.

4.2 Other Data Structures

Instead of the complex representation of H as described in Sect. 3.2, needed
for an efficient support of the parent-operation, we used a simpler array-based
approach: we store the positions of 1-bits (in B) of the first occurrences of non-
tree nodes in an array P [0, h). (In the example of Fig. 2, we have P = [5, 11, 14]
for the non-tree nodes 4,7, and 8.) A second array Q[0, k) lists the positions
of the other occurrences of the non-tree nodes, in level order (In the example,
Q = [7; 13, 19; 16]). A final third array N [0, h) stores the starting positions of the
non-tree nodes in Q (in the example, N = [0, 1, 3]). Then with a binary search
on P (or a bit-vector marking the respective positions) we can find out if a node
i has further shadow copies, and if so, list them using Q and N . Note that with
these arrays, we can also efficiently list (in O(1) time) the number of parents of
non-tree nodes.

We also added a bit-vector D = [0, n) with D[i] = 1 iff node i is a leaf node.
This way, the question if a node has children can be quickly answered by just
one look-up to D, omitting rank and select queries.

5 Practical Results

The aim of this section is to show the practicality of our approach on the ex-
ample of phylogenetic networks. Such networks arise in computational biology.
They are a generalization of the better known phylogenetic trees, which model
the (hypothetic) ancestral relationships between species. In particular for fast re-
producing organisms like bacteria, networks can better explain the observed data

5 We did not investigate codes that exploit the fact that the distribution of the 0’s,
1’s, and 2’s in B is not necessarily uniform. Some further space could be saved here,
probably at the cost of increased access times. We leave this as a direction for future
research.

A Practical Succinct Data Structure for Tree-Like Graphs 73

than trees. Quoting Huson and Scornavacca [18], phylogenetic networks “may
be more suitable for data sets where evolution involves significant amounts of
reticulate events, such as hybridization, horizontal gene transfer, or recombina-
tion.”

Since large real-life networks are not (yet) available, we chose to create them
artificially for our tests. We did so by creating random tree-like graphs with 10%
non-tree edges (k = n/10), by directly creating random trit-vectors of a given
length, and randomly introducing k 2’s to create non-tree edges. We further
ensured that shadow nodes have different parents, and that all non-tree edges
point only to nodes at the same height (in the BFS-tree), mirroring the structure
of phylogentic networks (no interchange of genetic material with extinct species).

We compared our data structure to a conventional pointer-based data struc-
ture for graphs (where each node stores a list of its descendants, a pointer to
an arbitrary father, and the number of its descendants). While there exist many
implementations of succinct data structures for trees6, we are not aware of any
implementations for graphs, hence we did not compare our data structure to
others.

Our machine was equipped with an Intel Core i7@2.2GHz and 8GB of RAM,
running under Windows 7. We compiled the program for 32 bits, in order not
to make the pointer-based representation unnecessarily large. All programs used
only a single core of the CPU. We averaged the running times over 1 000 tests
for n = 10 000, over 100 tests for 100 000 ≤ n ≤ 1 000 000, over 15 tests for
n = 10 000 000, and over 5 tests for n = 100 000 000.

Table 1. Comparison between a pointer based graph and our succinct LOUDS repre-
sentation for graphs with 10% non-tree edges

space [MByte] time for children [μsec] time for parents [μsec]

n LOUDS pointer LOUDS pointer LOUDS pointer

10 000 0.0159 0.3654 0.3203 0.0295 0.3315 0.0129
100 000 0.1682 3.6533 0.3458 0.0311 0.3472 0.0130

1 000 000 1.6818 36.5433 0.3884 0.0332 0.3614 0.0136
10 000 000 18.8141 365.4453 0.3889 0.03374 0.3812 0.0138

100 000 000 188.1542 3 654.4394 0.4095 — 0.4198 —

Table 1 shows the sizes of the data structures and the average running times
for the children- and parents-operations with either representation.7 It can be
seen that our data structure is consistently about 20–25 times smaller than the
pointer-based structure, while the time for the operations increases by a factor

6 For example, the well-known libraries for succinct data structures
https://github.com/fclaude/libcds and https://github.com/simongog/sdsl

both have well-tuned succinct tree implementations. Other sources are [1,12].
7 For memory reasons, the running times of the pointer-based representation could
not be measured for the last instances.

https://github.com/fclaude/libcds
https://github.com/simongog/sdsl

74 J. Fischer and D. Peters

(a) Listing the children of a node. The
graph shows the relative slow-down of
our LOUDS over a pointer-based repre-
sentation for nodes with varying number
of children.

(b) The same as in (a), but now for list-
ing the parents of a node

Fig. 3. Detailed evaluation of running times

of about 12 in case of the children-operation, and by a factor of about 25 in case
of the parents-operation. Such trade-offs are typical in the world of succinct data
structures.

To further evaluate our data structure, we more closely surveyed the children-
and parents-operations in a graph with 1 000 000 nodes and 10% of non-tree
edges, in which a node has no more than 16 incoming edges. We executed both
operations on every node in the graph and grouped the running times by the
number of children and parents, respectively. The results are shown in Fig. 3. In
(a), showing the results for the children-operations, several interesting points can
be observed. First, for nodes with 0 children (a.k.a. leaves), our data structure
is actually faster than the pointer-based representation (about twice as fast),
because this operation can be answered by simply checking one bit in the bit-
vectorD, mentioned in Sect. 4. Second, for nodes with 5 children the slowdown is
only about 3, then rises to a slowdown of about 7 for nodes with 8 children, and
finally gradually levels off and seems to convert to a slowdown of about 5. We
think that this can be explained by the different distributions of the types of the
nodes listed in the children operation: while for tree-nodes the node numbers can
be simply calculated from the LOUDS, for non-tree nodes this process involves
further look-ups, e.g. to the H-array. Since we tested graphs with 10% non-tree
edges, we think that at about 7–8 children/nodes this effect is most expressed. In
(b) the parents operation on our LOUDS for nodes with one parent is around 30
times slower than the pointer representation. For a greater number of parents it
is about 16 times slower. Our explanation is that at first a rank and select query
is necessary to retrieve the first parent node, afterwards if the node has more
than one parent the H-array is scanned. With our practical implementation of
the H-array from Sect. 4 the select results are directly saved in the Q-array,
hence there is no need for select queries anymore and a rank query seems to be
around 16 times slower than a look-up.

A Practical Succinct Data Structure for Tree-Like Graphs 75

6 Conclusions

We presented a framework and implementation for a new succinct data structure
for “tree-like” graphs based on the LOUDS representation for trees. The practical
evaluation confirmed that our succinct data structure achieves a significant space
reduction. A trade-off between space and time can be observed, which is common
in the world of succinct data structures.

References

1. Arroyuelo, D., Cánovas, R., Navarro, G., Sadakane, K.: Succinct trees in practice.
In: Proc. ALENEX, pp. 84–97. SIAM (2010)

2. Barbay, J., Claude, F., Navarro, G.: Compact rich-functional binary relation rep-
resentations. In: López-Ortiz, A. (ed.) LATIN 2010. LNCS, vol. 6034, pp. 170–183.
Springer, Heidelberg (2010)

3. Belazzougui, D., Navarro, G.: New lower and upper bounds for representing
sequences. In: Epstein, L., Ferragina, P. (eds.) ESA 2012. LNCS, vol. 7501,
pp. 181–192. Springer, Heidelberg (2012)

4. Benoit, D., Demaine, E.D., Munro, J.I., Raman, R., Raman, V., Rao, S.S.: Repre-
senting trees of higher degree. Algorithmica 43(4), 275–292 (2005)

5. Blandford, D.K., Blelloch, G.E., Kash, I.A.: Compact representations of separable
graphs. In: Proc. SODA, pp. 679–688. ACM/SIAM (2003)

6. Blandford, D.K., Blelloch, G.E., Kash, I.A.: An experimental analysis of a compact
graph representation. In: ALENEX/ANALC, pp. 49–61. SIAM (2004)

7. Davoodi, P., Raman, R., Satti, S.R.: Succinct representations of binary trees for
range minimum queries. In: Gudmundsson, J., Mestre, J., Viglas, T. (eds.) CO-
COON 2012. LNCS, vol. 7434, pp. 396–407. Springer, Heidelberg (2012)

8. Farzan, A., Fischer, J.: Compact representation of posets. In: Asano, T.,
Nakano, S.-i., Okamoto, Y., Watanabe, O. (eds.) ISAAC 2011. LNCS, vol. 7074,
pp. 302–311. Springer, Heidelberg (2011)

9. Farzan, A., Munro, J.I.: Succinct representations of arbitrary graphs. In: Halperin,
D., Mehlhorn, K. (eds.) ESA 2008. LNCS, vol. 5193, pp. 393–404. Springer, Hei-
delberg (2008)

10. Farzan, A., Munro, J.I.: A uniform approach towards succinct representation of
trees. In: Gudmundsson, J. (ed.) SWAT 2008. LNCS, vol. 5124, pp. 173–184.
Springer, Heidelberg (2008)

11. Gavoille, C., Hanusse, N.: On compact encoding of pagenumber k graphs. Discrete
Mathematics & Theoretical Computer Science 10(3), 23–34 (2008)

12. Geary, R.F., Rahman, N., Raman, R., Raman, V.: A simple optimal representation
for balanced parentheses. Theor. Comput. Sci. 368(3), 231–246 (2006)

13. Gog, S., Ohlebusch, E.: Fast and lightweight LCP-array construction algorithms.
In: Proc. ALENEX, pp. 25–34. SIAM (2011)

14. Golynski, A., Munro, J.I., Rao, S.S.: Rank/select operations on large alphabets: a
tool for text indexing. In: Proc. SODA, pp. 368–373. ACM/SIAM (2006)

15. González, R., Grabowski, S., Mäkinen, V., Navarro, G.: Practical implementation
of rank and select queries. In: Poster Proceedings Volume of 4th Workshop on
Efficient and Experimental Algorithms (WEA), Greece, pp. 27–38. CTI Press and
Ellinika Grammata (2005)

76 J. Fischer and D. Peters

16. Grossi, R., Ottaviano, G.: Design of practical succinct data structures for large
data collections. In: Bonifaci, V., Demetrescu, C., Marchetti-Spaccamela, A. (eds.)
SEA 2013. LNCS, vol. 7933, pp. 5–17. Springer, Heidelberg (2013)

17. Gurevich, Y., Stockmeyer, L., Vishkin, U.: Solving NP-hard problems on
graphs that are almost trees and an application to facility location problems.
J. ACM 31(3), 459–473 (1984)

18. Huson, D.H., Scornavacca, C.: A survey of combinatorial methods for phylogenetic
networks. Genome Biology and Evolution 3, 23 (2011)

19. Jacobson, G.J.: Space-efficient static trees and graphs. In: Proc. FOCS,
pp. 549–554. IEEE Computer Society (1989)

20. Joannou, S., Raman, R.: Dynamizing succinct tree representations. In: Klasing, R.
(ed.) SEA 2012. LNCS, vol. 7276, pp. 224–235. Springer, Heidelberg (2012)

21. Kannan, S., Naor, M., Rudich, S.: Implicit representation of graphs. SIAM J. Dis-
crete Math. 5(4), 596–603 (1992)

22. Munro, J.I.: Tables. In: Chandru, V., Vinay, V. (eds.) FSTTCS 1996. LNCS,
vol. 1180, pp. 37–42. Springer, Heidelberg (1996)

23. Munro, J.I., Raman, R., Raman, V., Rao, S.S.: Succinct representations of per-
mutations. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.)
ICALP 2003. LNCS, vol. 2719, pp. 345–356. Springer, Heidelberg (2003)

24. Munro, J.I., Raman, V.: Succinct representation of balanced parentheses, static
trees and planar graphs. In: Proc. FOCS, pp. 118–126. IEEE Computer Society
(1997)

25. Munro, J.I., Raman, V.: Succinct representation of balanced parentheses and static
trees. SIAM J. Comput. 31(3), 762–776 (2001)

26. Pagh, R.: Low redundancy in static dictionaries with constant query time. SIAM
J. Comput. 31(2), 353–363 (2001)

27. Pǎtraşcu, M.: Succincter. In: Proc. FOCS, pp. 305–313. IEEE Computer Society
(2008)

28. Raman, R., Raman, V., Rao, S.S.: Succinct indexable dictionaries with applications
to encoding k-ary trees and multisets. ACM Transactions on Algorithms 3(4),
Article No. 43 (2007)

29. Sadakane, K.: Compressed suffix trees with full functionality. Theory Comput.
Syst 41(4), 589–607 (2007)

Forming Plurality at Minimum Cost

Wei-Yin Lin1, Yen-Wei Wu1, Hung-Lung Wang4, and Kun-Mao Chao1,2,3

1 Department of Computer Science and Information Engineering
2 Graduate Institute of Biomedical Electronics and Bioinformatics

3 Graduate Institute of Networking and Multimedia
National Taiwan University, Taipei, Taiwan 106
4 Institute of Information and Decision Sciences

National Taipei University of Business, Taipei, Taiwan 100

Abstract. In this paper, we are concerned with a kind of spatial equi-
libria, the plurality points, in two-dimensional Euclidean space. Given a
set of voters, each of which corresponds to a point, a plurality point is
defined as a point closer to at least as many voters as any other point
in the space. We generalize the definition by appending weights on the
voters, and define the plurality point as a point � satisfying that the
sum of weights of the voters closer to � is no less than that of the voters
closer to any other point in the space. To remedy the issue of the non-
existence of plurality points, we investigate the problem of eliminating
some voters with minimum “cost” so that there is a plurality point with
respect to the remaining voters. We show that the problem is NP-hard.
Moreover, if all voters’ weights are restricted to be equal, we show that
the problem can be solved in O(n5 log n) time, where n is the number of
voters.

1 Introduction

A plurality point is an equilibrium location determined by election among voters
located at different places. Given a set of points regarded as voters, a plurality
point is a location which is closer to at least as many voters as any other location
in the space [1]. There are multiple classifications for the location space, such as
networks versus d-dimensional space, and continuous versus discrete space [7].

The importance of plurality points reveals in the process of election. The elec-
toral process is often reduced to a multidimensional model of spatial competition
for investigating the equilibrium [4, 11]. Such a representation model is known
as the political spectrum, where each dimension is corresponding to an issue for
discussion, and the value assigned to each voter shows the degree of support
for that particular issue. For example, suppose that there are several citizens
concerning two issues, one is environmental and the other one is economic. Each
of them corresponds to a dimension of R2, and the coordinate of each citizen is
his or her most preferred position in the issue space, where their preferences of
both issues are quantified. To help candidates make decisions, the equilibrium
can be found by computing plurality points. The model can be extended to Rd

M.S. Rahman and E. Tomita (Eds.): WALCOM 2015, LNCS 8973, pp. 77–88, 2015.
c© Springer International Publishing Switzerland 2015

78 W.-Y. Lin et al.

when there are even more issues. In addition, finding plurality points is a nat-
ural mechanism to determine an adequate location to place facilities for public
infrastructures.

Another equilibrium location which is strongly correlated to the plurality
point is the Condorcet point. A Condorcet point is a location such that there is no
other location closer to a strict majority of voters, i.e., no other location is closer
to more than a half of the voters than the Condorcet point [6]. In Euclidean space,
it has been shown that plurality points and Condorcet points are equivalent [12].
By considering it as the equilibrium point of social decisions under majority rule,
some properties were proposed in two-dimensional space with different norms,
as well as on a graph [10, 11]. There are also some prior results discussing the
relationship between plurality points and Condorcet points in various normed
spaces [5,9]. It is known that the Condorcet point does not necessarily exist, and
there are literatures dealing with this issue. In a network, Campos Rodŕıguez
and Moreno Pérez [3] introduced a relaxation of the Condorcet point called the
αγ-Condorcet points and provided polynomial algorithms to solve the problems,
in which two locations are considered indifferent for each voter if the difference
of distances to them is within a positive threshold, and the proportion of voters
needed to reject a location is different from one half.

In d-dimensional Euclidean space, the criterion of plurality was proposed
mainly in the theory of spatial competition [11]. Most previous works appeared
mainly in the literature of economics, politics and operations research [6,7,9,11].
When d > 2, it has been shown that the plurality point is unique if not all
voters are collinear, and it can be found in time O(nd−1 logn) if such a point
exists [12], where n is the number of voters. However, the plurality point may
not exist. Therefore we focus on providing an alternative solution by finding a
subset of voters which admits a plurality point at minimum cost. The problem is
generalized by assigning each voter a weight for voting and a cost to pay for be-
ing eliminated. Similar manipulation was also investigated in voting theory [2].
We show that this problem is NP-hard. For the special case where all voters are
equally weighted, we provide a polynomial-time algorithm to solve this problem.

The rest of this paper is organized as follows. First, we formally define the
problem and notation in Section 2.1, and some properties of plurality points are
given in Section 2.2. In Section 3, we show that the problem investigated in this
paper is NP-hard. In Section 4, we give a polynomial-time algorithm to solve
the problem when voters are equally weighted. Finally, Section 5 concludes this
paper by summarizing the main results and future work.

2 Preliminaries

2.1 Problem Definition

Let V = {v1, v2, . . . , vn} be a finite set of voters, where each voter corresponds
to a point in R2, and the coordinate of voter vi is denoted by (xi, yi). For any
point p, the coordinate of p is denoted by (xp, yp). The set V is also referred to
as the corresponding set of points, and V is said to be a set of voters in R2. For

Forming Plurality at Minimum Cost 79

each voter vi ∈ V , a nonnegative weight w(vi) is given to specify how many votes
that vi holds. For any U ⊆ V , let w(U) =

∑
vi∈U w(vi). We assume that no two

voters in V correspond to a same point. A point � is said to be a multidimen-
sional median of V if

∑
{v∈V : xv≤x�} w(v) ≥ w(V)/2,

∑
{v∈V : xv≥x�} w(v) ≥

w(V)/2,
∑

{v∈V : yv≤y�} w(v) ≥ w(V)/2, and
∑

{v∈V : yv≥y�} w(v) ≥ w(V)/2.
We use M to denote the set of all multidimensional medians of V .

The distance d(u, v) between two points u and v in R2 is measured by the 	2-
norm, i.e. d(u, v) =

√
(xu − xv)2 + (yu − yv)2. For two arbitrary points �1 and

�2 in R2, we say that voter vi prefers �1 to �2 if d(vi,�1) < d(vi,�2). Define
[�1��2] = {vi ∈ V : d(vi,�1) < d(vi,�2)} and [�1∼�2] = V \ ([�1��2] ∪
[�2��1]). A point �∗∈ R2 is called a plurality point if w([���∗]) ≤ w([�∗��])
holds for each �∈ R2.

We say that a set D ⊆ V is a feasible set of V if V \ D admits a plurality
point. Let F(V) denote the set of all feasible sets of V . For each voter vi ∈ V , a
cost c(vi) is given to specify the price needed for sacrificing vi in order to admit
a plurality point. For any U ⊆ V , let c(U) =

∑
vi∈U c(vi). We say that a set

D∗ ∈ F(V) is an optimal feasible set of V if c(D∗) = minD∈F(V) c(D). A formal
problem definition is given below.

Problem 1 (The Minimum-Cost Plurality Problem). Given a finite set V of voters
in R2 with nonnegative weights and costs, the minimum-cost plurality problem
is to find an optimal feasible set D∗ of V , where D∗ = argminD∈F(V) c(D).

Since a nonempty set consisting of at most two voters admits a plurality point,
it is clear that a feasible set sought in Problem 1 always exists. Notice that
according to the definition of plurality points, one may modify an instance by
inserting or deleting an arbitrary number of voters with weight zero such that
the plurality points remain the same. Thus, in the discussion below, we assume
that all voters are of positive weights.

2.2 Properties of Plurality Points

In this section, lemmas are given for finding the plurality points of V . Basically,
there are some helpful observations proposed in our previous work [12]. However,
those observations focus on the case that all voters are equally weighted. Lem-
mas 1–3 are a generalized version extended from [12]. The proofs of the lemmas
in this section can be obtained by replacing the number of voters in the proofs
in [12] with the sum of those voters’ weights. We omit the proofs here due to
the similarity.

We denote �V as the set of all the plurality points of V . Given a line L,
the plane R2 is partitioned into L+ ∪ L− ∪ L, where L+ and L− are two open
halfplanes separated by L. Let V +

L = V ∩ L+, V −
L = V ∩ L−, and VL = V ∩

L. For simplicity, we denote w(V +
L), w(V −

L), and w(VL) by w+
L , w

−
L , and wL,

respectively. For any �∈ R2, define V ↗
L,� = {v ∈ VL : yv > y�} ∪ {v ∈ VL :

yv = y�and xv > x�}, and V ↙
L,� = {v ∈ VL : yv < y�} ∪ {v ∈ VL : yv =

80 W.-Y. Lin et al.

L

v4

v6

v5

v7

v3
v2

v8

v9
v10

v12

v11

v1

�

Fig. 1. Partitioning V into VL ∪ V +
L ∪ V −

L , where VL = {v2, v3, v8, v9}, V +
L =

{v1, v10, v11, v12}, V −
L = {v4, v5, v6, v7}, V ↗

L,� = {v2, v3}, and V ↙
L,� = {v8, v9}. If voters

are of unit weight, then wL = w+
L = w−

L = 4 and w↗
L,� = w↙

L,� = 2

y�and xv < x�}. For simplicity, we denote w(V ↗
L,�) and w(V ↙

L,�) by w↗
L,�, and

w↙
L,�, respectively. See Figure 1 for an illustration.

Lemma 1. Let V be a set of voters in R2. If all voters in V are collinear, then

(i) �V =M;
(ii) |�V | ≥ 1.

Lemma 2. In R2, a point � is a plurality point if and only if for any line L
passing through �, w+

L ≤ w(V)/2 and w−
L ≤ w(V)/2.

Lemma 3. Let V be a set of voters and � be a point in R2. If � �∈ V , then the
following statements are equivalent:

(i) � is a plurality point;
(ii) w+

L = w−
L for each line L passing through �;

(iii) w↗
L,� = w↙

L,� for each line L passing through �.

The lines passing through � and a voter vi ∈ V are called the voting lines of
V with respect to �. Note that the number of distinct voting lines of V with
respect to � may not be exactly n, since some voters may be collinear with other
voters and �.

3 NP-Hardness of the Minimum-Cost Plurality Problem

In this section, we show that the minimum-cost plurality problem is NP-hard,
even when the cost of all voters are equal. The decision version of this problem
is given in Problem 2.

Problem 2 (The Unit-cost Plurality Problem (UCP)). Given a finite set V of
weighted voters in R2 and an integer k with 0 � k < |V |, each voter v is
assigned with unit cost and a weight w(v). UCP is to determine whether there
is a subset V ′ of V such that V \ V ′ admits a plurality point, and c(V ′) � k.

Forming Plurality at Minimum Cost 81

We show the NP-completeness of UCP by reducing the maximum subset sum
problem (MSS) to it. The problem definition is given as below.

Problem 3 (The Maximum Subset Sum Problem (MSS)). Given a multiset of
integers A = {a1, a2, . . . , am} and an integer k where 0 � k < m, MSS is to
determine if there is a subset A′ of A such that

∑
ai∈A\A′ ai = 0 and |A′| � k.

Given a multiset of integers A, the subset sum problem, which is a well-known
NP-complete problem, asks if there is a nonempty subset of A which sums to
zero. Note that MSS is very similar to the subset sum problem, where the only
difference in between is the size constraint. Hence, MSS is also NP-complete
since we can answer the question of the subset sum problem throughout solving
MSS by setting k = m− 1.

In the following, we present a reduction from MSS to UCP. Given an instance
(A, k) of MSS, the reduction is done via transforming (A, k) into an instance
(R(A), k) of UCP. We note here that MSS is NP-complete even for the case
where a �= 0, for all a ∈ A. Thus, for simplicity, we assume that there is no zero
in A. Let A = {a1, a2, . . . , am}. The instance (R(A), k), where R(A) consists of
a set V of voters in R2 and a weight function w : V → R+, satisfies the following
three conditions.

– V = {v1, . . . , v3m}.
– For 1 � i � m, vi corresponds to point (ai

|ai| i, 0) with w(vi) = |ai|.
– For m < i � 3m, voter vi is located on a unit circle such that xj = −xj+m,

yj = −yj+m, yj > 0, and yj/xj �= yj′/xj′ , for m < j < j′ � 2m. The weight
w(vi) is set to be 1 +

∑m
j=1 |aj |.

See Figure 2 for an illustration. Note that there are infinitely many rational coor-
dinates satisfying the last condition. For example, we may define xj =

2j+1
2j2+2j+1

and yj = 2j2+2j
2j2+2j+1 , for m < j � 2m. With this fact, it is not difficult to ver-

ify that the construction of R(A) can be done in polynomial time. Moreover,
k < m < 3m = |V |, with which we know (R(A), k) is an instance for UCP.

Lemma 4. MSS returns true on (A, k) if and only if UCP returns true on
(R(A), k).

Proof. For necessity, suppose that there is a nonempty subset A′ of A where∑
ai∈A\A′ ai = 0 and |A′| � k. Let V ′ = {vi : ai ∈ A′}. We claim that �= (0, 0)

is a plurality point of V \ V ′. Clearly, c(V ′) = |V ′| � k. Since there is no voter
on �, according to Lemma 3, it suffices to show that each voting line L passing
through � satisfies w↗

L,� = w↙
L,�. Let V1 = {vi : 1 � i � m, ai > 0}, V2 = {vi :

1 � i � m, ai < 0}, and V3 = {vi : m < i � 3m}. We categorize the voting lines
passing through � into two types: (i) those passing through voters in V1∪V2, and
(ii) those passing through voters in V3. For voting lines of type (i), according to
the reduction, there is only one such line L, which is the x-axis. Together with
the fact that

∑
ai∈A\A′ ai = 0, we have w↗

L,� = w(V1) = w(V2) = w↙
L,�. For

voting lines of type (ii), by the definition of voters in V3, we have m such lines,
on each of which there are exactly two voters. Denote these m voting lines by

82 W.-Y. Lin et al.

Lj, 1 � j � m, such that voters vm+j and v2m+j are on Lj . Since voters in V3

are of the same weight, it follows that w↗
Lj ,� = w(vm+j) = w(v2m+j) = w↙

Lj ,�.
For sufficiency, suppose that there is a subset V ′ of V such that V \V ′ admits

a plurality point � with |V ′| � k. Let Vr = {vi : 1 � i � m, vi /∈ V ′, ai > 0} and
Vl = {vi : 1 � i � m, vi /∈ V ′, ai < 0}.

First, we show that � lies within the unit circle centered at (0, 0). If � is
outside the unit circle, let L be the line passing through � tangent to the circle.
Without loss of generality let (0, 0) ∈ V +

L , then we have w+
L > w(V \ V ′)/2 due

to the fact that vm+1, . . . , v3m lie on the same side of L. This contradicts the
assumption that � is a plurality point according to Lemma 2.

Next, we show that � lies on the x-axis. Suppose to the contrary that � lies
within the unit circle but not on the x-axis. According to the assumption that
k < m, there is a voter v� ∈ Vr ∪ Vl. Without loss of generality, we assume that
v� ∈ Vr. Let L be the line passing through (, 0) and �, and p be an intersection
of L and the unit circle other than (, 0). If there is no voter on p, then obviously

w↗
L,� �= w↙

L,�. Otherwise, there is a voter vi lying on p satisfying i > m. Since

w(vi) = 1 +
∑m

j=1 |aj | and there is exactly one voter, v�, on (, 0), we have

w↗
L,� �= w↙

L,�. By Lemma 3, � is not a plurality point of V \ V ′. Therefore, �
lies on the x-axis.

Let A′ = {ai : 1 � i � m, vi ∈ V ′}. According to the above arguments,
one voting line, L, of V \ V ′ with respect to � is the x-axis. By Lemma 3,

we have w↗
L,� = w↙

L,�, which implies
∑

i∈Vl
|ai| =

∑
i∈Vr

|ai|. It follows that∑
A\A′ ai = 0. Moreover, |A′| � |V ′| � k, and the lemma is proved. ��

x

y

v9

v10

v11
v12v13

v14

v15

v16

v17

v18

v19
v20 v21

v22

v23

v24

Fig. 2. An illustration of 2m voters lying on the unit circle, where m = 8. Note that
voters v1, . . . , v8 locate at the x-axis outside the unit circle.

According to the above polynomial-time reduction, we conclude this section
with the following theorem.

Theorem 1. UCP is NP-complete.

Forming Plurality at Minimum Cost 83

4 The Case Where Voters Are Equally Weighted

Given a set V of voters, let D∗
V be an optimal feasible set of V , and V ∗ be

V \ D∗
V . Since the minimum-cost plurality problem is NP-hard, we consider

a special case where all voters are equally weighted in this section, and give
a polynomial-time algorithm. For simplicity, all voters are assigned with unit
weight and thus w(V) = |V |. Recall that �V denotes the set of all plurality
points of V . Two cases are discussed in order to find a feasible set with minimum
cost: (i) �V ∗ ∩ V ∗ �= ∅; and (ii) �V ∗ ∩ V ∗ = ∅. The set of possible locations
that can be a plurality point for case (i) consists of n voters since V ∗ ⊆ V , while
that for case (ii), as shown in Section 4.2, consists of

(
n
4

)
voters. The strategy to

compute an optimal feasible set is to treat all possible locations as the plurality
points one by one, compute the corresponding feasible sets, and return the set
of minimum cost as a solution.

4.1 The Case �V ∗ ∩ V ∗ �= ∅
When V ∗ consists of an odd number of voters, Lemma 5 shows that each line
L passing through �∗ should be balanced, that is, w↗

L,�∗ = w↙
L,�∗ . However, the

situation becomes more complicated when there are an even number of voters
in V ∗ and is discussed in Lemmas 6, 7, and 8. Due to the space limitation, the
proofs of these lemmas are omitted and will be given in the journal version.

Lemma 5. Let U be a set of unit-weighted voters in R2. If �∗∈ �U ∩ U and
|U | is odd, then w↗

L,�∗ = w↙
L,�∗ for any line L passing through �∗.

Proof. Suppose to the contrary that there is a line L passing through �∗ with
w↗

L,�∗ � w↙
L,�∗ +1. Let L′ and L′′ be two lines resulting from slightly rotating L

around �∗ clockwise and counterclockwise, respectively, before they reach any
other voter. See Figure 3 for an illustration. Since �∗ is the only voter on L and
|U | is odd, we have w+

L = w−
L = (w(U) − 1)/2. Without loss of generality let

U↗
L,�∗ ⊆ U−

L′ and U↗
L,�∗ ⊆ U+

L′′ . It follows that w+
L′′ = w+

L′ + w↗
L,�∗ − w↙

L,�∗ �
(w(U) − 1)/2 + 1 > w(U)/2, which contradicts the assumption that �∗∈ �U

according to Lemma 2. Hence, we have w↗
L,�∗ = w↙

L,�∗ for each line L passing
through �∗. ��

Lemma 6. Let U be a set of unit-weighted voters in R2. If �∗∈ �U ∩ U and
|U | is even, then |w↗

L,�∗ − w↙
L,�∗ | � 1 for any line L passing through �∗.

In the case where the number of voters is even, although it may be unbalanced
for any line L passing through �∗, i.e., L is not balanced, the bias generated by
L could be adjusted by neighboring lines. To further elaborate this observation,
we focus on the voting lines of V with respect to �∗. The relationship between
those adjacent voting lines is shown in the following lemma. Let L1, L2, . . . , Lr

be all voting lines of V with respect to �∗ sorted by their polar angles with
respect to the x-axis in counterclockwise order. Two unbalanced voting lines Li

and Lj are said to be adjacent if Lt is balanced, for i < t < j. The following
lemma states the relationship between two unbalanced voting lines.

84 W.-Y. Lin et al.

LL′′

L′

�∗

Fig. 3. Slightly rotating L in opposite directions to get L′ and L′′

Lemma 7 (alternating property). Let U be a set of unit-weighted voters in
R2. If �∗∈ �U ∩U and |U | is even, for any adjacent unbalanced voting lines Li

and Lj of U with respect �∗, we have either

– w↗
Li,�∗ > w↙

Li,�∗ and w↗
Lj ,�∗ < w↙

Lj ,�∗ , or

– w↗
Li,�∗ < w↙

Li,�∗ and w↗
Lj ,�∗ > w↙

Lj ,�∗ .

In fact, the alternating property can be extended to form a sufficient condition
for �∈ �U ∩ U with |U | being even. We summarize this main result in the
following lemma.

Lemma 8. Let U be a set of unit-weighted voters in R2 with |U | being even. A
point �∈ U is a plurality point of U if and only if

1. the number of unbalanced voting lines of U with respect to � is odd, and
2. all the adjacent unbalanced voting lines of U w.r.t. � satisfy the alternating

property.

4.2 The Case �V ∗ ∩ V ∗ = ∅
Let IU be the set of intersection points of two lines segments vavb and vcvd,
where va, vb, vc and vd are four different voters in U .

Lemma 9. Let U be a set of unit-weighted voters in R2. If �U ∩ U = ∅, then
any plurality point �∗ of U is in IU .

Proof. By Lemma 3, we have w↗
L,�∗ = w↙

L,�∗ for each line L passing through �∗.

Since all voters are equally weighted, we have |U↗
L,�∗ | = |U↙

L,�∗| for each line L
passing through �∗. If there are two different voting lines passing through �∗,
then �∗ is the intersection of the voting lines, formed by at least four voters
in U , and we have �∗∈ IU . If there is at most one voting line passing through
�∗, then all voters are collinear. By Lemma 1, any multidimensional median is
a plurality point of U , which contradicts that �U ∩ U = ∅. ��

Forming Plurality at Minimum Cost 85

4.3 A Polynomial-Time Algorithm

For a given set V of voters, if a point � is known to be a plurality of V ∗, one can
apply Lemmas 3, 5, and 8 to determine V ∗. Moreover, by Lemma 9, we have
�∈ V ∗ ∪IV ∗ , which implies �∈ V ∪IV immediately. Based on the observations,
the idea of our algorithm is described as follows. First, each point � in V ∪ IV
is taken as a candidate to be a plurality point. Second, we compute a “best
possible” subset of V , whose removal makes � a plurality point. At last, the
optimal solution V ∗ can be found from those “best possible” subsets. In more
detail, for a given candidate �, if the corresponding V ∗ satisfies �V ∗∩V ∗ = ∅ or
�V ∗∩V ∗ �= ∅ with |V ∗| being odd, we make sure that each voting line is balanced
by deleting some voters appropriately via BalancedPlurality. For the case
where�V ∗∩V ∗ �= ∅ with |V ∗| being even, we introduce a dynamic programming
algorithm called PluralityDP, which computes the corresponding subset by
iteratively computing the scoring function of vi. We then give a polynomial-time
algorithm called UnitWeightPlurality to solve the minimum-cost plurality
problem when all voters are equally weighted.

Algorithm 1: BalancedPlurality(V = {v1, v2, . . . , vn}, �)

1 D := ∅;
2 Compute all the voting lines of V with respect to �;
3 foreach voting line L do

4 while w↗
L,� > w↙

L,� do

5 vd := argmin
v∈V

↗
L

c(v);

6 D := D ∪ {vd};
7 while w↗

L,� < w↙
L,� do

8 vd := argmin
v∈V

↙
L

c(v);

9 D := D ∪ {vd};
10 return D;

PluralityDP is developed based on Lemma 8. The idea is to add a voting
line Li at the ith iteration to compute the best situation so far for each of the
following three cases: w↗

Li,�∗ > w↙
Li,�∗ , w

↗
Li,�∗ = w↙

Li,�∗ , and w↗
Li,�∗ < w↙

Li,�∗ .

For any given �∗, let Ai = w↗
Li,�∗ and Bi = w↙

Li,�∗ . We define the scoring
functions used in the dynamic programming algorithm in the following.

The scoring functions S+
e (i), S

−
e (i), S⊕

e (i), S�
e (i), S+

o (i), S−
o (i), S⊕

o (i), and
S�
o (i) are defined as follows by denoting the superscript as the variable a and the

subscript as the variable b, where a ∈ {+,−,⊕, } and b ∈ {e, o}, for 1 � i � k.
Suppose that �∈ V and L1, L2, . . . , Lk are all voting lines of V w.r.t. �. Let Vi

be the set of all voters on L1, L2, . . . , Li, where i ∈ {1, . . . , k}. For a ∈ {+,−}, we
denote Da

b (i) as the set of all feasible set D of Vi with � being the plurality point
satisfying Ai > Bi (Ai < Bi) after deleting all voters in D if a = + (a = −),
and there are an even (odd) number of unbalanced voting lines of Vi \D w.r.t.

86 W.-Y. Lin et al.

� if b = e (b = o). Similarly for a ∈ {⊕, }, we denote Da
b (i) as the set of all

feasible set D of Vi with � being the plurality point satisfying Ai = Bi after
deleting all voters in D, and for the greatest integer h < i satisfying Ah �= Bh,
we have Ah > Bh (Ah < Bh) if a = ⊕ (a =), and there are even (odd) number
of unbalanced voting lines of Vi \D w.r.t. � if b = e (b = o). Hence, we define
Sa
b (i) = minD∈Da

b (i)
w(D) for any a ∈ {+,−,⊕, } and b ∈ {e, o}. Finally, we

denote D�(i) as the set of all feasible set D of Vi with � being the plurality
point satisfying Aj = Bj after deleting all voters in D, ∀j ∈ {1, 2, . . . , i}. That
is, all voting lines of Vi \D w.r.t. � are balanced, ∀D ∈ D�(i). Hence, we define
S�(i) = minD∈D�(i) w(D).

For simplicity, the following recursive relation of scoring functions are pre-
sented for the case where all voters are assigned with unit cost. We demonstrate
the modification for a general case in the upcoming paragraph. By the alternat-
ing property, for i = 2, . . . , k, we have

S+
e (i) = |Ai −Bi − 1|+min{S−

o (i− 1), S�
o (i− 1)},

S−
e (i) = |Ai −Bi + 1|+min{S+

o (i− 1), S⊕
o (i− 1)},

S⊕
e (i) = |Ai −Bi|+min{S+

e (i− 1), S⊕
e (i− 1)},

S�
e (i) = |Ai −Bi|+min{S−

e (i− 1), S�
e (i− 1)},

S+
o (i) = |Ai −Bi − 1|+min{S−

e (i− 1), S�
e (i− 1), S�(i − 1)},

S−
o (i) = |Ai −Bi + 1|+min{S+

e (i− 1), S⊕
e (i− 1), S�(i − 1)},

S⊕
o (i) = |Ai −Bi|+min{S+

o (i− 1), S⊕
o (i− 1)},

S�
o (i) = |Ai −Bi|+min{S−

o (i− 1), S�
o (i− 1)}, and

S�(i) = |Ai −Bi|+min{S�(i− 1)},

with initial conditions S+
e (1) = S−

e (1) = S⊕
e (1) = S�

e (1) = S⊕
o (1) = S�

o (1) =∞,
S+
o (1) = |A1 −B1 − 1|, S−

o (1) = |A1 −B1 + 1|, and S�(1) = |A1 −B1|.
The absolute value added in each formula is an abbreviation for different

cases. For example, suppose that we want to get Ai = Bi+1 after deletion, then
Ai−Bi− 1 voters on Li should be eliminated if Ai > Bi, and Bi−Ai+1 voters
on Li should be eliminated if Bi > Ai. Since |Ai−Bi−1| = Ai−Bi−1 if Ai > Bi

and |Ai−Bi− 1| = Bi−Ai+1 if Bi > Ai, we set |Ai−Bi− 1| to combine these
two values. In addition, for the case where the costs are different, by replacing
the added term of absolute value fi = |Ai−Bi−1| to f ′

i = minV ′⊆V̂i,|V ′|=fi
c(V ′),

where V̂i = Vi \ (
⋃

j=1,...,i−1 Vj), we obtain the recursive function for the general
problem of non-unit cost. Other cases can be derived with the same argument.

Hence, to find an optimal feasible set when all voters are equally weighted,
the objective is to compute min{S+

o (k), S−
o (k), S⊕

o (k), S�
o (k)}. We name this

dynamic programming procedure as PluralityDP(V,�), which returns an op-
timal feasible set D∗ such that �∈ �V ∗ ∩ V ∗ and |V ∗| is even.

Theorem 2. Let V be a set of voters in R2. The minimum-cost plurality problem
can be solved in O(n5 logn) time when all voters are equally weighted, where
n = |V |.

Forming Plurality at Minimum Cost 87

Algorithm 2: UnitWeightPlurality(V = {v1, v2, . . . , vn})
1 D∗ := V ;
2 if all voters are collinear then
3 D∗ := ∅;
4 else
5 Compute IV ;
6 foreach �∈ IV do
7 D := BalancedPlurality(V,�);
8 D := D ∪ ({�} ∩ V);
9 if c(D) � c(D∗) then

10 D∗ := D;

11 foreach vi ∈ V do
12 D := BalancedPlurality(V, vi);
13 if c(D) � c(D∗) then
14 D∗ := D;
15 D := PluralityDP(V, vi);
16 if c(D) � c(D∗) then
17 D∗ := D;

18 return D∗;

Proof. The correctness of Algorithm 2 follows from Lemmas 3 and 5–9. For the
time complexity, let �∗ be the plurality point of V ∗. Lines 5–10, lines 12–14, and
lines 15–17 manipulate the cases where�V ∗ ∩V ∗ = ∅,�V ∗∩V ∗ with |V ∗| being
odd, and �V ∗ ∩ V ∗ with |V ∗| being even, respectively. All the manipulations
need the information about the voting lines of V with respect to �∗, and such
information can be computed in O(n log n) time via sorting the slopes of the n
lines, each of which passes through �∗ and a point in V . Moreover, based on the
information given above, PluralityDP takes O(n) time. Therefore, the overall
time complexity is O(n5 log n) since the most time-consuming loop, lines 5–10,
repeated |IV | = O(n4) times. ��

5 Concluding Remarks

In this paper, we deal with the problem where no plurality point exists with
respect to a given instance and try to find one via eliminating some voters with
minimum cost. In R2, the problem is NP-hard, whereas it is polynomial-time
solvable when all voters’ weights are equal. We note here that all the procedures
given above can be extended immediately to Rd, for d � 3, except Plurali-

tyDP. It remains open whether the problem is polynomial-time solvable in R3

for the case where voters’ weights are equal.

Acknowledgements. The authors would like to thank the anonymous review-
ers for helpful comments. Wei-Yin Lin, Yen-Wei Wu, and Kun-Mao Chao were

88 W.-Y. Lin et al.

supported in part by MOST grants 101-2221-E-002-063-MY3 and 103-2221-E-
002-157-MY3, and Hung-Lung Wang was supported in part by MOST grant
103-2221-E-141-004 from the Ministry of Science and Technology, Taiwan.

References

1. Bandelt, H.-J.: Networks with Condorcet solutions. European Journal of Opera-
tional Research 20(3), 314–326 (1985)

2. Bartholdi, J.J., Tovey, C.A., Trick, M.A.: How hard is it to control an election?
Mathematical and Computer Modeling 16(8–9), 27–40 (1992)

3. Campos Rodŕıguez, C.M., Moreno Pérez, J.A.: Relaxation of the Condorcet and
Simpson conditions in voting location. European Journal of Operational Re-
search 145(3), 673–683 (2003)

4. Davis, O.A., Hinich, M.J., Ordeshook, P.C.: An expository development of a
mathematical model of the electoral process. The American Political Science Re-
view 64(2), 426–448 (1970)

5. Durier, R.: Continuous location theory under majority rule. Mathematics of Op-
erations Research 14(2), 258–274 (1989)

6. Hansen, P., Thisse, J.-F.: Outcomes of voting and planning: Condorcet, Weber and
Rawls locations. Journal of Public Economics 16(1), 1–15 (1981)

7. Kress, D., Pesch, E.: Sequential competitive location on networks. European Jour-
nal of Operational Research 217(3), 483–499 (2012)

8. Labbé, M.: Outcomes of voting and planning in single facility location problems.
European Journal of Operational Research 20(3), 299–313 (1985)

9. McKelvey, R.D., Wendell, R.E.: Voting equilibria in multidimensional choice
spaces. Mathematics of Operations Research 1(2), 144–158 (1976)

10. Wendell, R.E., McKelvey, R.D.: New perspectives in competitive location theory.
European Journal of Operational Research 6(2), 174–182 (1981)

11. Wendell, R.E., Thorson, S.J.: Some generalizations of social decisions under ma-
jority rule. Econometrica 42(5), 893–912 (1974)

12. Wu, Y.-W., Lin, W.-Y., Wang, H.-L., Chao, K.-M.: Computing plurality points
and Condorcet points in Euclidean space. In: Proceedings of the International
Symposium on Algorithms and Computation, pp. 688–698 (2013)

Approximate Distance Oracle in O(n2) Time

and O(n) Space for Chordal Graphs

Gaurav Singh, N.S. Narayanaswamy, and G. Ramakrishna

Department of Computer Science and Engineering,
Indian Institute of Technology Madras, India
{gsingh,swamy,grama}@cse.iitm.ac.in

Abstract. We preprocess a given unweighted chordal graph G on n
vertices in O(n2) time to build a data structure of O(n) size such that
any subsequent distance query can be answered in constant time with
a bounded constant factor error. In particular, for each pair of vertices
ui, uj ∈ V (G), 1 ≤ i, j ≤ n, we take constant time to output a distance
value dij ≤ 2dG(ui, uj) + 8 using our data structure, where dG is the
distance between ui and uj in G. In contrast, for the closely related
APSP problem on chordal graphs, the current best algorithm runs in
O(n2.373) time. Our improvement comes from a relationship that we
discover between the graph distance and minimum hitting sets of cliques
on certain paths in a clique tree associated with a chordal graph. We
design an efficient data structure which additively approximates (error
of +3) these minimum hitting sets of cliques for all the paths in the
clique tree. This data structure is then integrated with an efficient data
structure which answers LCA queries in rooted trees to yield our distance
oracle for the given chordal graph.

1 Introduction

The All Pairs Shortest Path (APSP) problem is one of the most fundamen-
tal problems in graph theory. For a given graph G = (V,E), where V is the
set of vertices and E is the set of edges with |V | = n and |E| = m, the
all pairs shortest path problem on G is to compute the shortest paths between
all the pairs of vertices of G. A distance oracle is a data structure that stores the
APSP information and can respond to distance queries efficiently. The time to
set up this oracle, the amount of space it uses, the query response time, and the
update time are among the most well-studied problems in the area of Distance
Oracles. Many questions about this data structure still remain open and it is of
immense practical relevance. Surprisingly, despite the fact that APSP is one of
the oldest and fundamental problems in computer science, there does not exist
any algorithm that can solve APSP in truly sub cubic time, i.e., O(n3−ε) time
for some ε > 0. This has motivated researchers to design sub cubic time algo-
rithms that can approximately answer distances between any pair of vertices. In
this paper, we restrict our attention on chordal graphs with an intent to explore
how the underlying graph structure can play an important role in setting up

M.S. Rahman and E. Tomita (Eds.): WALCOM 2015, LNCS 8973, pp. 89–100, 2015.
c© Springer International Publishing Switzerland 2015

90 G. Singh, N.S. Narayanaswamy, and G. Ramakrishna

efficient distance oracles. We give an algorithm to preprocess a chordal graph
G in O(n2) time to setup an approximate distance oracle that occupies O(n)
space. Subsequently, this distance oracle answers the distance query between ui

and uj in constant time, and the given answer is at most 2dG(ui, uj) + 8, where
dG is the distance between ui and uj in G.

Related Work. A classical algorithm for solving APSP in general graphs is
given by Floyd and Warshall [1]. It outputs an n × n matrix that contains the
shortest distances between every pair of vertices in Θ(n3) time. Seidel [2] has
given an algorithm to solve APSP problem in O(M(n) log n) time, where M(n)
is the time to multiply two n×n matrices. The current best known algorithm for
finding M(n) runs in O(n2.373) time [3]. Han et al. [4] have given an algorithm
to solve APSP problem for chordal graphs in O(M(n)) time. Gavoille et al. [5]
have designed a distance oracle of size O(nlog2n) for chordal graphs, such that
their distance oracle can answer the distance queries in constant time with an
error of +1. The distance oracle designed in this paper is better than the oracle
presented by Gavoille et al. [5] in terms of the size of the oracle, but we loose the
battle when it comes to the approximation factor of the answer returned by the
oracle. APSP can be solved in O(n2) time for some specific subclasses of chordal
graphs. Ravi et al. [6] have given an algorithm to solve APSP optimally in O(n2)
time for interval graphs. In the same year, Radhakrishnan et al. [7] gave algorithm
to solve APSP problem for k-trees in O(n2) time. One year later, Dahlhaus [8]
devised algorithms to solve APSP problem for strongly chordal graphs, distance
hereditary graphs, path graphs and permutation graphs in O(n2) time.

Thorup et al. [9] proved that for any integer k ≥ 1, a general graph can
be preprocessed in O(kmn1/k) time to produce a distance oracle that occu-
pies O(n1+1/k) space. Subsequent distance queries can be answered approxi-
mately in O(k) time with an approximation factor of 2k − 1. Cohen et al. [10]
have designed an algorithm for solving APSP approximately on weighted undi-
rected graphs. Their algorithm takes Õ(n2) time to build a data structure of size
O(n2). This data structure is capable of answering distance queries in constant
time within a stretch of 3. Baswana et al. [11] proved that general unweighted
graphs can be preprocessed to set up a distance oracle of size O(kn1+1/k)
in O(min(n2, kmn1+1/k)) time to answer distance queries with stretch factor
of 2k − 1.

Relevance of Our Results. In Table 1 we contrast our results with the ex-
isting results. Thorup et al. [9] have proved that any distance oracle for general
graphs, which gives distances with stretch factor strictly less then 2k+1, requires
Ω(n1+1/k) space. In particular, if stretch is strictly less than 3, then the size of
oracle must be Ω(n2). However, for chordal graphs with diameter at least 10,
although our stretch is strictly less than 3 yet the size of data structure is only
O(n). Secondly, algorithms designed by both Seidel [2] and Han et al. [4] com-
pute the square of the input graph G as a subroutine. Given a graph G = (V,E),
the square of the graph is defined as G2 = (V,E′) where (u, v) ∈ E′ if and only
if 1 ≤ dG(u, v) ≤ 2. Methods known for computing G2 for a general graph or a

Approximate Distance Oracle in O(n2) Time and O(n) Space 91

chordal graph require O(n2.373) time. Therefore, computation of G2 acts as a
bottleneck for solving APSP on chordal and general graphs. Han et al.[4] also
proved that computing G2 for split graphs, which is a subclass of chordal graphs,
is as hard as the problem for general graphs. In this paper, we exploit structural
properties of chordal graphs to bypass computation of G2 and achieve an O(n2)
running time for building distance oracle.

Table 1. Exact and approximate distance oracles for different classes of graphs

Graphs Processing time Size Stretch Query time

General unweighted graphs
(Seidel [2]) O(n2.373 logn) O(n2) 1 O(1)

General weighted graphs

(Thorup et al. [9]) O(kmn1/k) O(n1+1/k) 2k − 1 O(k)

General weighted graphs

(Baswana et al. [11]) O(min(n2, kmn1+1/k)) O(n1+1/k) 2k − 1 O(k)

Unweighted Chordal graphs
(Han et al. [4]) O(n2.373) O(n2) 1 O(1)

Unweighted Chordal graphs
(this paper) O(n2) O(n) (2,8) O(1)

Interval graphs
(Ravi et al. [6]) O(n2) O(n2) 1 O(1)

Strongly chordal graphs
(Dahlhaus [8]) O(n2) O(n2) 1 O(1)

k trees
(Radhakrishnan et al. [7]) O(kn2) O(n2) 1 O(1)

Outline of Our Algorithm. Given a chordal graph G, we first construct a
clique tree T of G in linear time [12]. For each vertex ui ∈ V (G), we identify
a maximal clique Ci in the clique tree T such that ui ∈ Ci. To approximate
the distance between ui and uj in G, we compute the size of a hitting set S
which hits all the cliques in the path joining Ci and Cj in the clique tree T . The
distance that is output is twice the value of |S|. We prove that the size of S is
upper bounded by the number of vertices in any shortest path between ui and
uj. Also, we prove that dG(ui, uj) ≤ 2|S|. We first construct a linear size data
structure that can compute the size of the hitting set S for any pair of cliques
in clique tree T in constant time. Finally we use this data structure to answer
distance queries in constant time. Our main result is the following theorem.

Theorem 1. Given a chordal graph G, we can be preprocess G in O(n2) time
and O(n2) space to build a data structure of O(n) size such that for any query
pair ui, uj ∈ V (G), a distance response upper bounded by 2dG(ui, uj) + 8 can be
given in constant time.

Outline of the Paper. In Section 2, we present preliminaries and basic nota-
tions used throughout this paper. In Section 3, we prove some novel properties

92 G. Singh, N.S. Narayanaswamy, and G. Ramakrishna

related to shortest paths in the graph and hitting sets of certain maximal cliques
in the associated clique tree of chordal graphs. We present the algorithms to
construct distance oracle and to answer the distance queries in constant time in
Section 4. Finally, Section 5 concludes the paper.

2 Preliminaries

Chordal Graphs. A chord of a cycle is an edge between two non adjacent
vertices of the cycle. A graph G = (V,E) is chordal if every cycle of length
greater than three has a chord. The book on perfect graphs by Golumbic [13] is
an excellent reference for chordal graphs. LetKG be the set of maximal cliques of
a chordal graph G and KG(v) be the set of maximal cliques of G containing v. It
is well known that there exists a tree T , called the clique tree of G, whose vertices
correspond bijectively to the elements of KG; and for each v ∈ V (G), the nodes
of T corresponding to KG(v) induce a subtree of T . This property is called as
induced-subtree property [14]. The closely related clique intersection property [14]
is as follows: let v be present in two maximal cliques C1 and C2 in G, and let u1

and u2 be the corresponding tree nodes, respectively. Let u be a node on the path
between u1 and u2 in T , and let C be the maximal clique in G corresponding to
u. Then v ∈ C.

Hitting Set. For a set K of cliques in G, the hitting set S of K is a subset of
V (G) that has a non-empty intersection with each clique in K.

Least Common Ancestors. Let T ′ be a rooted tree on n vertices. Harel et
al. [15], Scheiber et al. [16] and Powell [17] have given three different algorithms to
preprocess T ′ in O(n) time to build a data structure D of O(n) size. Subsequent
queries of the least common ancestor of two vertices can be answered in constant
time. We will use the algorithm presented in [16] as a subroutine in our paper.

Abuse of Notation. Throughout, we assume that G = (V,E) is a connected,
unweighted chordal graph with |V | = n and |E| = m and T is a clique tree of
G. Henceforth, by the word clique, we imply maximal clique in G Further, when
we refer to a clique of a clique tree T , we actually mean the clique in G that a
node in T corresponds to. For a vertex u ∈ V (G), we use Tu to refer to the set of
cliques in T that contain u. In other words, Tu is the subtree of T whose nodes
correspond to KG(u). This notational abuse makes the writing, and we believe
the reading, of the paper easier. Finally, when we refer to a vertex ui ∈ V (G),
we mean that the subscript i satisfies 1 ≤ i ≤ n. This is crucial because the
index i uniquely identifies the vertex in the algorithm.

3 Distance Information from Clique Trees

We now show the connection between the distance in the graph between u and
v and the hitting set of the cliques on the path connecting Tu and Tv in T .

Approximate Distance Oracle in O(n2) Time and O(n) Space 93

Lemma 1. Let u, v ∈ V (G) such that dG(u, v) > 1, and let S ⊆ V be a mini-
mum set of vertices that hits all the cliques in the path in T joining Tu and Tv.
Then |S| ≤ dG(u, v) − 1, i.e., |S| is upper bounded by the number of internal
vertices in any shortest path joining u and v in G.

Proof. Let Puv be a shortest path between u and v in G. Clearly, no two edges
of Puv can be present in one maximal clique as this would contradict the premise
that Puv is the shortest path. Furthermore, each edge of Puv is in a maximal
clique. Let σ be the path joining Tu and Tv in T . First, we prove that any edge
e ∈ Puv is present in some clique of σ. Let {e1, e2, . . . , e|Puv|} be the set of edges
present in Puv such that ek is adjacent to ek−1 and ek+1. For contradiction, let
all the edges of Puv except ek be present in some clique of σ. Also, let Ck be a
clique that contains ek and Ck /∈ σ. Since T is a tree (connected), there must
exist a path between Ck and σ. Let C′

k ∈ σ, such that among all the cliques of
σ, C′

k is at the minimum distance from Ck. Clearly, C
′
k is present in the path

joining Ck−1 and Ck as well as in the path joining Ck+1 and Ck, where Ck−1

and Ck+1 are cliques of σ which contain ek−1 and ek+1 respectively. Therefore,
by clique intersection property C′

k contains the vertex common to ek and ek−1.
Similarly, C′

k contains the vertex common to ek and ek+1, i.e., C
′
k contains both

the end points of ek. Hence, ek is also present in C′
k ∈ σ.

Let Ci and Cj be two cliques of σ, and ei and ej be two adjacent edges of Puv,
such that ei ∈ Ci and ej ∈ Cj . By the clique intersection property, all the cliques
in the path joining Ci and Cj contain the common vertex of ei and ej. Therefore,
for any clique C ∈ σ, either C contains an edge of Puv or it is present in the
path joining some Ci and Cj , and in this case, C contains the common vertex
of the edges ei and ej . Therefore, all the cliques of σ are definitely hit by the
internal vertices of Puv which are dG(u, v)−1 in number, i.e., |S| ≤ dG(u, v)−1.
Hence the lemma. ��

Corollary 1. Let u and v be two vertices in G, and Cu and Cv be two maximal
cliques of T containing u and v, respectively, and let S be a minimum hitting
set that hits all the cliques in the path joining Cu and Cv in T . Then |S| ≤
dG(u, v) + 1.

Proof. If u and v are non-adjacent, then from Lemma 1 we know that the size of
the hitting set of the path joining Tu and Tv is upper bounded by dG(u, v)− 1.
To this hitting set, if we add the vertices u and v, we get a hitting set of all
the cliques on the paths from Cu to Cv. Therefore, |S| ≤ dG(u, v) + 1. But if u
and v are adjacent in G, then there must exist a clique Cuv that contains both
u and v. If Cuv is in the path joining Cu and Cv, then the path joining Cu and
Cuv is hit by u and similarly the path joining Cuv and Cv is hit by v. Therefore,
the size of the minimum hitting set for the path joining Cu and Cv is 2. If Cu

is in the path joining Cuv and Cv, then the entire path joining Cu and Cv is
hit by v (because the entire path joining Cuv and Cv is hit by v). Therefore, in
this case the size of the hitting set is 1. Similarly, if Cv is in the path joining
Cuv and Cu, then the size of the hitting set for the path joining Cu and Cv is 1.

94 G. Singh, N.S. Narayanaswamy, and G. Ramakrishna

By the above three cases, it is clear that if u and v are adjacent in G, even then
|S| ≤ dG(u, v) + 1. ��

Theorem 2. Let S ⊆ V be a set of vertices that hits all the cliques in the path
joining two cliques Cu and Cv in T , then there exists a path P between u and v
in G, such that the size of P is upper bounded by 2|S|, i.e., |P | ≤ 2|S|.

Proof. Let Cx and Cy be two adjacent cliques of the path joining Cu and Cv

in T . Also, let x and y be the vertices of S which hit Cx and Cy respectively.
Clearly, the distance between x and y is at most 2 because Cx and Cy are cliques
and Cx ∩Cy �= φ (intersection of adjacent cliques is non-empty in a clique tree).
Therefore, if S is a hitting set of the path joining Cu and Cv in T , then, from the
following steps, there exists a path from u to v of length at most 2|S| in G via
the vertices of the hitting set S. The factor 2 is worst possible and is achieved
in the case when S is an independent set.

We consider the elements of S as being ordered according to the order of
occurrence on the path from Cu to Cv. Since any two consecutive cliques on the
path from Cu to Cv share at least one common vertex, two consecutive vertices
in the hitting set S can be connected by a path of length at most 2 via this
common vertex. The hitting set vertices are now joined by a path of length at
most 2|S| − 2 in G. Further, by adding edges to u and v from the ends of this
path, there is a path of length at most 2|S| from u to v in G. Hence the distance
between u and v in G is at most 2|S|. ��

We now show that a minimum hitting set of cliques in the path connecting Tu

and Tv can be found efficiently.

Structure of a Minimum Hitting Set. Let P = [C1, C2, . . . , Cb] be the path
joining Tu and Tv in T , and u ∈ C1, v ∈ Cb. We reiterate that C1 and Cb are the
only cliques of P in Tu and Tv, respectively. In this part, it is useful to visualize
this path as a sequence of cliques. Therefore a prefix of the path P is a prefix
of the corresponding sequence. Let S be a minimum hitting set of the cliques
in P . Let vm be a vertex in C1 such that it occurs in the maximum number
of consecutive cliques in P . Consequently, there is a minimum hitting set S of
cliques in P such that vm ∈ S. Indeed, this is true because if we have a minimum
hitting set S′ that does not satisfy this property, then we can replace x ∈ S′∩C1

by vm, and we obtain a minimum hitting set satisfying the desired property. This
gives us an algorithm to find a minimum hitting set:

Data Structure for a Minimum Hitting Set: We now propose a data
structure to partition the cliques in P into sub-paths IS1, IS2, . . . , ISr such
that for 1 ≤ i ≤ r, sub path ISi is the maximum length prefix of cliques in
P \ {IS1, . . . , ISi−1} that have a common element. Apart from constructing
this partition, we also construct a hitting set S of the cliques in P . S is initial-
ized to be an empty set. To compute this maximum length prefix, we start with
the empty prefix and a set M of common elements. M is initialized to contain all
the vertices of the first clique of the sequence. Let Cj be the clique considered
in the j-th iteration. Clearly, it is the first clique in the remaining sequence.

Approximate Distance Oracle in O(n2) Time and O(n) Space 95

If M ∩ Cj = φ, then we have found the current prefix as the maximum length
prefix. Let v ∈ M ∩ Cj−1 be an arbitrary vertex. The hitting set S is updated
to S ∪ {v}. Now, M is then reset to be the set of all vertices in Cj . If M ∩ Cj

is non-empty then Cj is added to the current prefix and M is updated to be
M ∩Cj . With this modified M , we move to the next iteration till all the cliques
in P are considered.

Theorem 3. The hitting set S computed above is a minimum hitting set of
cliques in P . Further, it can be computed in O(n2) time.

Proof. The optimality is clear from the structure of a canonical minimum hitting
set. The running time is also straightforward, asM in the data structure is upper
bounded by the size of the maximum clique, and its intersection with another
clique C is computed. Intersection between two subsets M and C of n element
universe can be computed in O(n) time by representing the sets as bit vectors.
A chordal graph on n vertices has at most n maximal cliques, therefore, the set
intersection will be done at most n times. Therefore, it follows that the hitting
set can be computed in O(n2) time. Hence the theorem. ��

This theorem plays a crucial role in an algorithm in the next section in which
we find the hitting set of the cliques in each path from the root clique in the
rooted clique tree. The algorithm is presented in Algorithm 1, and also is a
formal presentation of the algorithm analyzed in Theorem 3 for the case of the
hitting set of cliques on the path between two cliques.

Lemma 2. Let Ck be a clique on the path P connecting cliques C1 and C2 in the
clique tree T . Let P1 be the path from C1 to Ck, and P2 be the path from Ck to
C2. Let S, S1 and S2 be the minimum hitting sets for P , P1, and P2 respectively,
then |S| ≤ |S1|+ |S2| ≤ |S|+ 1.

Proof. Clearly, S1 ∪ S2 is a hitting set for the cliques in P . Therefore, |S| ≤
|S1| + |S2|. In S, consider those elements that hit Ck. There can be at most 2
elements that hit Ck owing to the structure of a minimum hitting set. Let H1

and H2 be those elements of S that hit only cliques in P1 (i.e. P1 \ Ck) and P2

(i.e. P2 \ Ck), respectively. Further, by adding to H1 one vertex of S, which is
in Ck and covers P1, we get a hitting set of cliques in P1. Similiarly, by adding
one vertex of S, which is in Ck and covers P2, we get a hitting set of cliques in
P2. Therefore, |S1| ≤ |H1| + 1 and |S2| ≤ |H2|+ 1. Also, |S| ≥ |H1|+ |H2|+ 1.
Therefore, it follows that |S1|+ |S2| ≤ |H1|+ |H2|+ 2 ≤ |S|+ 1. ��

Lemma 2 is used to find an efficient and good approximation to the hitting set of
cliques in many paths in a clique tree. The efficiency is gained by using the exact
hitting set of cliques in some paths in the clique tree to calculate approximate
hitting sets of cliques in other paths.

96 G. Singh, N.S. Narayanaswamy, and G. Ramakrishna

4 Approximate Distance Oracle for Chordal Graphs

In this section, we present the details of the data structures involved in setting
up the distance oracle. The preprocessing algorithm receives a chordal graph
G = (V,E) as an input and sets up the distance oracle for G. It first constructs
a clique tree T of the chordal graph G. This is achieved using a known linear
time algorithm [12] to construct a clique tree of a chordal graph. Each clique in
the clique tree is assumed to be a maximal clique in the graph G. Indeed, if a
clique in the clique tree is not a maximal clique, then we can convert it into a
maximal clique in linear time.

Vertex to Maximal Clique Mapping: This is very crucial, as the idea is to
approximate the distance between two vertices ui, uj in the graph by the hitting
set of the maximal cliques in the path connecting the corresponding maximal
cliques in T . Towards this end, an n-element array is used. In this array, the
i-th element corresponds to ui and it points to a maximal clique of clique tree T
that contains ui. This is achieved by inspecting each clique of T in an arbitrary
order, and whenever the array entry corresponding to a vertex ui is empty and is
encountered in the current clique Cj , the array entry is updated to point to Cj .
This again takes O(n2) time in the worst case, though it can be tightly written
as O(ω(G)|KG|) where ω(G) is the size of the maximum clique and KG is the
set of maximal cliques of G. We refer to this array as H. To populate the array
H, the algorithm inspects each clique of the clique tree T . The size of a clique
is bounded by n and also |KG| ≤ n. Hence, it takes O(n2) time to populate H.
Clearly, the array H requires O(n) space only.

Hitting Set Oracle for a Rooted Clique Tree: We now present an algorithm
to calculate the hitting set of cliques on all the paths originating from a single
vertex Cr of the clique tree, where Cr is the arbitrarily assigned root of the clique
tree. The algorithm is presented by way of a function definition DFS(C,X, l) in
Algorithm 1. This information is then used to calculate the approximate distance
information efficiently for a distance query.

Lemma 3. On termination of the function call DFS(Cr, Cr, 1), for each 1 ≤
i ≤ n, the array HS[i] has the value of the minimum hitting set of the cliques
in the path from Cr to clique Ci in the clique tree T .

Proof. The correctness proof works based on Theorem 3. The proof is a direct
application of Theorem 3 if the tree rooted at Cr is a path. In case the tree is
not a path, let us focus on one particular node Ci in the tree. When the DFS
traversal visits Ci, owing to the careful use of recursion, we can consider just the
path from Cr to Ci in our analysis. Now we appeal to Theorem 3 to conclude
that HS[i] contains the minimum hitting set of the cliques on the path from Cr

to Ci. ��
The array HS has one element per maximal clique in G. Therefore, it has at
most n elements in it. Since a DFS traversal is used to populate HS using an
O(n) time set intersection performed at each node, it follows that the entries of

Approximate Distance Oracle in O(n2) Time and O(n) Space 97

Algorithm 1. DFS(C,X ,l)- Used to Set up the Hitting Set Oracle

1: Let i be the index of maximal clique C.
2: X ← C ∩X
3: if X �= φ then
4: HS[i] = l

/* no increase in the size of hitting set to hit C */

5: else
6: HS[i] = l + 1

/* increase in the size of hitting set to hit C */

7: end if
8: if C is a leaf node in T then
9: return
10: else
11: for each C′ ∈ Children(C) do

/* Find hitting sets of the cliques on the paths to the descendants of

C */

12: if X �= φ then
13: DFS(C′,X,l)
14: else
15: X ← C′

16: DFS(C′,X,l + 1)
17: end if
18: end for
19: end if

HS are calculated in O(n2) time. Further, the clique tree itself requires O(n2)
space and therefore, the setup time and space of the algorithm is O(n2).

Setting Up the Rooted T for LCA Queries: To be able to answer distance
queries efficiently, our aim is to use the hitting set of the cliques on the path
between a pair of cliques in T . For this, we will be using Lemma 2. In particular,
for the distance between u and v, we propose to use the hitting set of the cliques
on the path between Cu, Cv ∈ T . To compute the value of this hitting set, we
will take the least common ancestor C of Cu and Cv in the rooted tree, and
compute the hitting set of the cliques on the path from C and Cu, and similarly
between C and Cv. Using these hitting set values, we apply Lemma 2. Therefore,
it is crucial that we can perform LCA queries efficiently. Towards this end, we
preprocess the rooted tree T , using algorithm presented in [16], to build a data
structure D of linear size in linear time. Using D, we can compute the least
common ancestor of any two cliques Cu and Cv in T in constant time.

As a consequence of the above results in Lemma 3 and the LCA algorithm in
[16], we have the following theorem about the time to construct our distance
oracle and the space occupied by it.

Theorem 4. Given a chordal graph G, the data structure, HS, H and D use
O(n) space, and as described above, can be constructed in O(n2) time and O(n2)
space.

98 G. Singh, N.S. Narayanaswamy, and G. Ramakrishna

4.1 O(1) Time Response to Distance Queries

The query consists of ui, uj ∈ V as input and the response is a value dij , which
is the approximate distance between ui and uj in G. Algorithm 2 uses the oracle
set up earlier in this section. Recall that H[i] gives the index of a maximal clique
in the clique tree that contains vertex ui. Similarly, HS[i] gives the size of the
minimum hitting set of the maximal cliques on path connecting Cr and Ci.
Finally, D can respond to LCA queries on T in constant time.

The most important benefit of using the hitting sets of the cliques on a path
between two cliques in T is that for any pair of cliques this can be computed
within an additive error of 3. Using this approximate hitting set value, we can
then provide an estimate of the distance, as shown in Algorithm 2.

Algorithm 2. Query(ui, uj) – uses the Oracle H, HS,D as in Theorem 4

1: p = H[i];
2: q = H[j];

/* these are indices of two maximal cliques containing ui and uj */

3: if p == r (or q == r) then
/* r be the index of root clique Cr */

4: hpq = HS[q] (or hpq = HS[p])
/* one of the two queried vertices is in root clique Cr */

5: else
6: Query D with p and q.
7: Let k be the least common ancestor of p and q in T .
8: if p == k (or q == k) then
9: hpq = (HS[q]−HS[p] + 1) (or hpq = (HS[p]−HS[q] + 1))

/* r, p, q are in a single path */

10: else
11: if k == r then
12: hpq = HS[q] +HS[p]
13: else
14: hpq = HS[q] +HS[p]− 2HS[k] + 2
15: end if
16: end if
17: end if
18: return dij = 2 ∗ hpq

/* Approximate Distance Returned */

Lemma 4. For two cliques Cp and Cq in T , let Spq denote a minimum hit-
ting set of the cliques on the path connecting Cp and Cq in T . Then, value hpq

calculated in Algorithm 2 is such that hpq ≤ |Spq|+ 3.

Proof. The proof follows a case analysis as in the algorithm 2. If Cp is same
as Cr, then hpq = HS[q] = |Srq| = |Spq|. The case when Cq is same as Cr, is
similar with hpq = HS[p] = |Srp| = |Spq|. In the case when p, q, r, lie on a single

Approximate Distance Oracle in O(n2) Time and O(n) Space 99

path in T , it follows that the LCA of p, q is p or q. Let us assume that it is p
for the analysis, and the case of the LCA being q is symmetric. From Lemma 2,
we know that HS[q] ≤ HS[p] + |Spq| ≤ HS[q] + 1. Therefore, HS[q]−HS[p] ≤
|Spq| ≤ HS[q]−HS[p]+1 = hpq. Therefore, hpq−1 ≤ |Spq| ≤ hpq, and it follows
that hpq ≤ |Spq|+ 1. In the case when r is the LCA of p and q, from Lemma 2,
we know that |Spq| ≤ HS[p]+HS[q] = hpq ≤ |Spq|+1. Finally, in the case when
k �= r is the LCA of p and q, we have three inequalities that together give tight
bounds on |Spq|. Again, from Lemma 2 we know that HS[p] ≤ |Spk|+HS[k] ≤
HS[p] + 1, and HS[q] ≤ |Sqk| + HS[k] ≤ HS[q] + 1. Further, we also know
that |Spq| ≤ |Spk| + |Skq| ≤ |Spq| + 1. From these three inequalities, it follows
hpq = HS[p] +HS[q]− 2HS[k] + 2 ≤ |Spk|+ |Sqk|+2 ≤ |Spq|+3. We have now
placed a bound on hpq in all the cases, and the lemma is proved. ��

Lemma 5. For any two vertices ui, uj ∈ V (G), the value dij output by Algo-
rithm 2 is such that dij ≤ 2dG[ui, uj] + 8. Further, there is a path in G of length
at most dij .

Proof. We know that dij = 2hpq. From Lemma 4, hpq ≤ |Spq| + 3. Further,
from Corollary 1, we know that |Spq| ≤ dG(ui, uj)+ 1. Therefore, it follows that
dij ≤ 2(dG(ui, uj) + 1 + 3) = 2dG(ui, uj) + 8. Since there is a hitting set of size
at most hpq that hits the cliques on the path from Cp to Cq, from Theorem 2 it
follows that there is a path of length dij = 2hpq. Hence the lemma. ��

We have now proved all the properties of our distance oracle for chordal graphs
and these complete the proof of Theorem 1.

5 Conclusion

We have presented a linear size data structure to answer the distance queries
of an unweighted chordal graph. More precisely, the data structure designed
in this paper gives a response d for the distance query between u and v in
constant time, where dG(u, v) ≤ d ≤ 2dG(u, v)+8. Furthermore, by maintaining
the approximate hitting sets as well, along with the whole clique tree, we can
modify the distance oracle in this paper to use O(n2) space, and respond to
distance queries with paths of length at most 2dG(u, v) + 8. The query time is
proportional to the length of the path being output.

References

1. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C., et al.: Introduction to al-
gorithms, vol. 2. MIT Press, Cambridge (2001)

2. Seidel, R.: On the all-pairs-shortest-path problem in unweighted undirected graphs.
Journal of Computer and System Sciences 51(3), 400–403 (1995)

3. Williams, V.V.: Multiplying matrices faster than coppersmith-winograd. In: Pro-
ceedings of the Forty-fourth Annual ACM Symposium on Theory of Computing,
pp. 887–898. ACM (2012)

100 G. Singh, N.S. Narayanaswamy, and G. Ramakrishna

4. Han, K., Sekharan, C.N., Sridhar, R.: Unified all-pairs shortest path algorithms in
the chordal hierarchy. Discrete Applied Mathematics 77(1), 59–71 (1997)

5. Gavoille, C., Katz, M., Katz, N.A., Paul, C., Peleg, D.: Approximate distance
labeling schemes. In: Meyer auf der Heide, F. (ed.) ESA 2001. LNCS, vol. 2161,
pp. 476–487. Springer, Heidelberg (2001)

6. Ravi, R., Marathe, M.V., Pandu Rangan, C.: An optimal algorithm to solve the
all-pair shortest path problem on interval graphs. Networks 22(1), 21–35 (1992)

7. Radhakrishnan, V., Hunt, H., Stearns, R.: On Solving Systems of Linear Equations
and Path Problems for Bounded Treewidth Graphs. State University of New York
at Albany, Department of Computer Science (1992)

8. Dahlhaus, E.: Optimal (parallel) algorithms for the all-to-all vertices distance prob-
lem for certain graph classes. In: Mayr, E.W. (ed.) WG 1992. LNCS, vol. 657,
pp. 60–69. Springer, Heidelberg (1993)

9. Thorup, M., Zwick, U.: Approximate distance oracles. Journal of the ACM
(JACM) 52(1), 1–24 (2005)

10. Cohen, E., Zwick, U.: All-pairs small-stretch paths. In: Proceedings of the eighth
annual ACM-SIAM Symposium on Discrete algorithms, pp. 93–102. Society for
Industrial and Applied Mathematics (1997)

11. Baswana, S., Kavitha, T.: Faster algorithms for approximate distance oracles and
all-pairs small stretch paths. In: 47th Annual IEEE Symposium on Foundations of
Computer Science, FOCS 2006, pp. 591–602. IEEE (2006)

12. Shibata, Y.: On the tree representation of chordal graphs. Journal of Graph The-
ory 12(3), 421–428 (1988)

13. Golumbic, M.C.: Algorithmic graph theory and perfect graphs, vol. 2. Elsevier
(2004)

14. Blair, J.R., Peyton, B.: An introduction to chordal graphs and clique trees. In:
Graph Theory and Sparse Matrix Computation, pp. 1–29. Springer (1993)

15. Harel, D., Tarjan, R.E.: Fast algorithms for finding nearest common ancestors.
SIAM Journal on Computing 13(2), 338–355 (1984)

16. Schieber, B., Vishkin, U.: On finding lowest common ancestors: simplification and
parallelization. SIAM Journal on Computing 17(6), 1253–1262 (1988)

17. Powell, P.: A further improved LCA algorithm. Technical report TR90-01. Univer-
sity of Minnesota, Institute of Technology, Computer Science Department (1990)

Straight-Path Queries in Trajectory Data�

Mark de Berg and Ali D. Mehrabi

Department of Computer Science
TU Eindhoven

Abstract. Inspired by sports analysis, we study data structures for stor-
ing a trajectory representing the movement of a player during a game,
such that the following queries can be answered: Given two positions s
and t, report all sub-trajectories in which the player moved in a more or
less straight line from s to t. We consider two measures of straightness,
namely dilation and direction deviation, and present efficient construc-
tion algorithms for our data structures, and analyze their performance.

We also present an O(n1.5+ε) algorithm that, given a trajectory P and
a threshold τ , finds a simplification of P with a minimum number of ver-
tices such that each edge in the simplification replaces a sub-trajectory of
length at most τ times the length of the edge. This significantly improves
the fastest known algorithm for the problem.

1 Introduction

Background. Video analysis is nowadays an important tool for sports coaches.
Traditionally, video analysis is done manually: someone watches a video of a
match and annotates the video with various types of events—goals or points
being scored, changes of ball possession, and so on. However, manual analysis is
labor intensive and annotating all league matches of an entire season would be
very time-consuming and expensive. Therefore there has been considerable in-
terest in automating parts of the process. A basic step in an automated analysis
is to extract the movements of the players and the ball from the video. Nowa-
days this can be done quite accurately, giving us for each player a trajectory: a
sequence of the player’s location at regular time steps. The availability of high-
quality trajectories enables the use of geometric algorithms and data structures.
In this paper we study two problems in this area.

The first problem is an indexing problem, related to the following query a
coach may wish to ask: show me all video fragments in which player X runs
in a more or less straight line from a certain position s on the field to another
position t. We thus need a data structure storing a collection of trajectories
(corresponding to the movements of player X in all matches) such that we can
efficiently answer straight-path queries : given a directed query segment st, report
all subtrajectories starting near s and going in a more or less straight line to a
point near t. (We will define the problem more formally below.)

� Research by MdB and AM was supported by the Netherlands Organization for Sci-
entific Research (NWO) under projects 024.002.003 and 612.001.118, respectively.

M.S. Rahman and E. Tomita (Eds.): WALCOM 2015, LNCS 8973, pp. 101–112, 2015.
c© Springer International Publishing Switzerland 2015

102 M. de Berg and A.D. Mehrabi

The second problem we study is a simplification problem: given a trajectory P ,
compute a simplification P ′ with a minimum number of vertices under the con-
dition that P ′ is sufficiently similar to P . Here we require (as is usually done)
that the vertices of P ′ form a subset of the vertices of P . Computing such a
simplification is useful to reduce storage requirements, and also to smooth out
irregularities in the data due to small errors in the reported locations.

Straight-path queries: related work. The focus of our work is on data structures
that come with proven guarantees on the query time but also on the quality
of the reported results. For the latter we need to define when a subtrajectory
is sufficiently similar to the query segment st. We are aware of only one such
result, obtained by De Berg et al. [4]. They show how to store a trajectory P of n
vertices such that, given a query segment st and a threshold Δ, one can find all
subtrajectories of P whose so-called Fréchet distance to st is at mostΔ. However,
their work has several drawbacks. First of all, in addition to all the correct
subtrajectories their data structure may report additional subtrajectories whose
Fréchet distance to st can be up to a factor 2+3

√
2 times larger than Δ. Second,

their data structure is a complicated multi-level structure which is difficult to
implement and unlikely to be efficient in practice. Finally, they only show how to
(approximately) count the subtrajectories—it is unclear how to actually report
them in an efficient manner. Gudmundsson and Smid [8] recently studied a more
general version of the problem, but their solution only works for c-packed paths
and only reports a single subpath (and is rather involved).

There are also a few non-algorithmic papers related to ours, such as the work
of Shim et al. [11]. However, they do not have any guarantees on the performance
of their solution. Our main goal is thus to develop a data structure for straight-
path queries that has with provable performance guarantees and that is simple
enough to be effective in our soccer scenario.

Straight-path queries: our approach and results. We take the following practical
approach. We partition the soccer field into a grid of square cells (the cell size
can be set by the user). To specify a query the coach indicates a starting cell
Cs and a target cell Ct, and the data structure should report all subtrajectories
where the player moved in a more or less straight line from Cs to Ct. We still
have to define what it means when “a player moves from Cs to Ct in a more or
less straight line”. Let s be the point where the player’s trajectory P exits Cs

and let t be the point where it enters Ct. Then we want the subtrajectory from
s to t—we denote this subtrajectory by P [s, t]—to be similar to the segment st.
We study two different definitions for this similarity.

– The first option is to use the so-called dilation of P [s, t], which is defined as
|P [s, t]|/|st|, where |·| denotes the Euclidean length of a path or segment. We
now say that the player moves in a more or less straight line from Cs to Ct

when the dilation of P [s, t] is at most some (predetermined) threshold τ � 1.
In other words, P [s, t] can be at most a factor τ longer than the segment st.

– The second option is to require that the player always moves in more or
less the same direction along P [s, t]. We define the direction deviation of a

Straight-Path Queries in Trajectory Data 103

trajectory to be the maximum angle between any two (directed) segments on
the trajectory. We then say that the player moves in a more or less straight
line from Cs to Ct when the direction deviation of P [s, t] is at most some
(predetermined) threshold α < π/2. We call such a subtrajectory α-straight.

Our first data structure for straight-path queries is a look-up table that stores,
for all pairs of grid cells Cs, Ct, the set S(Cs, Ct) of straight Cs-to-Ct subtra-
jectories (according the chosen definition of straightness). Thus a query can be
answered in O(1+A) time by a look-up table, where A is the number of reported
subtrajectories. Our contributions for this simple data structure are (i) efficient
algorithms to compute all sets S(Cs, Ct), and (ii) a theoretical and experimental
analysis of the size of the data structures. Due to space limitations we defer the
experimental analysis and several proofs to the full version.

Because the worst-case size of our first data structure is large, we also present
a data structure that uses much less storage. This data structure can be used
when the straightness measure is the direction deviation. A drawback is that,
in addition to the correct subtrajectories, the data structure may also report
some additional α-straight subtrajectories that start near Cs. We analyze the
maximum possible error—that is, how far from Cs the reported subtrajectories
may start—theoretically (and, in the full version, experimentally).

The minimum-vertex path-simplification problem. In path-simplification prob-
lems the goal is to compute, for a given trajectory P , a trajectory Q with fewer
vertices than P that is sufficiently similar to P . We study a variant called the
minimum-vertex path-simplification (MVPS) problem, introduced by Gudmunds-
son et al. [7]. In the MVPS problem we want to find a minimum-size subset Q of
vertices of P such that for any two consecutive vertices pi and pj in Q we have
|P [pi, pj]| � τ |pipj |. (In other words, we are only allowed to use a shortcut pipj
when the dilation of P [pi, pj] is at most τ .) Gudmundsson et al. [7] solve this
problem in O(n2) time exactly and they give an (1+ε)-approximation algorithm
that runs in time O(n log n + n/ε). We present a dynamic-programming algo-
rithm with expected running time O(n1.5+ε), for any ε > 0, thus significantly
improving the running time of their exact algorithm.

2 The Data Structures

For simplicity of presentation we assume we are given a single trajectory P
with n vertices, denoted by v0, . . . , vn−1; it is trivial to extend the results to
multiple trajectories. We further assume that the grid G we use to partition the
soccer field is a square grid with m × m cells. Recall that P [p, p′] denotes the
subtrajectory from p to p′. We say that P [p, p′] is a C-to-C′ subtrajectory if p
lies on the boundary of cell C and p′ lies on the boundary of cell C′ and P [p, p′]
does not intersect C and C′ except at p and p′. For two points p, p′ ∈ P we write
p ≺ p′ when p comes before p′ in the order along P .

104 M. de Berg and A.D. Mehrabi

2.1 A Look-up Table for Straight-Path Queries

As explained in the introduction, our first data structure is a look-up table
that stores for every pair of grid cells C,C′ the set S(C,C′) of all C-to-C′

subtrajectories that are considered straight with respect to the given measure
of straightness (dilation or direction deviation) and parameter (τ or α). More
precisely, for each such subtrajectory P [p, p′] we store its starting point p and
endpoint p′. The main questions are then: (i) how do we construct the sets
S(C,C′) efficiently, and (ii) what is the maximum size of the data structure,
that is, how large can

∑
C,C′ |S(C,C′)| be.1 Next we answer these questions for

the two straightness measures that we use.
In the sequel we call a point where P crosses from one cell into the next a

transition point. (To deal correctly with degenerate situations we define each
cell to be closed on the bottom and to the left, and open on the top and to the
right. Thus vertical edges belong to the cell lying to their right and horizontal
edges belong to the cell above; vertices belong to the cell to their top-right.) A
transition point is an exit point for the cell being exited, and an entry point for
the cell being entered. We denote the sequence of transition points by p0, p1, . . .,
where the transition points are ordered along P . We denote the cell from which
P exits at pi by Cexit(pi), and the cell being entered by Centry(pi).

Direction Deviation. We first describe how to compute the sets S(C,C′)
when direction deviation is used as straightness measure. Let α be the given
straightness parameter, where we assume 0 � α < π/2. Note that α-straightness
is a monotone criterion: if a subtrajectory P [p, q] is α-straight, then any subtra-
jectory P [p′, q′] with p ≺ p′ ≺ q′ ≺ q is also α-straight. Thus we can follow the
following strategy: we walk along P from start to finish, and at each transition
point pj we walk back along P to report all α-straight subtrajectories of the
form P [pi, pj], where pi is a transition point with i < j. Because α-straightness
is a monotone criterion, we can stop the backwards walk as soon as we encounter
a transition point pi for which P [pi, pj] is not α-straight. A problem with this
approach is that if P has many consecutive vertices inside the same cell then
we spend a lot of time walking back through that cell, which can cause a high
running time. We thus have to proceed more carefully.

We model directions as points on the unit circle S1. A subtrajectory P [pi, pj]
is α-straight if and only if the smallest circular interval of S1 that contains
all points corresponding to the directions of the edges of the subtrajectory has
length α—see Fig. 1. Our algorithm now works as follows. As we walk along P we
compute for each consecutive pair of transition points pj , pj+1 the smallest circu-
lar interval I(pj , pj+1) containing all directions of the subtrajectory P [pj , pj+1],
if this interval has length at most α; if the interval has length greater than α
then I(pj , pj+1) is defined to be nil. (The smallest interval is uniquely defined
when it has length at most α, since α < π.) Note that if P [pj , pj+1] is a single

1 By hashing techniques we can make sure we only store information for pairs C,C′

such that S(C,C′) �= ∅, so the amount of storage is indeed O(
∑

C,C′ |S(C,C′)|).

Straight-Path Queries in Trajectory Data 105

Cexit(pi)

Centry(pj)

pj

pi S1

Fig. 1. A subtrajectory and the points on S1 corresponding to its edges. The smallest
circular interval containing the points is shown in grey.

segment then I(pj , pj+1) degenerates to a point on S1. At each transition point
pi we walk backwards from transition point to transition point (thus skipping
over vertices of P) as long as the subtrajectories are α-straight. To check this we
maintain the smallest circular interval I∗ that contains all intervals I(pj , pj+1)
that we encountered in the backwards walk.

We ignored one aspect so far: the fact that P [pi, pj] is α-straight is not
sufficient for the subtrajectory to be reported. We also need P [pi, pj] to be a
valid Cexit(pi)-to-Centry(pj) subtrajectory. This is violated if P [pi, pj] intersects
Cexit(pi) or Centry(pj) at some point other than pi or pj. To make sure our algo-
rithm is output sensitive, we have to avoid reporting P [pi, pj] in this case. This
can be done by removing a transition point pi from our list of transition points as
soon as we encounter another transition point pi′ with Cexit(pi′) = Cexit(pi). This
ensures that when we report P [pi, pj], then P [pi, pj] does not intersect Cexit(pi)
except at pi. When we remove pi, we have to “merge” the intervals I(pi−1, pi)
and I(pi, pi+1) into a new interval I(pi−1, pi+1). To facilitate this we maintain
an ordered list L of all encountered transition points that have not been deleted
yet, and with each transition point pi in L we store an interval I(pi) which is the
smallest circular interval containing all directions of the subtrajectory P [pi′ , pi]
(or nil if this interval has length more than α), where pi′ is the predecessor of
pi in L. To avoid reporting a subtrajectory P [pi, pj] that intersects Centry(pj)
at some point other than pj , we can simply stop our backwards walk when we
encounter a transition point pi with Cexit(pi) = Centry(pj).

Algorithm 1 describes our algorithm in more detail. Subroutine SmallestInter-
val(P [pi, pj]) outputs the smallest circular interval containing all edge directions
of P [pj−1, pj] or, when this interval has length more than α, it outputs nil. Sim-
ilarly, for two circular intervals I1, I2 the subroutine Merge(I1, I2) outputs the
smallest circular interval containing I1 and I2 or, when this interval has length
more than α, it outputs nil.

Since walking back from a transition point pj takes time O(1 + kj), where kj
is the total number of reported subtrajectories, we get the following theorem.

Theorem 1. Let P be a trajectory with n vertices in a domain that is an m×m
grid, and let α be a constant with 0 � α < π/2. Then we can compute all sets
S(C,C′) of α-straight subtrajectories of P in O(n+ k) time, where k is the total
size of all sets.

106 M. de Berg and A.D. Mehrabi

Algorithm 1. FindStraightSubtrajectories(P, α).
1. Set j := 0 and create an empty list L for storing transition points.

2. Walk along P from v0 to vn−1, tracing the trajectory through the grid. Whenever

P crosses from one cell into another, do the following:

(i) Create a transition point pj at the crossing point. If j = 0 then skip to Step (v),

otherwise continue with Step (ii).

(ii) Set I(pj−1, pj) := SmallestInterval(P [pj−1, pj])

(iii) I∗ := I(pj−1, pj); let ptr point to the end of L.
while I∗ �= nil and ptr �= nil

do Let pi be the transition point ptr points to.

if Cexit(pi) = Centry(pj)

then ptr := nil

else Report P [pi, pj] as an α-straight Cexit(pi)-to-Centry(pj) subtrajectory.

If I(pi) = nil then I∗ := nil, else I∗ := Merge(I∗, I(pi)). Move ptr

backwards (to its predecessor).
(iv) If there is a transition point pi in L with Cexit(pi) = Cexit(pj)—we can test

this in O(1) time by maintaining some extra information—then we remove pi
from L and we set I(pi′) := Merge(I(pi), I(pi′)), where pi′ is the successor of pi
in L.

(v) Append pj to L with I(pj) := I(pj−1, pj), and set j := j + 1.

Analysis of the number of α-straight trajectories. Next we prove bounds on∑
C,C′ |S(C,C′)|, the total number of α-straight trajectories. In the analysis

we make the assumption that the average length of the segments vivi+1 of P
is at most the edge length of the grid cells. With our grid cells having size of
1m × 1m, for instance, and a sampling rate of 20Hz this is clearly a realistic
assumption. For our soccer application, from now on we assume without loss of
generality that the cells in the grid G have unit size, and that the average length
of the segments vivi+1 in P is at most 1. We call such a trajectory a short-edge
trajectory. The following theorem states the main result for this case. Observe
that in practice α would be chosen fairly small, in which case cos(α/2) will be
close to 1. The bound in the next theorem then becomes O(nm).

Theorem 2. Let P be a short-edge trajectory with n vertices within an m×m
unit grid, and let 0 � α < π/2. For a pair C,C′ of grid cells, let S(C,C′) be
the collection of all C-to-C′ α-straight subtrajectories. Then

∑
C,C′ |S(C,C′)| =

O(min{n2, nm2, nm/ cos(α/2)}), and this bound is tight in the worst case.

To prove Theorem 2 we first bound the length of any α-straight subtrajectory.

Lemma 1. The length of any α-straight trajectory P ′ in an m×m unit grid is
at most

√
2m/ cos(α/2).

Proof. Since the directions of all edges in P ′ differ by at most α, there is a direc-
tion d such that any edge in P ′ makes an angle at most α/2 with d. Let 	 be a line
with direction d, and project all edges of P ′ orthogonally onto 	. Note that if the
projection of some edge si of P

′ onto 	 has length xi, then |si| � xi/ cos(α/2).
Furthermore, since α < π/2, the projections of these segments have disjoint

Straight-Path Queries in Trajectory Data 107

interiors. Hence, |P ′| =
∑

i|si| �
∑

i xi/ cos(α/2) = |pp′|/ cos(α/2), where p and
p′ are the projections of the start and endpoint of P ′ onto 	. Because P ′ lies
inside an m×m grid, we have |pp′| �

√
2m. �

Using Lemma 1, we can now prove the upper bound from Theorem 2. Indeed,
since the average length of the segments is at most 1, the total length of P is at
most n. Because a trajectory of length L visits O(L + 1) grid cells, this implies
that the total number of transition points of P is O(n), which gives an O(n2)
upper bound on the total number of subtrajectories between transition points (ir-
respective of whether they are α-straight or not). It also implies an upper bound
of O(nm2), since there are only m2 distinct cells C to start a C-to-Centry(pj)
subtrajectory for a fixed transition point pj. On the other hand, for each transi-
tion point pj , the length of the longest α-straight subtrajectory ending at pj is
at most

√
2m/ cos(α/2) by Lemma 1. Using the fact that a trajectory of length

L visits O(L + 1) grid cells, we can therefore bound the number of α-straight
subtrajectory ending at pj by O(m/ cos(α/2)), which gives an O(nm/ cos(α/2))
on the total number of α-straight subtrajectories. Combining this with the O(n2)
and O(nm2) bounds, we obtain the claimed upper bound. In the full version we
show a matching lower bound, thus completing the proof of Theorem 2.

Remark. If the trajectory is not restricted to be short-edge then the upper bound
of Theorem 2 becomes O(min{n2s2, nm2s, nms/ cos(α/2)}), where s denotes the
length of the longest segment in the trajectory, and this bound is tight in the
worst case.

Dilation. We now turn our attention to dilation as a measure of straightness.We
denote the dilation of P [p, p′] by dil(P [p, p′]). Compared to direction deviation
as straightness measure, dilation is more difficult to handle, because it is not
a monotone criterion: if dil(P [p, p′]) � τ then a subtrajectory P [p′, q′] with
p ≺ p′ ≺ q′ ≺ q may still have dilation larger than τ . Next we show that we can
nevertheless get an output-sensitive algorithm.

The idea of our solution is that, as we walk along P , we store the transition
points in a suitable data structure D. This data structure allows us to perform
a query with the current transition point pj to find all transition points pi such
that P [pi, pj] is a Cexit(pi)-to-Centry(pj) subtrajectory of dilation at most τ .
To this end we associate to each transition point pi a point ψi := (xi, yi, di)
in R3, where di = |P [v0, pi]| and xi and yi are the x- and y-coordinate of pi,
respectively. Note that the values di can be computed in constant time as we
walk on P , if we maintain the total length of the traversed part of P . Now when
we arrive at transition point pj , we are looking for all transition points pi such

that dil(P [pi, pj]) � τ , that is, such that (dj −di)/
√
(xj − xi)2 + (yj − yi)2 � τ.

(A similar idea was used by Agarwal et al. [2].) Thus if we define the range
Γτ (pj) in R3 for pj as

Γτ (pj) := {(x, y, d) : τ(xj − x)2 + τ(yj − y)2 − (dj − d)2 � 0}.

then we are looking for all points pi such that ψi ∈ Γτ (pj).

108 M. de Berg and A.D. Mehrabi

Algorithm 2. FindSmallDilationSubtrajectories(P, τ).

1. Set j := 0 and initialize an empty data structure D.
2. Walk along P from v0 to vn−1, tracing the trajectory through the grid. Whenever

P crosses from one cell into another, do the following:
(i) Create a transition point pj at the crossing point.
(ii) If j > 0 then query the data structure D to find all transition points pi such

that ψi ∈ Γτ (pj) and i > j′, where pj′ is the most recent transition point with
Centry(pj′) = Centry(pj). (If there is no such transition point, then j′ = −1.)
For each such transition point pi, report P [pi, pj] as a Cexit(pi)-to-Centry(pj)
subtrajectory with dilation at most τ .

(iii) Insert ψj := (xj , yj , dj) into D. If D already stored a transition point pi with
Cexit(pi) = Cexit(pj) then we delete the corresponding point ψi from D.

(iv) Set j := j + 1.

As before, there is one other aspect to be taken into account: we are only
allowed to report a subtrajectory P [pi, pj] when it does not intersect Cexit(pi)
except at pi and it does not intersect Centry(pj) except at pj . The former is guar-
anteed by deleting a transition point pi from D when we encounter a transition
point pi′ with i′ > i such that Cexit(pi′) = Cexit(pi). The latter is guaranteed
by refining our query: when we arrive at transition point pj we find the most
recent transition point pj′ with Centry(pj′) = Centry(pj)—we can find this point
(if it exists) in O(1) time if we maintain a pointer from each grid cell to its
most recent entry point—and then we only search for exit points pi with i > j′.
Algorithm 2 describes this in more detail.

It remains to describe a data structure D for answering the following queries:

Given a query point pj and an index j′, report the points pi such that
ψi ∈ Γτ (pj) (in other words, with dil(P [pi, pj]) � τ) and i > j′. (∗)

First we focus on the condition ψi ∈ Γτ (pj). The range Γτ (pj) is a semi-algebraic
set in R3. Hence, we can use the range-searching data structure of Agarwal et
al. [1], which uses O(n1+ε) storage and expected preprocessing (for any fixed
ε > 0) and has query time O(n2/3 + k), where k is the number of reported
points. We can improve the query time if we allow more preprocessing, using
standard techniques. For instance, we can obtain logarithmic query time using
O(n3) preprocessing. To this end we map every point pi to an algebraic surface
Στ (pi) in R3, defined as

Στ (pi) := {(x, y, d) : τ(x − xi)
2 + τ(y − yi)

2 − (d− di)
2 = 0}.

Now, whether or not dil(P [pi, pj]) � τ is determined by on which side of Στ (pi)
the point pj lies. Thus we can find all points pi such that dil(P [pi, pj]) � τ by
performing point location with pj in the arrangement defined by the surfaces
{Στ (pi) : i < j}. The latter can be solved in O(log n) time after O(n3+ε) pre-
processing [5]. Unfortunately, we cannot afford cubic preprocessing. However, we

Straight-Path Queries in Trajectory Data 109

can combine our first data structure with the cubic-storage solution in a stan-
dard manner [3, Exercise 16.16] to obtain a trade-off between storage and query
time. In particular, for any s with n � s � n3 we can construct a data structure
using O(s1+ε) expected preprocessing so that a query can be answered in time
O(n1+ε/s1/3).

Recall that we need to extend the data structure such that when we do a
query for entry point pj we only report subtrajectory P [pi, pj] when i > j′,
where j′ is defined as in Algorithm 2. This can be done by adding a so-called
range restriction to the data structure [12]. We also need our data structure
to be dynamic, that is, we need to be able to do insertions and deletions. This
can be done by applying the logarithmic method [9] in combination with weak
deletions. By applying these techniques we can obtain, for any fixed ε > 0, a
data structure in which queries take O(n1+ε/s1/3) time and updates take s1+ε/n
expected time. We now choose s = n

√
n to balance the query time and insertion

time. Putting everything together, we obtain the following result.

Theorem 3. Let P be a trajectory with n vertices in a domain that is an m×m
grid, and let τ � 1 be a constant. Then, for any fixed ε > 0, we can compute
all sets S(C,C′) of subtrajectories of P with dilation at most τ in expected time
O(n1.5+ε + k), where k is the total size of all sets.

Analysis of the number of subtrajectories with dilation at most τ . As before we
assume the grid consists of unit-size cells, and we make the realistic assump-
tion that we are dealing with short-edge trajectories. The proof of the following
theorem is similar to the proof of Theorem 2.

Theorem 4. Let P be a short-edge trajectory with n vertices within an m×m
unit grid, and let τ � 1. For a pair C,C′ of grid cells, let S(C,C′) be the collec-
tion of all C-to-C′ subtrajectories of dilation at most τ . Then

∑
C,C′ |S(C,C′)| =

O(min{n2, nm2, τnm}), and this bound is tight in the worst case.

2.2 A More Space-Efficient Alternative

Explicitly storing all sets S(C,C′) of straight subtrajectories gives fast and ac-
curate queries, but it is costly in terms of storage. Below we present a much
more space-efficient alternative. This comes at the cost of slightly slower queries
times and the fact we may also report some subtrajectories that pass near to the
starting cell Cs of the query (rather than starting exactly at Cs). The alternative
solution works for direction deviation as straightness measure.

Let P be the given n-vertex trajectory inside an m×m grid G, and let α be
a given straightness threshold with 0 � α < π/2. Recall that direction deviation
is a monotone criterion, so for any entry point pj there is a point p ≺ pj such
that P [p′, pj] is α-straight for all p # p′ ≺ pj and P [p′, pj] is not α-straight for
any p′ ≺ p. We call P [p, pj] the longest α-straight subtrajectory for pj . For a
cell C ∈ G, let L(C) denote the set of all longest α-straight subtrajectories of P

110 M. de Berg and A.D. Mehrabi

δmin

seg(Cs, Ct)

Cs

Ct

δmax

min

max

Fig. 2. Definition of seg(Cs, Ct), δmin and δmax

ending at some entry point on the boundary of C. For each cell C, we store the
set L(C) in a priority search tree2 PST[C], as explained next.

Consider a cell C, an entry point pj of C and the longest α-straight subtra-
jectory P [p, pj] ∈ L(C). We associate a 2-dimensional point χ(pj) with this sub-
trajectory, as follows. Let φ(ppj) be the counterclockwise angle that the directed
segment ppj makes with the positive x-axis. Then the point χ(pj) is defined as
χ(pj) := (φ(ppj), |ppj |). This gives us a set X(C) := {χ(pj) : P [p, pj] ∈ L(C)}
of points in R2, which we store in PST[C]. Recall that a short-edge trajectory
induces O(n) transition points. Since for each transition point pj we only store
the longest subtrajectory P [p, pj] ending at pj, we have the following lemma.

Lemma 2. Let P be a short-edge trajectory with n vertices. Then the total
amount of storage needed for all priority search trees PST[C] is O(n).

We now explain how we answer a straight-path query with starting cell Cs and
target cell Ct. To simplify the presentation, we assume that Ct lies to north-east
of Cs; the other cases can be handled in a symmetrical manner.

Let seg(Cs, Ct) denote a shortest directed line segment connecting Cs to Ct.
Let 	min denote the common tangent of Cs and Ct with minimum slope, and
	max denote the common tangent of Cs and Ct with maximum slope. Finally,
let δmin and δmax denote the angles that 	min and 	max make with the positive
x-axis; see Figure 2. We then now perform a semi-infinite range query on the
priority search tree PST[Ct] with the semi-infinite range R(Cs, Ct) defined as

R(Cs, Ct) := [δmin − α : δmax + α]× [|s(Cs, Ct)| :∞).

Thus, intuitively, we report a longest subtrajectory P [p, pj] if the direction of
ppj is similar to the direction of seg(Cs, Ct) and ppj is at least as long as the
minimum distance between Cs and Ct. The following lemma states that the
subtrajectories we report include all subtrajectories from Cs to Ct, and that any
subtrajectory we report passes near Cs.

Lemma 3. (i) Let P [pi, pj] be an α-straight Cs-to-Ct subtrajectory. Then χ(pj),
the point stored for P [pi, pj] in PST[Ct], lies in the range R(Cs, Ct). (ii) Let

2 A priority search tree [3, Section 10.2] stores a planar point set such that all points
in a semi-infinite range [x1 : x2]× [y : ∞) can be reported efficiently.

Straight-Path Queries in Trajectory Data 111

P [p, pj] be a subtrajectory in L(Ct) such that χ(pj) ∈ R(Cs, Ct). Then the dis-
tance from P [p, pj] to Cs is at most O(1 + sin(2α) · |seg(Cs, Ct)|).

Notice that the error in (ii)—the distance from P [p, pj] to Cs—is a constant
number of cells plus a fraction of |seg(Cs, Ct)| that tends to zero as α tends to
zero. Thus the error does not depend on |ppj |, which is desirable since |ppj | can
be large compared to |seg(Cs, Ct)|. It should be noted that the subtrajectory we
report is guaranteed to pass near Cs, but does not necessarily start near Cs.

3 Distance-Preserving Path Simplification

Let P = (p1, p2, . . . , pn) be a path with n vertices and τ � 1 be a real number.
A path Q = (pi1 , pi2 , . . . , pik), with 1 = i1 < i2 < · · · < ik = n, is called a τ -
distance-preserving approximation of P if dil(P [pit , pit+1]) � τ for all 1 � t < k.
Gudmundsson et al. [7] introduced the Minimum Vertex Path Simplification
(MVPS) problem: given a path P and a threshold τ � 1, compute a τ -distance-
preserving approximation of P having the minimum number of vertices. Their
algorithm for the problem runs in O(n2) time. Our approach to improve this
time bound uses dynamic programming. For any 1 � j � n, let M [j] denote
the minimum number of vertices on any τ -distance-preserving approximation of

P [pj , pn]. Define S(j) :=
{
pi : i > j and dil(P [pi, pj]) � τ

}
. Then M [j] satisfies

M [j] =

{
1 if j = n

1 + min
{
M [i] : pi ∈ S(j)

}
if j < n

Explicitly checking each point pi ∈ S(j) when computing M [j] will lead to
a quadratic algorithm. To speed up the algorithm we will augment the data
structure from Section 2.1 so that, given a query index i, we can compute
min{M [i] : pi ∈ S(j)} quickly.

The data structure. Observe that the condition pi ∈ S(j) is essentially the same
as the condition (∗) on page 108. Hence, we can report all points in S(j) using
the data structure described on page 108–109. However, we only want to report
the point pi with the minimum M [i] value. To this end we have to augment the
data structure with extra information.

The data structure is a two-level tree3 whose first level is a binary search
tree T storing all the vertices on the path based on their indices. This level
enables us to restrict the attention to points pi with i > j. With each node v of
the first-level tree T , we have an associated tree T ′

v that allows us to select all
points pi with dil(P [pi, pj]) � τ . This selection comes in the form of a number
of nodes w whose canonical subsets together form a disjoint partition of S(j).
Thus we augment the data structure as follows: with each node w in any of the
associated trees, we store the value Mw := min{M [i] : pi ∈ Sw}, where Sw is

3 For the current application we do not need insertions and deletions, so we do not
need to apply the logarithmic method.

112 M. de Berg and A.D. Mehrabi

the canonical subset associated to w. (When M [i] is not known yet, it is defined
as +∞.) When we now perform a query with a point pj , we search our data
structure to select a set of nodes w whose canonical subsets form S(j), and we
take the smallest Mw-value among the selected nodes.

The algorithm. Now the algorithm simply works as follows. We construct the
data structure described above, where each Mw-value is initialized to +∞, and
we initializeM [n] := 1. We then compute each valueM [j], for j = n−1, . . . , 1, by
performing a query with pj as described above. After having computed M [j] we
set Mw := min(Mw,M [j]) for each node w whose canonical subset contains pj .

We have seen before that the data structure can be constructed in O(n1.5+ε)
time and that each query takes O(n0.5+ε) time. Since any point pj is stored in
O(n0.5+ε) canonical subsets, updating the Mw-values at each step can be done
in O(n0.5+ε) as well. Hence, we obtain the following result.

Theorem 5. The MVPS problem can be solved in O(n1.5+ε) expected time.

References

1. Agarwal, P.K., Matoušek, J., Sharir, M.: On range searching with semialgebraic
sets II. SIAM J. Comput. 42, 2039–2062 (2013)

2. Agarwal, P.K., Klein, R., Knauer, C., Langerman, S., Morin, P., Sharir, M., Soss,
M.A.: Computing the detour and spanning ratio of paths, trees, and cycles in 2D
and 3D. Discr. Comput. Geom. 39, 17–37 (2008)

3. de. Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational Geom-
etry: Algorithms and Applications, 3rd edn. Springer (2008)

4. de. Berg, M., Cook, A.F., Gudmundsson, J.: Fast Fréchet queries. Comput. Geom.
Theory Appl. 46(6), 747–755 (2013)

5. Chazelle, B., Edelsbrunner, H., Guibas, L.J., Sharir, M.: A singly exponential strat-
ification scheme for real semi-algebraic varieties and its applications. Theor. Com-
put. Sci. 84(1), 77–105 (1991)

6. Chazelle, B., Sharir, M., Welzl, E.: Quasi-optimal upper bounds for simplex range
searching and new zone theorems. Algorithmica 8(5), 407–429 (1992)

7. Gudmundsson, J., Narasimhan, G., Smid, M.: Distance-preserving approximations
of polygonal paths. Comput. Geom. Theory Appl. 36(3), 183–196 (2007)

8. Gudmundsson, J., Smid, M.: Fréchet queries in geometric trees. In: Bodlaender,
H.L., Italiano, G.F. (eds.) ESA 2013. LNCS, vol. 8125, pp. 565–576. Springer,
Heidelberg (2013)

9. Overmars, M. (ed.): The Design of Dynamic Data Structures. LNCS, vol. 156.
Springer, Heidelberg (1983)

10. Pettersen, S.A., Johansen, D., Johansen, H., Berg-Johansen, V., Gaddam, V.R.,
Mortensen, A., Langseth, R., Griwodz, C., Stensland, H.K., Halvorsen, P.: Soccer
video and player position dataset. In: Proc. 5th Int. Conf. Multi. Syst., pp. 18–23
(2014)

11. Shim, C.-B., Chang, J.-W., Kim, Y.-C.: Trajectory-based video retrieval for mul-
timedia information systems. In: Yakhno, T. (ed.) ADVIS 2004. LNCS, vol. 3261,
pp. 372–382. Springer, Heidelberg (2004)

12. Willard, D.E., Luecker, G.S.: Adding range restriction capability to dynamic data
structures. J. ACM 32, 597–617 (1985)

Folding a Paper Strip to Minimize Thickness�

Erik D. Demaine1,��, David Eppstein2, Adam Hesterberg3, Hiro Ito4,
Anna Lubiw5, Ryuhei Uehara6, and Yushi Uno7

1 Computer Science and Artificial Intelligence Lab,
Massachusetts Institute of Technology, USA

edemaine@mit.edu
2 Computer Science Department, University of California, Irvine, USA

eppstein@uci.edu
3 Department of Mathematics, Massachusetts Institute of Technology, USA

achester@mit.edu
4 School of Informatics and Engineering,

University of Electro-Communications, Japan
itohiro@uec.ac.jp

5 David R. Cheriton School of Computer Science, University of Waterloo, Canada
alubiw@uwaterloo.ca

6 School of Information Science, Japan Advanced Institute of Science and
Technology, Japan

uehara@jaist.ac.jp
7 Graduate School of Science, Osaka Prefecture University, Japan

uno@mi.s.osakafu-u.ac.jp

Abstract. In this paper, we study how to fold a specified origami crease
pattern in order to minimize the impact of paper thickness. Specifically,
origami designs are often expressed by a mountain-valley pattern (plane
graph of creases with relative fold orientations), but in general this spec-
ification is consistent with exponentially many possible folded states. We
analyze the complexity of finding the best consistent folded state according
to twometrics: minimizing the total number of layers in the folded state (so
that a“flat folding” is indeed close toflat), andminimizing the total amount
of paper required to execute the folding (where “thicker” creases consume
more paper). We prove both problems strongly NP-complete even for 1D
folding. On the other hand, we prove the first problem fixed-parameter
tractable in 1D with respect to the number of layers.

� This research was performed in part at the 29th Bellairs Winter Workshop on Com-
putational Geometry.

�� Erik Demaine was supported in part by NSF ODISSEI grant EFRI-1240383 and
NSF Expedition grant CCF-1138967. David Eppstein was supported in part by NSF
grant 1228639 and ONR grant N00014-08-1-1015. Adam Hesterberg was supported
in part by DoD, Air Force Office of Scientific Research, National Defense Science
and Engineering Graduate (NDSEG) Fellowship, 32 CFR 168a. Hiro Ito was sup-
ported in part by JSPS KAKENHI Grant Number 24650006 and MEXT KAKENHI
Grant Number 24106003. Anna Lubiw was supported in part by NSERC. Ryuhei
Uehara was supported in part by JSPS KAKENHI Grant Number 23500013 and
MEXT KAKENHI Grant Number 24106004. Yushi Uno was supported in part by
KAKENHI Grant numbers 23500022 and 25106508.

M.S. Rahman and E. Tomita (Eds.): WALCOM 2015, LNCS 8973, pp. 113–124, 2015.
c© Springer International Publishing Switzerland 2015

114 E.D. Demaine et al.

1 Introduction

Most results in computational origami design assume an idealized, zero-thickness
piece of paper. This approach has been highly successful, revolutionizing artistic
origami over the past few decades. Surprisingly complex origami designs are
possible to fold with real paper thanks in part to thin and strong paper (such as
made by Origamido Studio) and perhaps also to some unstated and unproved
properties of existing design algorithms.

This paper is one of the few attempts to model and optimize the effect of pos-
itive paper thickness. Specifically, we consider an origami design specified by a
mountain-valley pattern (a crease pattern plus a mountain-or-valley assignment
for each crease), which in practice is a common specification for complex origami
designs. Such patterns only partly specify a folded state, which also consists of
an overlap order among regions of paper. In general, there can be exponentially
many overlap orders consistent with a given mountain-valley pattern. Further-
more, it is NP-hard to decide flat foldability of a mountain-valley pattern, or to
find a valid flat folded state (overlap order) given the promise of flat foldability
[3]. But for 1D pieces of paper, the same problems are polynomially solvable
[1,4], opening the door for optimizing the effects of paper thickness among the
exponentially many possible flat folded states—the topic of this paper.

Preceding Research. One of the first mathematical studies about paper thick-
ness is also primarily about 1D paper. Britney Gallivan [5], as a high school stu-
dent, modeled and analyzed the effect of repeatedly folding a positive-thickness
piece of paper in half. Specifically, she observed that creases consume a length
of paper proportional to the number of layers they must “wrap around”, and
thereby computed the total length of paper (relative to the paper thickness)
required to fold in half n times. She then set the world record by folding a 4000-
foot-long piece of (toilet) paper in half twelve times, experimentally confirming
her model and analysis.

Motivated by Gallivan’s model, Uehara [7] defined the stretch at a crease to be
the number of layers of paper in the folded state that lie between the two paper
segments hinged at the crease. We will follow the terminology of Umesato et
al. [9] who later replaced the term “stretch” with crease width, which we adopt
here. Both papers considered the case of a strip of paper with equally spaced
creases but an arbitrary mountain-valley assignment. When the mountain-valley
assignment is uniformly random, its expected number of consistent folded states
is Θ(1.65n) [8]. Uehara [7] asked whether it is NP-hard, for a given mountain-
valley assignment, to minimize the maximum crease width or to minimize the
total crease width (summed over all creases). Umesato et al. [9] showed that the
first problem is indeed NP-hard, while the second problem is fixed-parameter
tractable. Also, there is a related study for a different model, which tries to
compact orthogonal graph drawings to use minimum number of rows [2].

Models. We consider the problem of minimizing crease width in the more
general situation where the creases are not equally spaced along the strip of
paper. This more general case has some significant differences with the equally

Folding a Paper Strip to Minimize Thickness 115

spaced case. For one thing, if the creases are equally spaced, all mountain-valley
patterns can be folded flat by repeatedly folding from the rightmost end; in
contrast, in the general case, some mountain-valley patterns (and even some
crease patterns) have no consistent flat folded state that avoids self-intersection.
Flat foldability of a mountain-valley pattern can be checked in linear time [1] [4,
Sec. 12.1], but it requires a nontrivial algorithm.

For creases that are not equally spaced, the notion of crease width must also
be defined more precisely, because it is not so clear how to count the layers of
paper between two segments at a crease. For example, in Fig. 1, although no
layers of paper come all the way to touch the three creases on the left, we want
the sum of their crease widths to be 100.

100 paper layers

Fig. 1. How can we count the paper layers?

We consider a folded state to be an assignment of the segments to horizontal
levels at integer y coordinates, with the creases becoming vertical segments of
variable lengths. See Fig. 2 and the formal definition below. Then the crease
width at a crease is simply the number of levels in between the levels of the two
segments of paper joined by the crease. That is, it is one less than the length of
the vertical segment assigned to the crease. This definition naturally generalizes
the previous definition for equally spaced creases. Analogous to Uehara’s open
problems [7], we will study the problems of minimizing the maximum crease
width and minimizing the total crease width for a given mountain-valley pattern.
The total crease width corresponds to the extra length of paper needed to fold the
paper strip using paper of positive thickness, naturally generalizing Gallivan’s
work1 [5].

In the setting where creases need not be equally spaced, there is another
sensible measure of thickness: the height of the folded state is the total number of
levels. The height is always n+1 for n equally spaced creases, but in our setting
different folds of the same crease pattern can have different heights. Figure 2
shows how the three measures can differ. Of course, the maximum crease width
is always less than the height.

Contributions. Our main results (Section 3) are NP-hardness of the problem
of minimizing height and the problem of minimizing the total crease width.
See Table 1. In addition, we show in Section 4 that the problem of minimizing

1 Although we assume orthogonal bends in this paper, while Gallivan measures turns
as circular arcs, this changes the length by only a constant factor. Gallivan’s model
seems to correspond better to practice.

116 E.D. Demaine et al.

2

6
0 1

h = 9, m = 6, t = 9

2
6

4

h = 8, m = 6, t = 12 h = 11, m = 5, t = 11

2
2

2

5

Fig. 2. Three different folded states of the crease pattern VMVMVVMMMM (ending
at the dot). The crease width of each crease is given beside its corresponding vertical
segment. Each folding is better than the other two in one of the three measures, where
h is the height, m is the maximum crease width, and t is the total crease width.

height is fixed-parameter tractable, by giving a dynamic programming algorithm
that runs in O(2O(k log k)n) time, where k is the minimum height. This dynamic
program can be adapted to minimize maximum crease width or total crease
width for foldings of bounded height, with the same time complexity as measured
in terms of the height bound. Table 1 summarizes related results.

Table 1. Complexity of minimizing thickness, by model, for the case of equally spaced
creases and for the general case

thickness measure eq. spaced creases general creases

height trivial NP-hard (this paper)

FPT wrt. min height (this paper)

max crease width NP-hard [9] =⇒ NP-hard [9]

total crease width open NP-hard (this paper)

2 Preliminaries

We model a paper strip as a one-dimensional line segment. It is rigid except at
creases p1, p2, . . . , pn on it; that is, we are allowed to fold only at these crease
points. For notational convenience, the two ends of the paper strip are denoted by
p0 and pn+1. We are additionally given a mountain-valley string s = s1s2 · · · sn
in {M,V }n. In the initial state the paper strip is placed on the x-axis, with each
crease pi at a given coordinate xi. Without loss of generality, we assume that
x0 = 0 < x1 < · · · < xn < xn+1. Sometimes we will normalize so xn+1 = 1. We
may consider the paper strip as a sequence of n+1 segments Si of length xi+1−xi

delimited by the creases pi and pi+1 for each i ∈ {0, 1, . . . , n}. We fold the strip
through two dimensions, so we distinguish the top side of the strip (the positive
y side) and the bottom side of the strip (the negative y side). Each crease’s letter
determines how we can fold it: when it is M (resp. V), the two paper segments

Folding a Paper Strip to Minimize Thickness 117

sharing the crease are folded in the direction such that their bottom sides (resp.
top sides) are close to touching (although they may not necessarily touch if they
have other paper layers between them).

Following Demaine and O’Rourke [4] we define a flat folding (or folded state)
via the relative stacking order of collocated layers of paper. We begin with x0

at the origin, and the first segment lying in the positive x-axis. The lengths of
the segments determine where each segment lies along the x-axis (because they
zig-zag). Suppose that point pi is mapped to x-coordinate f(pi). The mountain-
valley assignment determines for each segment Si whether Si lies above or be-
low Si+1. We extend this to specify the relative vertical order of any two seg-
ments that overlap horizontally. This defines a folded state so long as the vertical
ordering of segments is transitive and non-crossing. More formally:

1. if segments Si and Si+1 are joined by a crease at x-coordinate f(pi) then
for any segment S that extends to the left and the right of f(pi), either
S < Si, Si+1 or S > Si, Si+1,

2. if segments Si and Si+1 are joined by a crease at x-coordinate f(pi), segments
Sj and Sj+1 are joined by a crease at the same x-coordinate f(pj) = f(pi),
and all 4 segments extend to the same side of the crease, then the two creases
do not interleave, i.e., we do not have A < B < A′ < B′ where A and A′ are
one of the pairs joined at a crease and B and B′ are the other pair.

When the xi’s are not equally spaced, the paper strip cannot necessarily be
folded flat with the given mountain-valley assignment. For example, segments of
lengths 2, 1, 2 do not allow the assignment V V . There is a linear time algorithm
to test whether an assignment has a flat folding [4].

In order to define crease width, we will use an enhanced notion of folded
states: a leveled folded state is an assignment of the segments to levels from
the set {1, 2, . . .} such that the resulting vertical ordering of segments is a valid
folded state. See Fig. 2. We can draw a leveled folded state as a rectilinear path
of alternating horizontal and vertical segments, where the horizontal segments
are the given ones, and the vertical segments (which represent the creases) have
variable lengths.

Clearly a leveled folded state provides a folded state, but in the reverse direc-
tion, a folded state may correspond to many leveled folded states. However, for
the measures we are concerned with, we can efficiently compute the best leveled
folded state corresponding to any folded state.

The height of a leveled folded state is the number of levels used. Given a
folded state, the minimum height of any corresponding leveled folded state can
be computed efficiently, since it is the length of a longest chain in the partial
order defined on the segments in the folded state.

The crease width of a crease in a leveled folded state is the number of levels
in-between the two segments joined at the crease.We are interested in minimizing
the maximum crease width and in minimizing the total crease width, i.e., the sum
of the crease widths of all the creases. In both cases, given a folded state, we can
compute the best corresponding leveled folded state using linear programming.

118 E.D. Demaine et al.

A mountain-valley string that alternates MVMVMV . . . is called a pleat. For
equally-spaced creases, the legal folded state is unique (up to reversal of the
paper) if and only if s is a pleat [7,8].

In this paper, we consider three versions of minimizing thickness in a flat
folding. For all three problems we have the following instance in common:

INSTANCE: A paper strip P , with creases p1, . . . , pn at positions x1, . . . , xn

with a mountain-valley string s ∈ {M,V }n, and a natural number k.

The questions of the three problems are as follows:

MinHeight: Is there a leveled folded state of height at most k?

MinMaxCW: Is there a leveled folded state with maximum crease width at most
k?

MinSumCW: Is there a leveled folded state with total crease width at most k?

3 NP-completeness

In this section, we show NP-completeness of the MinHeight and MinSumCW
problems. We remind the reader that the pleat folding has a unique folded state
[7,8]. We borrow some useful ideas from [9].

M M M V V V

M
M M

V V
V

Fig. 3. The unique flat folding of the string MMMVVV

Observation 1. Let n be a positive integer, P be a strip with creases p1, . . . , p2n,
and s be a mountain-valley string MnV n. We suppose that the paper segments
are of equal length except a longer one at each end. Precisely, we have |Si| =
|Sj | < |S0| = |S2n| for all i, j with 0 < i, j < 2n, where |Si| denotes the length
of the segment Si, Then the legal folded state with respect to s is unique up to
reversal of the paper. Precisely, the legal folded state has the segments in vertical
order S0, S2n−1, S2, S2n−3, . . . , S2i, S2(n−i)−1, . . . , S1, S2n or the reverse.

A simple example is given in Fig. 3. We call this unique folded state the spiral
folding of size 2n.

Folding a Paper Strip to Minimize Thickness 119

Our hardness proofs reduce from 3-PARTITION, defined as follows.

3-PARTITION (cf. [6])
Instance: A finite multiset A = {a1, a2, . . . , a3m} of 3m positive integers.

Define B =
∑3m

j=1 aj/m. We may assume each aj satisfies B/4 < aj <
B/2.
Question: Can A be partitioned into m disjoint sets A(1), A(2), . . . , A(m)

such that
∑

A(i) = B for every i with 1 ≤ i ≤ m?

It is well-known that 3-PARTITION is strongly NP-complete, i.e., it is NP-hard
even if the input is written in unary notation [6]. Our reductions are based on a
similar reduction of Umesato et al. [9].

Theorem 2. The MinHeight problem for paper folding height is NP-complete.

Proof. It is easy to see that the problem is in NP. To prove hardness, we reduce
from 3-PARTITION.

valley valley

valley

spiral of height
2 a1 m2 2 a2 m2 2 a3 m2

pleats of height 2m

m folders

folder of height

 2Bm2+12m+2

2

2

2

1

1

length

length

Fig. 4. Outline of the reduction for Theorem 2. Note that this figure and the next one
are sideways compared to previous figures, so height is horizontal.

Given an instance {a1, a2, . . . , a3m} of 3-PARTITION, we construct a corre-
sponding paper strip P as follows (Fig. 4). The left part of P is folded into m
folders, where each folder is a pleat consisting of 2Bm2+12m short segments of
length 1 between two segments of length 3, except for the very first and last long
segments, which have length 4.2 The right part of P contains 3m gadgets, where
the ith gadget represents the integer ai. The ith gadget consists of one spiral
of height 2aim

2 between two 2m pleats. Each line segment in the gadget has
length 2 except for the one end segment which has length 3. This construction
can be carried out in polynomial time.

2 In the reduction in [9], this folder consists of just two segments.

120 E.D. Demaine et al.

By Observation 1, each spiral folds uniquely, and also we know that each pleat
folds uniquely [7,8]. Therefore, the folders and gadgets fold uniquely. Figure 4
shows the unique combination of these foldings before folding at the joints,
depicted by white circles. Once the joints are valley folded, the folding will no
longer be unique.

The intuition is that the pleats of each gadget give us the freedom to place
the spiral of each gadget in any folder. The heights of the spirals ensure that the
packing of spirals into folders acts like 3-PARTITION. More precisely, we show:

Claim. An instance (A,B) of 3-PARTITION has a solution if and only if the
paper strip P can be folded with height at most 2Bm3 + 12m2 + 2m.

folder of height
 2Bm

2
+12m+2

length 4 length 2

Fig. 5. Putting spirals into a folder

To prove the claim, first suppose that the 3-PARTITION instance {a1, a2, . . .,
a3m} has a solution, say, A(1), A(2), . . . , A(m). Then we have A(i) ⊂ A,

∣∣A(i)
∣∣ = 3,∑

A(i) = B for each i in {1, 2, . . . ,m}, and A =
⋃̇m

i=1A
(i). For the three items in

A(i), we put the three corresponding spirals into the ith folder; see Fig. 5. Because
the items sum to B, the total height of the spirals is 2Bm2. Each gadget uses
2(m − 1) of the 4m total pleats to position its spiral, leaving 2(m + 1) pleats
which we put in the folder of the spiral, for a total of 6(m+1). The 3m−3 other
gadgets also place two pleats in this spiral, just passing through, for a total of
6m− 6. Thus each folder has at most 2Bm2 +12m layers added and, because it
already had 2Bm2+12m short pleat segments, its final height is 2Bm2+12m+2
(including the two long segments). Therefore the total height of the folded state
is 2Bm3 + 12m2 + 2m as desired.

Next suppose that the paper strip P can be folded with height at most k =
2Bm3+12m2+2m. There arem folders each with height at least 2Bm2+12m+2.
Therefore, each folder must have height exactly 2Bm2+12m+2 and the number
of levels inside the folder is 2Bm2+12m. Furthermore, the spirals must be folded
into the folders. We claim that the spirals in each folder must have total height
at most 2Bm2. For, if the spirals in one of the folders have total height more
than 2Bm2, then they have height at least 2(B + 1)m2 = 2Bm2 + 2m2, which

Folding a Paper Strip to Minimize Thickness 121

is greater than 2Bm2+12m if 2m2 > 12m, i.e., if m > 6 (which we may assume
without loss of generality). In particular, each folder must have at most three
spirals: because each aj is greater than B/4, each spiral has height larger than
Bm2/2, so four spirals would have height larger than 2Bm2. Because the 3m
spirals are partitioned among m folders, exactly three spirals are placed in each
folder, and their total height of at most 2Bm2 corresponds to three elements of
sum at most (and thus exactly) B. Therefore we can construct a solution to the
3-PARTITION instance. ��

Theorem 3. The MinSumCW problem is NP-complete.

Proof. This reduction from 3-PARTITION is a modification to the reduction to
MinHeight in the proof of Theorem 2; refer to Figures 6 and 7. We introduce a
deep “molar” at both ends of each gadget, which must fit into deep “gums” at
either end of the folders. Specifically, for z = m4, each gum has 2z + 4m pleats,
and each molar in the ith gadget has 2z+4(m− i) pleats. In the intended folded
state, the left molars nest inside each other (smaller/later inside larger/earlier)
within the left gum, and similarly for the right molars into the right gum. In this
case, every molar and every gum remains at its minimum possible height given
by its pleats.

The heights of the molars guarantee that, in any legal folding, every molar
ends up in a gum. If, in any of the m gadgets, the right molar folds into the left
gum, then the left molar of that gadget also folds into the left gum, so the left
gum has height at least 4z in the folded state, 2z − 4m more than its minimum
height. This increase in height translates into an equal increase in the total
crease width (because the number of creases remains fixed). Because z = m4,
this increase will dominate the total crease width. Therefore every folding with
a right molar in the left gum, or with a left molar in the right gum, has total
crease width larger than the intended folded state.

This argument guarantees that, in any solution folding to the MINSUMCW
instance, each gadget has its left molar in the left gum and its right molar in the
right gum. In this case, the height of each gadget is the height of its spiral plus
the height of all the folders, which will be minimized precisely when the folders
do not grow in height. The total crease width of a gadget differs from its height
by a fixed amount (the number of creases), so we arrive at the same minimization
problem. Thus the proof reduces to the MinHeight construction. ��

4 Fixed-Parameter Tractability

In this section, we show the following theorem.

Theorem 4. Testing whether a strip with n folds has a folded state with height
at most k can be done in time O(2O(k log k)n).

Proof. We use a dynamic programming algorithm that sweeps from left to right
across the line onto which the strip is folded, stopping at each of the points on the

122 E.D. Demaine et al.

va
lle

y
va

lle
y

va
lle

y

sp
ir

al
 o

f
th

ic
kn

es
s

2
a 1

 m
2

2
a 2

 m
2

2
a i

 m
2

pl
ea

ts
 o

f
he

ig
ht

 2
m

m
 f

ol
de

rs

fo
ld

er
 o

f
he

ig
ht

 2
B

m
2 +

12
m

+
2

2 1 m

gu
m

 o
f

he
ig

ht
2z

+
4m

11

2m
-i

2

m
ol

ar
 o

f
he

ig
ht

2z
+

4m
m

ol
ar

 o
f

he
ig

ht
2z

+
4m

gu
m

 o
f

he
ig

ht
2z

+
4m

1

m
ol

ar
 o

f
he

ig
ht

2z
+

4(
m

-i
)

m
ol

ar
 o

f
he

ig
ht

2z
+

4(
m

-i
)

le
ng

th

le
ng

th

Fig. 6. Outline of the reduction. Note that height is vertical.

Folding a Paper Strip to Minimize Thickness 123

folder of height
 2Bm

2
+12m+2

length 4 length 2

gums gums

molarsmolars

Fig. 7. Putting spirals into folders and molars into gums

line where a strip endpoint or a crease (fold point) is placed. At each point of the
line between two stopping points, there can be at most k segments of the strip, for
otherwise the height would necessarily be larger than k and we could terminate
the algorithm, returning that the height is not less than or equal to k. We define a
level assignment for a point p between two stopping points to be a function a from
input segments that overlap p to distinct integer levels from 1 to k. The number
of possible level assignments for any point is therefore at most kk.

Let ε > 0 be smaller than the distance between any two stopping points. At each
stopping point p of the algorithm, we will have a setA of allowed level assignments
a− for the point p− ε; initially (for the leftmost point of the folded input strip) A
will contain the unique level assignment for the empty set of segments. For each
combination of a level assignment a− inA for the point p−ε and an arbitrary level
assignment a+ for the point p+ ε, we check whether there is a valid folding of the
part of the strip between p−ε and p+ε that matches this level assignment. To do
so, we check the following four conditions that capture the noncrossing conditions
defined in Section 2:

– If a segment s extends to both sides of p without being folded at p, then it has
the same level on both sides. That is, a−(s) = a+(s).

– For each two input folds at p that connect pairs of segments that overlap p−ε,
the levels of these pairs of segments are nested or disjoint. That is, if we have a
fold connecting segments s0 and s1, and another fold connecting segments s2
and s3, then [a−(s0), a

−(s1)] and [a−(s2), a
−(s3)] are either disjoint intervals

or one of these two intervals contains the other.
– For each two input folds at p that connect pairs of segments that overlap p+ε,

the levels of these pairs of segments are nested or disjoint. This is a symmetric
condition to the previous one, using a+ instead of a−.

– For each fold at p, connecting segments s0 and s1, and for each input segment
s2 that crosses p without being folded there, the interval of levels occupied by
the fold should not contain the level of s2. That is, if the two segments s0 and
s1 extend to the left of p, then the interval [a−(s0), a

−(s1)] should not contain

124 E.D. Demaine et al.

a−(s2). If the two segments extend to the right of p, then we have the same
condition using a+ instead of a−.

If the pair (a−, a+) passes all these tests, we include a+ in the set of valid level
assignments for p + ε, which we will then use at the next stopping point of the
algorithm.

If, at the end of this process, we reach the rightmost stopping point with a
nonempty set of valid level assignments (necessarily consisting of the unique level
assignment for the empty set of segments) then a folding of height k exists. The
folding itself may be recovered by storing, for each level assignment a+ considered
by the algorithm, one of the level assignments a− such that a− ∈ A and (a−, a+)
passed all the tests above. Then, backtracking through these pointers, from the
rightmost stopping point back to the leftmost one, will give a sequence of level
assignments such that each consecutive pair is valid, which describes a consistent
folding of the entire input strip.

The time for the algorithm is the number of stopping points multiplied by the
number of pairs of level assignments for each stopping point and the time to test
each pair of level assignments. This is O(2O(k log k)n), as stated. ��

5 Conclusion

In this paper, we considered three problems MinHeight, MinMaxCW and Min-
SumCW for 1D strip folding, and showed some intractable results. We have some
interesting open questions. Although we gave an FPT algorithm for MinHeight,
it is not clear if the other two problems have FPT algorithms. Extending our
models to 2D foldings would also be interesting.

References

1. Arkin, E.M., Bender, M.A., Demaine, E.D., Demaine, M.L., Mitchell, J.S.B.,
Sethia, S., Skiena, S.S.: When can you fold a map? Computational Geometry:
Theory and Applications 29(1), 23–46 (2004)

2. Bannister, M.J., Eppstein, D., Simons, J.A.: Inapproximability of orthogonal com-
paction. Journal of Graph Algorithms and Applications 16, 651–673 (2012)

3. Bern, M., Hayes, B.: The complexity of flat origami. In: Proceedings of the 7th
Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 175–183 (1996)

4. Demaine, E.D., O’Rourke, J.: Geometric Folding Algorithms: Linkages, Origami,
Polyhedra. Cambridge University Press (2007)

5. Gallivan, B.: Folding paper in half 12 times: An ‘Impossible Challenge’ Solved and
Explained. Historical Society of Pomona Valley (2002)

6. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co. (1979)

7. Uehara, R.: On stretch minimization problem on unit strip paper. In: 22nd Cana-
dian Conference on Computational Geometry (CCCG), pp. 223–226 (2010)

8. Uehara, R.: Stamp foldings with a given mountain-valley assignment. In: Origami5:
Proceedings of the 5th International Meeting of Origami Science, Mathematics, and
Education, pp. 585–597. AK Peters/CRC Press (2011)

9. Umesato, T., Saitoh, T., Uehara, R., Ito, H., Okamoto, Y.: The complexity of the
stamp folding problem. Theoretical Computer Science 497, 13–19 (2013)

An Almost Optimal Algorithm for Voronoi

Diagrams of Non-disjoint Line Segments�

(Extended Abstract)

Sang Won Bae

Department of Computer Science, Kyonggi University, Suwon, South Korea
swbae@kgu.ac.kr

Abstract. This paper presents an almost optimal algorithm that com-
putes the Voronoi diagram of a set S of n line segments that may intersect
or cross each other. If there are k intersections among the input segments
in S, our algorithm takes O(nα(n) log n+k) time, where α(·) denotes the
functional inverse of the Ackermann function. The best known running
time prior to this work was O((n + k) log n). Since the lower bound of
the problem is shown to be Ω(n log n + k) in the worst case, our algo-
rithm is worst-case optimal for k = Ω(nα(n) log n), and is only a factor
of α(n) away from the lower bound. For the purpose, we also present
an improved algorithm that computes the medial axis or the Voronoi
diagram of a polygon with holes.

1 Introduction

There is no doubt that the Voronoi diagram is one of the most fundamental and
the most well studied structures in computational geometry. Voronoi diagrams
and their variations play an important role not only in computer science but also
many other fields in engineering and sciences, finding a lot of applications. For
a comprehensive survey, we refer to Aurenhammer and Klein [2] or to a book by
Okabe et al. [14].

In this paper, we are interested in the Voronoi diagram of line segments in
the plane. As one of the most popular variants of the ordinary Voronoi diagram,
the line segment Voronoi diagram has been extensively studied in the compu-
tational geometry community, finding lots of applications in computer graphics,
pattern recognition, motion planning, shape representation, and NC machin-
ing [8,10,13]. For the set of line segments that are disjoint or may intersect only
at their endpoints, a variety of optimal O(n log n)-time algorithms that compute
the diagram are known. For examples, Kirkpatric [10], Lee [13], and Yap [17]
presented divide-and-conquer algorithms, Fortune [7] presented a plane sweep
algorithm, and a pure abstract approach to Voronoi diagrams by Klein [11] is
also applied to yield an optimal time algorithm [12].

� This research was supported by Basic Science Research Program through the Na-
tional Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT
& Future Planning (2013R1A1A1A05006927).

M.S. Rahman and E. Tomita (Eds.): WALCOM 2015, LNCS 8973, pp. 125–136, 2015.
c© Springer International Publishing Switzerland 2015

126 S.W. Bae

However, only few research considers line segments that may intersect or cross
each other freely. Let S be a set of n arbitrary line segments in the plane and k
be the number of intersecting pairs of the segments in S. In fact, one can easily
achieve the time bound O((n+k) log n) for computing the Voronoi diagram of S
as follows: first, specify all the intersection points among the segments in S and
consider the set S′ of sub-segments obtained by cutting the original segments in
S at the intersection points. Then, S′ consists of at most n + 2k line segments
that can intersect only at endpoints, so we can apply any of the above existing
algorithms. On the other hand, by a reduction from the problem of computing
all the intersections of given line segments, it is not difficult to see that the lower
bound of the problem of computing the Voronoi diagram of line segments is
Ω(n logn+ k) in the worst case.

In this paper, we present an almost optimal algorithm that computes the
Voronoi diagram of line segments. Our algorithm takes O(nα(n) log n+ k) time,
where α(n) denotes the functional inverse of the Ackermann function. Since the
lower bound is shown to be Ω(n logn+k), our algorithm is only a factor of α(n)
away from the optimal running time, and is optimal for large k = Ω(nα(n) log n).
To our best knowledge, prior to our result, there was no known algorithm better
than the simple O((n + k) logn)-time algorithm.

In order to achieve our main result, we also consider an interesting special
case where S forms a polygon. In this case, the Voronoi diagram of S is closely
related to the medial axis of S [6, 13]. When S forms a simple polygon, it is
known that its Voronoi diagram and medial axis can be computed in linear time
by Chin et al. [6]. In this work, we extend their result into more general form of
polygons, namely, weakly simple polygons and polygonal domains. In particular,
we devise an O(m log(m + t) + t)-time algorithm that computes the Voronoi
diagram or the medial axis of a given polygonal domain, where m denotes the
total number of vertices of its holes and t denotes the number of vertices of its
outer boundary. Note that our algorithm is strictly faster than any O(n log n)
time algorithm when t is relatively larger than m. We exploit this algorithm for
a polygonal domain as a subroutine of the O(nα(n) log n + k)-time algorithm
that computes the Voronoi diagram of non-disjoint line segments.

The remaining of the paper is organized as follows: After introducing some
preliminaries in Section 2, we present out algorithm that computes the Voronoi
diagram of a polygonal domain in Section 3. Then, Section 4 is devoted to
describe and analyze our algorithm that computes the Voronoi diagram of line
segments.

Due to space limit, some proofs are omitted, but will be found in a full version
of the paper.

2 Preliminaries

Throughout the paper, we use following notations: For a subset A ⊂ R2, we
denote by ∂A the boundary of A with the standard topology and by pq the line
segment joining two points p ∈ R2 and q ∈ R2.

Voronoi Diagrams of Non-Disjoint Line Segments 127

(a) (b)

Fig. 1. (a) The Voronoi diagram of two line segments. (b) The Voronoi diagram of six
sites: two open line segments and four of their endpoints. Sites are depicted as black
segments or dots, and Voronoi edges and vertices are as gray segments and dots.

2.1 Voronoi Diagrams of Line Segments

Let S be a set of n line segments in the plane R2, and let k denote the number
of intersection points among the segments in S.

The Voronoi diagram VD(S) of S is a subdivision of the plane R2 into Voronoi
regions R(s, S), defined to be

R(s, S) :=
⋂

s′∈S,s′ �=s

{x ∈ R2 | d(x, s) < d(x, s′)},

where d(x, s) denotes the Euclidean distance from point x to segment s.
As done in the literature [1, 17], we regard each segment s ∈ S as three

distinct sites : the two endpoints of s and the relative interior of s. We thus
assume that the set S is implicitly the set of points and open line segments that
form n closed line segments. See Fig. 1. Note that each Voronoi edge of VD(S)
is then either a straight or parabolic segment. The Voronoi vertices of VD(S)
are distinguished into two kinds: those of one kind are proper vertices which are
equidistant points from three distinct sites, while those of the other kind are
simply the intersection points of S at which at least three Voronoi edges meet.
Fig. 2 illustrates the Voronoi diagram of an example set of line segments.

When we are interested in the diagram VD(S) inside a compact regionA ⊆ R2,
we shall write VDA(S) to denote the subdivision of A induced by VD(S). In other
words, VDA(S) is obtained by intersecting the diagram VD(S) itself with A.

The following fact is well known as the star-shape or weak star-shape property
of Voronoi regions of a point or an open line segment.

Lemma 1. If s ∈ S is a point, then R(s, S) is star-shaped with respect to s. If
s ∈ S is an open line segment, then R(s, S) is weakly star-shaped in the sense
that for any x ∈ R(s, S), the segment xsx is totally contained in R(s, S), where
sx is the perpendicular foot from x to segment s.

Note that this fundamental observation implies the monotonicity of each Voronoi
region R(s, S) of any site s ∈ S with respect to the site s; that is, R(s, S) is

128 S.W. Bae

Fig. 2. The Voronoi diagram of non-disjoint line segments

rotationally monotone around s if s is a point, or is monotone in the direction
of s if s is a segment.

As pointed out in Section 1, cutting segments in S at every intersection point
and applying any existing optimal algorithm, including Yap [17], Klein [11], and
Fortune [7], yields the following immediate upper bound.

Lemma 2. Let S be a set of n line segments with k pairwise intersections. Then,
the Voronoi diagram VD(S) of S has O(n+k) combinatorial complexity and can
be computed in O((n + k) logn) time.

On the other hand, we show a lower bound on computing VD(S) in terms of
n and k by a reduction from the problem of finding the intersection points of
line segments, of which the lower bound is known to be Ω(n log n + k) in the
worst case in the algebraic decision tree model [5].

Lemma 3. Any algorithm that correctly computes the Voronoi diagram VD(S)
of S takes Ω(n logn + k) time in the worst case in the algebraic decision tree
model.

Proof. This easily follows from the fact that all the intersection points among
the segments in S also appear as Voronoi vertices of VD(S). Therefore, after
computing the Voronoi diagram VD(S), it suffices to traverse all the Voronoi
vertices of VD(S). Since any algorithm that computes all the intersection points
among n line segments takes Ω(n logn + k) time in the worst case in the alge-
braic decision tree model [5], the same lower bound applies to the problem of
computing VD(S).

Voronoi Diagrams of Non-Disjoint Line Segments 129

(a) (b)

Fig. 3. (a) A weakly simple polygon and (b) a simple polygon obtained by perturbation

2.2 Weakly Simple Polygons

A polygon in the plane is a closed curve that is piecewise linear. A polygon can be
defined by a cyclic sequence of points in R2, called vertices, that are connected
by line segments, called edges. A polygon is called simple if and only if all of
its vertices are distinct and its edges intersect only at their common endpoints.
Note that if a polygon is not simple, then its vertices do not have to be distinct
and its edges may overlap or cross each other.

A weakly simple polygon is, informally, a polygon without “self-crossing.”
Intuitively, one may think that a weakly simple polygon is allowed to have ver-
tices and edges “touched.” Although the definition using the term “self-crossing”
is common in the literature, it is turned to be imprecise as a formal definition.
See Chang et al. [3] for discussions on this subject. In this work, we adopt their
definition of weakly simple polygons.

Definition 1 (Chang et al. [3]). A polygon P is weakly simple if and only
if P has at most two vertices or P can be made simple by an arbitrarily small
perturbation of its vertices.

By definition, we can find a simple polygon that is arbitrarily close to any given
weakly simple polygon by a perturbation of its vertices; see Fig. 3. Note that a
line segment or a point itself is considered a degenerate form of weakly simple
polygons, and that the interior of a weakly simple polygon may be an empty
set. By convention, any (weakly) simple polygon is also considered as a compact
subset containing its interior.

3 Voronoi Diagram of a Polygon

In this section, we consider some special cases of the set S of line segments,
namely, when S forms a weakly simple polygon or a polygonal domain having
polygonal holes.

3.1 Voronoi Diagram of a Weakly Simple Polygon

Let P be a weakly simple polygon with n vertices. The Voronoi diagram of a
(weakly) simple polygon P is the Voronoi diagram VDP (P) of the vertices and

130 S.W. Bae

edges of P inside the polygon P . We denote by VD−(P) = VDP (P) the Voronoi
diagram of a polygon P .

If P is a simple polygon, VD−(P) can be computed in linear time by Chin
et al. [6]. By the definition of weakly simple polygons, it is not difficult to show
that our case can also be handled by the algorithm of Chin et al. [6] after a
perturbation of its vertices.

Lemma 4. The Voronoi diagram VD−(P) of a weakly simple polygon P with n
vertices can be computed in O(n) time.

The medial axis MA(P) of a polygon P is the set of points x in P such that x
has at least two distinct points that are closest from x among all points on ∂P .
Remark that the medial axis MA(P) of a weakly simple polygon P can also be
computed in linear time since MA(P) is a subset of VD−(P) [6].

3.2 Voronoi Diagram of a Polygon with Holes

We now extend our interests to a polygon with polygonal holes, called a polygonal
domain, also known as a multiply-connected polygon [16] or a pocket [8] in the
literature. A polygonal domain D ⊂ R2 is a polygonal region that may have one
or more holes. If D has h holes, then its boundary ∂D consists of h+1 pairwise
disjoint (weakly) simple polygons P,Q1, Q2, . . . , Qh such that P contains all
the other Q1, . . . , Qh in its interior. We call P the outer boundary of D, and
Q1, . . . , Qh the holes of D. In the literature, the outer boundary and the holes of
polygonal domains are supposed to be simple polygons [8, 16]. However, in this
paper, we relax the condition for P and the Qi to be weakly simple polygons.

Let VD−(D) := VDD(P ∪ Q1 ∪ · · · ∪ Qh) be the Voronoi diagram of a given
polygonal domain D. Since the edges of D intersect only at their endpoints, that
is, the vertices of D, we can compute VD−(D) in O(n logn) time using existing
algorithms [7, 11, 17], where n denotes the total number vertices of D. In the
following, we achieve an improved time bound by introducing more parameters:
let m denote the total number of vertices of the holes Q1, . . . , Qh of D and t
denote the number of vertices of the outer boundary P of D. Note that n = m+t.

Our strategy is as follows: Let Q := Q1∪· · · ∪Qh be the set of all the vertices
and the edges that form the holes Q1, . . . , Qh. We first compute the Voronoi
diagram VD−(P) of the outer boundary P , and the Voronoi diagram VD(Q) of
the edges of the holes. We then merge the two diagrams into our target VD−(D).
Recall that VD−(P) can be computed in O(t) time by Lemma 4 and VD(Q) in
O(m logm) time since P is a weakly simple polygon and Q is the set of line
segments that may intersect only at their endpoints.

Consider the vertices and the edges of VD−(D) = VDD(P∪Q) to be computed.
We make a general position assumption that no point x ∈ D is equidistant
from four distinct sites in P ∪Q; one can remove this assumption by a standard
perturbation technique [6]. Some of them come from VD−(P) or from VD(Q), and
the others cannot be found in either of the two diagrams VD−(P) and VD(Q),
which are the set of equidistant points from two closest sites s ∈ P and s′ ∈ Q.

Voronoi Diagrams of Non-Disjoint Line Segments 131

D

VD−(P)

VD(Q1 ∪Q2)

VDD(P ∪Q1 ∪Q2)

P

Q1

Q2
B

Fig. 4. How to merge VD−(P) and VD(Q) to obtain VDD(P ∪ Q), for an example
polygonal domain D having its outer boundary P and two holes Q1, Q2. The outer
boundary P and the holes Q1, Q2 are weakly simple polygons with 7 vertices, 7 vertices,
and one vertex, respectively. The merge curve β = B is depicted as black solid line.

We denote the union of all such edges and vertices of VDD(P ∪ Q) by B. The
set B ⊂ D can be described as the set of points x such that d(x, P) = d(x,Q),
where d(x, P) = mins∈P d(x, s) and d(x,Q) = mins′∈Q d(x, s′). By definition,
B properly divides the interior of D into two regions, one closer to P and the
other closer to Q. The following lemma describes how B looks topologically. For
a simple closed curve C ⊂ R2, we denote by C− the interior of C, that is, the
region bounded by C, and by C+ := R2 \ (C− ∪ C) the exterior of C.

Lemma 5. Let β1, . . . , βb be the connected components of B. We then have:

(i) Each component βi for i = 1, . . . , b is a simple closed curve in D.

(ii) Every hole of D is contained in the interior β−
i of some βi.

(iii) Each βi contains at least one hole of D in its interior β−
i .

(iv) No two distinct curves βi and βj are nested, that is, βi �⊂ β−
j and βj �⊂ β−

i .

We call such a closed curve β ⊆ B, described in Lemma 5, a merge curve.
Lemma 5 tells us that B consists of one or more merge curves and each hole
Qi is contained in a unique merge curve. Once all the merge curves in B are
specified, one can easily compute the target diagram VDD(P ∪ Q) by cutting
and gluing VD−(P) and VD(Q) along the merge curves B in time linear to the
combinatorial complexity of the final output VDD(P ∪Q), which is bounded by
O(n). Hence, we now focus on how to efficiently find every merge curve β ⊆ B.

Following lemmas will be helpful for further discussions.

Lemma 6. Let β ⊆ B be any merge curve, and s ∈ P and s′ ∈ Q be any
two sites. Then, β+ ∩ R(s, P) and β− ∩ R(s′, Q) are monotone with respect to
s and s′, respectively. Also, if β+ ∩ R(s, P) is nonempty, then s lies in β+; if
β− ∩R(s′, Q) is nonempty, then s′ lies in β−.

132 S.W. Bae

Algorithm. MergeTwoVDs

1: while there is Qi that is not bounded by a merge curve traced before do
2: Let β ⊆ B be the merge curve such that Qi ⊂ β−.
3: Find a point z ∈ β.
4: Trace β from z.
5: Identify all Qj bounded by β, that is, Qj ⊂ β−.
6: end while
7: Cut and glue VD−(P) and VD(Q) along all merge curves.
8: return the resulting diagram as VDD(P ∪Q) = VD−(D).

Fig. 5. Algorithm for merging VD−(P) and VD(Q) into VDD(P ∪Q)

Lemma 7. For any merge curve β ⊆ B, if its interior β− intersects R(s,Q)
for some s ∈ Qj, then the hole Qj is contained in β−.

Now, suppose that VD−(P) and VD(Q) have been computed correctly, and
an optimal point location structure on VD−(P) has been built. Such a structure
supports a point location query on VD−(P) in O(log t) time, and can be con-
structed in O(t) time by Kirkpatrick [9] after triangulating each Voronoi region
of VD−(P) in O(t) time [4]. Our merge algorithm is then described in Fig. 5.

Note that after a merge curve β is traced and identified, one can easily find out
which hole lies in its interior β− by traversing the regions of VD(Q) intersected
by β− by Lemma 7. From now on, we thus describe and analyze (1) how to find
a point z ∈ β and (2) how to trace the merge curve β in more details.

Finding a Point z ∈ β. Assume that we are to find a point z on a merge
curve β, which contains Qi in its interior β−. For the purpose, we first pick any
vertex q of Qi and find a point p ∈ P that is the closest from q among all points
in P . This can be done by a point location query on VD−(P). We then walk
along qp from q towards p until we meet a point z on β.

Our strategy is promising due to the following lemma.

Lemma 8. The segment qp intersects β exactly in a single point.

More precisely, we walk on the diagram VD(Q) along the segment qp from
q towards p. While walking in a Voronoi region R(s′, Q), the function f(x) :=
d(x,Q) = d(x, s′) can be explicitly described for x ∈ qp ∩ R(s′, Q). We check
whether the equation f(x) = d(x, p) has a solution z ∈ qp ∩ R(s′, Q). If so, we
are done; otherwise, we proceed to the next region of VD(Q) along qp. Lemma 8
guarantees that this procedure will terminate with a point z ∈ β.

Tracing β from z ∈ β. Let s ∈ P and s′ ∈ Q be the sites such that z ∈ R(s, P)
and z ∈ R(s′, Q). This is automatically identified once z = qp ∩ β is found in
the above step. Then, z must lie on the bisecting curve γ between s and s′. Note
that γ is either a straight line or a parabola according to the types of s and s′.

Voronoi Diagrams of Non-Disjoint Line Segments 133

γ

s

R(s, P)

R(s′, Q)s′

β

Fig. 6. Tracing a merge curve β in R(s, P)∩R(s′, Q). To find the point on the boundary
hit by β, test vertices of R(s, P) and R(s′, Q) in the order along β which side of γ it
lies in. Vertices marked with black dots will get tested in order and those marked with
white dots will not because they are passed already by β.

In order to trace β from z, we walk along locally γ in the direction that s ∈ P
lies to the right and s′ ∈ Q lies to the left of γ. Note that γ coincides with β
in R(s, P) ∩ R(s′, Q). We thus trace γ until it hits the boundary ∂R(s, P) or
∂R(s′, Q). Assume that γ hits ∂R(s, P) before ∂R(s′, Q). Then, we proceed to
the next region R(s′′, P) in VD−(P), replacing s by s′′ and repeating the above
procedure. Since β is a closed curve, we are done when getting back to z.

In order to find the point on the boundary ∂R(s, P) or ∂R(s′, Q) hit by γ, we
test each vertex on ∂R(s, P) and ∂R(s′, Q) in a certain order whether it lies to
the left or to the right of the bisecting curve γ between s and s′. This test can be
performed in O(1) time per tested vertex by examining a point and a line or a
parabola γ. The order of vertices is induced by the tracing direction of β. Since
β ∩ R(s, P) ∩ R(s′, Q) is monotone with respect to s and s′, simultaneously,
by Lemma 6, one can find the next vertex from a vertex in O(1) time along
the boundary of each region R(s, P) and R(s′, Q). See Fig. 6. We thus test the
vertices in this order. If the tested vertex v is of R(s, P) and it is the first that
lies to the right of γ, then γ crosses R(s, P) between v and its preceding vertex
on ∂R(s, P); if v is of R(s′, Q) and it is the first that lies to the left of γ, then γ
crosses R(s′, Q) between v and its preceding vertex on ∂R(s′, Q). Hence, as soon
as we find a vertex of R(s, P) lying to the right of γ or one of R(s′, Q) lying to
the left of γ, γ hits the boundary ∂R(s, P) or ∂R(s′, Q), respectively.

Assume without loss of generality that γ hits ∂R(s, P) before ∂R(s′, Q). Then,
β is trace up to the hitting point, and is about to enter the next region R(s′′, P)
from R(s, P) for some s′′ ∈ P . Since we know the entering point y ∈ γ at
∂R(s′′, P), we know the next vertex along ∂R(s′′, P) from y. Note that we do
not have to test vertices on ∂R(s′, Q) that have been tested before by Lemma 6.
Hence, we substitute s by s′′ and proceed on testing next vertices on ∂R(s′′, P)
and ∂R(s′, Q) as above without repetition.

The Time Complexity. We now analyze the cost of finding a merge curve β,
which corresponds to a single while loop in the algorithm described in Fig. 5.

134 S.W. Bae

Lemma 9. Specifying a merge curve β ⊆ B can be done in time O(log t+Mβ+
Tβ + |β|), where Mβ denotes the total complexity of Voronoi regions R(s′, Q) of
VD(Q) that are intersected by β−, Tβ denotes the number of Voronoi vertices
of VD−(P) lying inside β−, and |β| denotes the number of Voronoi edges of
VDD(P ∪Q) along β.

We then bound the total running time of our merging algorithm.

Lemma 10. Merging two Voronoi diagrams VD−(P) and VD(Q) into VDD(P ∪
Q) can be done in O(h log t+m+ t) time.

Proof. The total time bound is obtained by summing O(log t+Mβ + Tβ + |β|)
over all merge curves β ⊆ B by Lemma 9. We show that (i)

∑
β Mβ = O(m),

(ii)
∑

β Tβ = O(t), and (iii)
∑

β |β| = O(m+ t).
(i) The value Mβ counts the total complexity of R(s′, Q) for all s′ ∈ Qj and

Qj ⊂ β−, and each hole Qj is contained in a unique merge curve by Lemma 5.
This implies that

∑
β Mβ does not exceed the complexity of the Voronoi diagram

VD(Q), bounded by O(m).
(ii) Tβ counts the number of vertices of VD−(P) lying in β−. Since the merge

curves are not nested by Lemma 5,
∑

β Tβ does not exceed the total number of

vertices of VD−(P), bounded by O(t).
(iii) The merge curves β ⊆ B are the union of Voronoi edges of VDD(P ∪Q).

Thus, its total complexity
∑

β |β| does not exceed the complexity of the merged
diagram VDD(P ∪Q), bounded by O(m+ t).

Therefore, we have∑
β

O(log t+Mβ + Tβ + |β|) =
∑
β

O(log t) +O(m+ t) = O(h log t+m+ t),

since the number of merge curves is at most h by Lemma 5.

We are finally ready to conclude the main theorem of this section.

Theorem 1. Let D be a polygonal domain whose outer boundary and holes
may be weakly simple polygons. The Voronoi diagram VD−(D) or the medial
axis MA(D) can be computed in O(m log(m+ t) + t) time, where m is the total
complexity of the holes of D and t is the complexity of the outer boundary of D.

4 Voronoi Diagram of Line Segments

Let S be a set of n line segments in the plane R2 with k pairwise intersections.
In this section, we describe our algorithm that computes the Voronoi diagram
VD(S) of line segments.

Our algorithm runs based on the decomposition of the plane R2 into faces of
the arrangement of S. The arrangement A(S) of S is a decomposition of R2 into
vertices, edges, and faces induced by the line segments in S. We regard edges
and faces of A(S) relatively open sets: each edge as a set does not contain its
end vertices and each face does not contain its incident edges and vertices.

Voronoi Diagrams of Non-Disjoint Line Segments 135

For any face σ of A(S), we consider its boundary ∂σ, defined to be the union
of vertices and edges that are incident to σ. Since a face in the line segment
arrangement can have holes, the boundary ∂σ may consist of several connected
components, and each of them indeed forms a weakly simple polygon. This means
that σ forms a polygonal domain whose outer boundary and holes can be weakly
simple polygons, while the unbounded face of A(S) is regarded as a polygonal
domain with outer boundary at infinity. Note that the complexity of the bound-
ary ∂σ of a face is bounded by O(nα(n)), where α(n) denotes the functional
inverse of the Ackermann function, and this bound can be realized [15].

We observe the following.

Lemma 11. Let σ be any face of the arrangement A(S) and x ∈ σ be any point.
The Voronoi region R(s, S) of site s ∈ S intersects σ if and only if the site s
appears on the boundary ∂σ of σ.

Lemma 11 implies that the Voronoi diagram VD(S) cropped by a face σ co-
incides with the Voronoi diagram of a polygonal domain σ, that is, VDσ(S) =
VD−(σ). Hence, we compute the diagram VD(S) in a face-by-face fashion. For
example, the polygonal domain D in Fig. 4 is identical to a face σ of the arrange-
ment of the line segments S in Fig. 2, and it holds that VDσ(S) = VD−(D).

Our algorithm is described in three steps: (1) Compute all the intersection
points in S, (2) compute the arrangement A(S) and the description of its faces,
and then (3) for every face σ of A(S), compute the Voronoi diagram VD−(σ) of
σ. Then, the diagram VD(S) of the original n line segments can be obtained by
taking the union of the face diagrams VD−(σ) over all faces σ of A(S).

The first and second steps can be finished in O(n logn+ h) time by Chazelle
and Edelsbrunner [5]. The third step is handled by applying Theorem 1 to every
face σ of A(S). Let m = mσ be the total complexity of the holes of σ, and t = tσ
be the complexity of the outer boundary of σ. Also, let nσ be the number of
segments in S that appear in the boundary of a hole of σ. Since the boundary of
σ forms a polygonal domain whose outer boundary and holes are weakly simple
polygons, we apply Theorem 1 to compute VD−(σ) in time O(m log(m+ t)+ t).

We are then ready to conclude our main result.

Theorem 2. Let S be a set of n line segment with k pairwise intersections.
Then, the Voronoi diagram VD(S) of S can be computed in O(nα(n) log n + k)
time, where α(·) denotes the functional inverse of the Ackermann function.

Proof. As described above, once the arrangement A(S) is computed, we apply
Theorem 1 to every face σ of the arrangement A(S). The correctness of our
algorithm simply follows from Lemma 11.

We now analyze the time complexity of our algorithm. We spend O(n log n+k)
time for Steps (1) and (2). The total time spent in Step (3) of our algorithm is
the sum of O(mσ log(mσ + tσ) + tσ) over all faces σ of A(S).

We claim that (i)
∑

σ tσ ≤ 2n + 4k and (ii)
∑

σ nσ ≤ n. Since mσ =
O(nσα(nσ)) = O(nσα(n)) [15], if our claim is true, then we have∑

σ

O(mσ log(mσ + tσ) + tσ) =
∑
σ

O(nσα(n) log(nσα(n) + tσ) + tσ)

136 S.W. Bae

= O(nα(n) log(nα(n) + k) + k)

= O(nα(n) log n+ k).

Therefore, we are done by showing that our claim is true. Consider any sub-
segment s′ after cutting segments in S at every intersection point. Observe that
s′ can appear in the outer boundary of a face σ of A(S) at most twice, since s′ is
incident to at most two faces of the arrangement A(S). Thus, the sum of tσ over
all faces σ is at most twice the number of such sub-segments, that is, 2n + 4k,
so claim (i) is shown. Claim (ii) easily follows from the fact that each segment
s ∈ S cannot participate the boundary of the holes of two distinct faces of A(S);
otherwise, s must be placed inside two different faces, which is impossible.

References

1. Alt, H., Cheong, O., Vigneron, A.: The Voronoi diagram of curved objects. Discrete
Comput. Geom. 34(3), 439–453 (2005)

2. Aurenhammer, F., Klein, R.: Voronoi diagrams. In: Sack, J.R., Urrutia, J. (eds.)
Handbook of Computational Geometry. Elsevier (2000)

3. Chang, H., Erickson, J., Xu, C.: Detecting weakly simple polygons. In: Proc. 26th
ACM-SIAM Sympos. Discrete Algo (SODA 2015) (2015)

4. Chazelle, B.: Triangulating a simple polygon in linear time. Discrete Comput.
Geom. 6, 485–524 (1991)

5. Chazelle, B., Edelsbrunner, H.: An optimal algorithm for intersecting line segments
in the plane. J. ACM 39, 1–54 (1992)

6. Chin, F., Snoeyink, J., Wang, C.A.: Finding the medial axis of a simple polygon
in linear time. Discrete Comput. Geom. 21(3), 405–420 (1999)

7. Fortune, S.J.: A sweepline algorithm for Voronoi diagrams. Algorithmica 2,
153–174 (1987)

8. Held, M. (ed.): On the Computational Geometry of Pocket Machining. LNCS,
vol. 500. Springer, Heidelberg (1991)

9. Kirkpatrick, D.: Optimal search in planar subdivisions. SIAM J. Comput. 12(1),
28–35 (1983)

10. Kirkpatrick, D.G.: Efficient computation of continuous skeleton. In: Proc. 20th
Annu. IEEE Sympos. Found. Comput. Sci., pp. 18–27 (1979)

11. Klein, R.: Concrete and Abstract Voronoi Diagrams. LNCS, vol. 400. Springer,
Heidelberg (1989)

12. Klein, R., Mehlhorn, K., Meiser, S.: Randomized incremental construction of ab-
stract Voronoi diagrams. Comput. Geom.: Theory Appl. 3(3), 157–184 (1993)

13. Lee, D.T.: Medial axis transformation of a planar shape. IEEE Trans. Pattern
Anal. Mach. Intell. PAMI 4(4), 363–369 (1982)

14. Okabe, A., Boots, B., Sugihara, K., Chiu, S.N.: Spatial Tessellations: Concepts
and Applications of Voronoi Diagrams, 2nd edn. John Wiley and Sons, New York
(2000)

15. Sharir, M., Agarwal, P.K.: Davenport-Schinzel Sequences and Their Geometric
Applications. Cambridge University Press, New York (1995)

16. Srinivasan, V., Nackman, L.R.: Voronoi diagram for multiply-connected polygonal
domains I: Algorithm. IBM J. Research Development 31(3), 361–372 (1987)

17. Yap, C.K.: An O(n log n) algorithm for the Voronoi diagram of a set of simple
curve segments. Discrete Comput. Geom. 2(1), 365–393 (1987)

PTAS’s for Some Metric p-source

Communication Spanning Tree Problems�

Santiago V. Ravelo and Carlos E. Ferreira

Instituto de Matemática e Estat́ıstica
Universidade de São Paulo, Brasil

{ravelo,cef}@ime.usp.br

Abstract. In this work we consider some NP-hard cases of the metric
p-source communication spanning tree problem (metric p-OCT). Given
an undirected complete graph G = (V,E) with non-negative length ω(e)
associated to each edge e ∈ E satisfying the triangular inequality, a set
S ⊆ V of p vertices and non-negative routing requirements ψ(u, v) be-
tween all pairs of nodesu ∈ S and v ∈ V , themetric p-OCT’s objective is to
find a spanning tree T ofG, thatminimizes:

∑
u∈S

∑
v∈V ψ(u, v)d(T, u, v),

where d(H,x, y) is theminimumdistance between nodes x and y in a graph
H ⊆ G. This problem is a particular case of the optimum communication
spanning tree problem (OCT). We prove a general result which allows us
to derive polynomial approximation schemes for someNP-hard cases of the
metric p-OCT improving the existing ratios for these problems.

1 Introduction

In this work we consider NP-hard particular cases of the metric p-source optimum
communication spanning tree problem (metric p-OCT) which is a particular case
of the optimum communication spanning tree problem (OCT). In the OCT,
introduced by Hu in 1974 ([Hu, 1974, Wu and Chao, 2004]), the input is an
undirected graph G = (V,E) with non-negative lengths ω(e) associated to each
edge e ∈ E and non-negative requirements ψ(u, v) between each pair of nodes
u, v ∈ V . The problem is to find a spanning tree T of G which minimizes the
total communication cost given by C(T) =

∑
u∈V

∑
v∈V ψ(u, v)d(T, u, v), where

d(H,x, y) denotes the minimum distance between the nodes x and y in the sub-
graphH ofG. In the p-OCT it is additionally given a set of p nodes (sources) S ⊆
V , that are considered in the objective function: C(T) =

∑
u∈S

∑
v∈V ψ(u, v)

d(T, u, v).
In [Johnson et al., 1978] it was proven, by a reduction from the 3-exact cover

problem (3-EC), that the minimum routing cost spanning tree problem (MRCT)
is NP-hard. MRCT is a particular case of OCT where for each pair of nodes the
communication requirement between them is equal to one, i.e., ψ(u, v) = 1 for
all u, v ∈ V . In [Wu et al., 2000c] a PTAS was given for the MRCT. Also in this

� This research is supported by the following projects: FAPESP 2013/03447−6, CNPq
477203/2012 − 4 and CNPq 302736/2010 − 7.

M.S. Rahman and E. Tomita (Eds.): WALCOM 2015, LNCS 8973, pp. 137–148, 2015.
c© Springer International Publishing Switzerland 2015

138 S.V. Ravelo and C.E. Ferreira

work a reduction from the general case to the metric one is presented and it was
proven that MRCT with edge-lengths that satisfy the triangular inequality is
also NP-hard. Also, in [Wu et al., 2000c] a O(log2(n))-approximation for OCT

was presented applying a result from [Bartal, 1996] which was improved to a
O(log(n))-approximation by [Talwar et al., 2003].

A particular case of p-OCT is weighted p-MRCT introduced in [Wu, 2002].
In this case a non-negative sending requirement σ(u) is given for each source
u ∈ S, and the requirement between a source u ∈ S and a node v ∈ V is
ψ(u, v) = σ(u). When the sending requirements σ for the p sources are equal to
one, the problem is called p-MRCT. In [Wu, 2002] it was proven that 2-MRCT

is NP-hard, moreover PTASs were shown for 2-MRCT and for the metric case
of weighted 2-MRCT.

In [Wu et al., 2000a] was introduced the minimum sum-requirement commu-
nication spanning tree problem (SROCT), in which the sending requirement
σ(u) is given for each u ∈ V . Observe that weighted p-MRCT is a particular
case of SROCT, where σ(u) = u for all u ∈ V − S. Also, the authors presented
a 2-approximation algorithm for this problem.

In [Wu, 2004] a 2-approximation algorithm was given for the metric p-OCT

and a 3-approximation for the general 2-OCT.
In this work we present a general result that allows us to derive PTASs for

natural special cases of p-OCT. We introduce three particular NP-hard cases of
p-OCTand we derive PTASs for the metric cases of these problems. Also, we
give new PTASs for the metric p-MRCT and for the fixed parameter weighted
p-MRCT.

This work is organized as follows. In section 2, we introduce some definitions.
In section 3 a polynomial time algorithm to find an optimum k-star for a given
k is presented. In section 4 we prove the main result of this work, which allows
us to obtain approximation algorithms for different metric p-OCT problems. In
section 5 we introduce particular cases of p-OCT giving a PTAS for the metric
case of that problem. We finish the paper in section 6 with some conclusions.

2 Definitions

Unless specified all graphs in this work are undirected. Given a graph G we
denote the set of its nodes as VG and the set of its edges as EG (when G is
implicit by the context we use V or E instead of VG or EG and n = |V |). Also,
when G has non-negative lengths associated to its edges, the length of a path
in G is defined as the sum of the lengths of its edges (a path with no edges has
length zero). The distance between node x and node y in a sub-graph H of G is
the length of a path with minimum length between x and y in H and is denoted
by d(H,x, y). Now, for each positive integer p we can define the p-OCT as:

PTAS’s for Some Metric p-source Communication Spanning Tree Problems 139

Problem 1. p-OCT - p-source Optimum Communication spanning Tree problem.
Input: A graph G, a non-negative length function over the edges of G, ω :

E → Q+, a set of p sources S ⊆ V and a non-negative routing requirement
function from each source node to each node of V , ψ : S × V → Q+.

Output: A spanning tree T of G which minimizes the total requirement
routing cost: C(T) =

∑
u∈S

∑
v∈V ψ(u, v)d(T, u, v).

This paper considers the metric p-OCT, which is the particular case of p-OCT

where the graph G is complete and the length function over the edges satisfies
the triangular inequality. To find a feasible solution of the metric p-OCT we use
a valid k-star1:

Definition 1. Given a graph G, a set S of nodes of G and an integer k ≥ |S|, a
k-star of G is a spanning tree of G with no more than k internal nodes (that is,
at least n−k leaves). A core of a k-star T of G is a tree resulting by eliminating
n− k leaves from T . A core τ is valid for the set S of nodes (or just valid) if τ
contains all the nodes of S. Then, a valid k-star of G is a k-star of G with at
least a valid core.

The problem of finding an optimal valid k-star for the metric p-OCT can be
defined as follows. Also, in section 3, we show how to solve it efficiently.

Problem 2. Optimum valid k-star for the metric p-OCT.
Input: A positive integer k and an instance of metric p-OCT: a complete

graph G, a non-negative length function over the edges of G which satisfies
the triangular inequality, ω : E → Q+, a set of p sources S ⊆ V and a non-
negative routing requirement function between each node of S and each node of
V , ψ : S × V → Q+. (Notice that k ≥ p = |S|)

Output: A valid k-star T of G which minimizes the total requirement routing
cost: C(T) =

∑
u∈S

∑
v∈V ψ(u, v)d(T, u, v).

3 Optimal Valid k-star for Metric p-OCT

First note that if k and p are constants, the number of possible valid cores of k-
stars ofG is polynomial. Indeed, since the core of a valid k-star must contain the p

vertices in S and k−p other vertices, one can enumerate the

(
n

k − p

)
= O(nk−p)

possibilities. For each different choice one has to enumerate all possible trees with
k vertices and there are O(kk) possible trees. Then, the number of all possible
valid cores is limited by O(kknk−p). Our approach is to find an optimal valid
k-star with core τ for each valid core τ , selecting the minimum k-star among
them.

1 The definition of k-star used in this paper is similar to the one used by
[Wu et al., 2000c, Wu et al., 2000a, Wu et al., 2000b], which is different from the
usual definition of k-star in graph theory (a tree with k leaves linked to a single
vertex of degree k).

140 S.V. Ravelo and C.E. Ferreira

Given a valid core τ , to obtain a valid k-star T with core τ each node of
VG − Vτ must be adjacent to some node of τ (i.e., these nodes will be leaves
of T).

Let uv be the node of τ adjacent to v ∈ VG − Vτ in T . Since all nodes in S
belong to τ then: C(T) = C(τ)+

∑
v∈VG−Vτ

∑
w∈S ψ(w, v)(d(τ, w, uv)+ω(uv, v)).

Thus, in order to find the best vertex of the core τ to link each vertex
v ∈ V − Vτ it suffices to consider the node u∗

v ∈ Vτ that minimizes:∑
w∈S

ψ(w, v)(d(τ, w, uv) + ω(uv, v)).

To compute it efficiently, first we pre-calculate for each w ∈ S and u ∈ Vτ

all the distances d(τ, w, u) (it can be done in O(|S|k) = O(pk)). After that, we
calculate for each pair of nodes v ∈ VG−Vτ and u ∈ Vτ (k(n−k) pairs) the cost
of linking v to vertex u in τ which can be computed in O(|S|) = O(p) using the
pre-calculated distances. Therefore, we can obtain an optimal valid k-star with
core τ in O(k(n− k)p+ pk) = O(npk) time.

From the ideas above, we conclude that it is possible to find and optimal valid
k-star in O(kk+1nk−p+1p) time.

Lemma 1. An optimum valid k-star for metric p-OCT with fixed k ≥ p can be
found in O(nk−p+1) time.

4 Approximation Lemma (for Metric p-OCT Problems)

In this section we present the main result of the paper. First we introduce the
notion of δ-balanced-path, 0 < δ ≤ 1

2 . This definition is based on similar con-
cepts for related problems introduced in [Wu et al., 2000c], [Wu et al., 2000a]
and [Wu et al., 2000b]. Using it we derive a general lemma that applies for dif-
ferent special cases of metric p-OCT.

Definition 2. Given a spanning tree T of G, we denote by ST the minimal sub-
tree of T which contains all the nodes in S. It is easy to see that every leaf of
ST must be a node of S.

Definition 3. We define ψ(S′, U) =
∑

u∈S′
∑

v∈U ψ(u, v) for every S′ ⊆ S and
U ⊆ V .

Definition 4. Given a spanning tree T of G and a path P = w1, ..., wh of T ,
we denote:

– fP = w1 and lP = wh the endpoints of P ;
– V f

P : the set of nodes in T connected to P through vertex fP (including fP
itself);

– V m
P : the set of nodes in T connected to P through an internal node of P

(including these nodes);
– V l

P : the set of nodes in T connected to P through vertex lP (including lP
itself).

PTAS’s for Some Metric p-source Communication Spanning Tree Problems 141

fP lP

Fig. 1. Example of V f
P , V m

P and V l
P for a path P of a tree T . Observe that V f

P is the
set of nodes to the left of fP (including fP), V

l
P is the set of nodes to the right of

lP (including lP), V
m
P is the set containing the rest of the nodes and P is the path

connecting fP to lP in T .

Notice that V f
P ∪ V m

P ∪ V l
P = V and these sets are disjoint. We also denote

by Si
P the set of vertices in V i

P ∩ S, where i ∈ {f,m, l}. We say that P is

m-source-free if Sm
P = ∅. If P is m-source-free, Sf

P �= ∅ and Sl
P �= ∅ we say

that P is a connecting-source path.

Now we introduce the definition for δ-balanced-path, that is an m-source-free
path (P) for which the routing requirement delivered to its interior (V m

P) is
small, i.e., at most a portion (δ) of the routing requirement that passes through
P . Formally:

Definition 5. Given 0 < δ ≤ 1
2 and a spanning tree T of G, an m-source-

free path P of T is a δ-balanced-path if ψ(Sf
P ∪ Sl

P , V
m
P) = ψ(S, V m

P) ≤
δ
(
ψ(Sf

P , V
l
P) + ψ(Sl

P , V
f
P)
)
.

The following proposition gives a basis for the main result in this work, since
it provides a valid star whose cost is bounded by the cost of the given tree.

Proposition 1. Consider 0 < δ ≤ 1
2 , a spanning tree T of G and a set Y of

internally disjoint δ-balanced-paths of T whose union results in ST . Then there
exists a valid (|Y |+ 1)-star X such that: C(X) ≤ (1 + 2δ)C(T). Where two
paths are internally disjoint if the intersection of their sets of nodes is empty or
contains nodes that are endpoints of both paths.

Proof. First we note that there exists a spanning tree T such that ST = ST ,
all vertices of T that do not belong to ST are leaves and C(T) ≤ C(T). If all
vertices of T that do not belong to ST are leaves, then T = T , otherwise there
exists a leaf u in T that is not adjacent to any node of ST . Let v be the nearest
node to u in ST . Since all the nodes of S are in ST and the graph is metric, the
spanning tree T ′ of G, resulting from removing the edge adjacent to u in T and
adding the edge (v, u) satisfies C(T ′) ≤ C(T). It is easy to see that repeating
this process to all the leaves that are not adjacent to a node in ST we obtain
tree T . With this property we can suppose that in tree T all vertices in V − ST

are leaves. Now we construct a valid (|Y |+ 1)-star X of G as follows:

– The core τ of X has the set of nodes that are endpoints of the paths in
Y . Two nodes u, v ∈ τ are adjacent in τ if in Y there exists a path with

142 S.V. Ravelo and C.E. Ferreira

endpoints u and v. Since the paths in Y are internally disjoint and their
union results in the tree ST , we conclude that τ is a tree over the endpoints
of the paths in Y .

– For every node u ∈ τ and for every leaf v ∈ V − τ adjacent to u in T we also
include an edge (u, v) in X .

– Observe that each node u ∈ T not included in X by the previous steps
belongs to V m

P for some path P ∈ Y . Then, we include edge (u, fP) in X if
ω(u, fP) ≤ ω(u, lP), otherwise we include edge (u, lP) in X .

Our construction guarantees X to be a (|Y |+ 1)-star of G with core τ . Then,
we only need to analyze its associated communication cost, which can be cal-
culated by adding over each edge e the communication amount passing over e
times the length of e. Since every edge is a path with exactly two vertices we
also use the notation given by definition 4 on the edges. Then:

C(X) =
∑

e∈EX

(
ψ(Sf

e , V
l
e) + ψ(Sl

e, V
f
e)
)
ω(e)

=
∑
e∈Eτ

(
ψ(Sf

e , V
l
e) + ψ(Sl

e, V
f
e)
)
ω(e)

+
∑

e∈EX−τ

(
ψ(Sf

e , V
l
e) + ψ(Sl

e, V
f
e)
)
ω(e).

Observe that, by construction, each edge e ∈ Eτ corresponds to a δ-balanced-
path P ∈ Y , such that: ψ(Sf

e , V
l
e) + ψ(Sl

e, V
f
e) ≤ ψ(Sf

P , V
l
P) + ψ(Sl

P , V
f
P) +

ψ(S, V m
P). Also, by the triangular inequality: ω(e) ≤ ω(P), then:

C(X) ≤
∑
P∈Y

(
ψ(Sf

P , V
l
P) + ψ(Sl

P , V
f
P) + ψ(S, V m

P)
)
ω(P)

+
∑

e∈EX−τ

(
ψ(Sf

e , V
l
e) + ψ(Sl

e, V
f
e)
)
ω(e).

Notice that for every edge e ∈ EX−τ one of its endpoints is a leaf outside of
τ and the other one a node of τ . Let p(u) be the node in τ adjacent in X to a
leaf u ∈ V − τ , then:

C(X) ≤
∑
P∈Y

(
ψ(Sf

P , V
l
P) + ψ(Sl

P , V
f
P) + ψ(S, V m

P)
)
ω(P)

+
∑

u∈VX−τ

ψ(S, u)ω(u, p(u))

≤
∑
P∈Y

(
ψ(Sf

P , V
l
P) + ψ(Sl

P , V
f
P) + ψ(S, V m

P)
)
ω(P)

+
∑
P∈Y

∑
u∈V m

P

ψ(S, u)ω(u, p(u)) +
∑
u∈VI

ψ(S, u)ω(u, p(u)),

where VI is the set of leaves in X that are not in τ and have the same adjacent
node in both trees T and X . Notice that all leaves in T outside of τ adjacent (in

PTAS’s for Some Metric p-source Communication Spanning Tree Problems 143

T) to some node of τ belong to VI (that is, only nodes in V m
P for some P ∈ Y

may be out of VI ∪ Vτ).
For every P ∈ Y and every node u ∈ V m

P , p(u) is one of the endpoints of the
path P . Thus ω(u, p(u)) = min{ω(u, fP), ω(u, lP)}:

C(X) ≤
∑
P∈Y

(
ψ(Sf

P , V
l
P) + ψ(Sl

P , V
f
P) + ψ(S, V m

P)
)
ω(P)

+
∑
P∈Y

∑
u∈V m

P

ψ(S, u)min {ω(u, fP), ω(u, lP)}+
∑
u∈VI

ψ(S, u)ω(u, p(u)).

Let q(u) be the node in ST adjacent to u ∈ T − ST and for u ∈ ST consider
q(u) = u, then:

C(X) ≤
∑
P∈Y

(
ψ(Sf

P , V
l
P) + ψ(Sl

P , V
f
P) + ψ(S, V m

P)
)
ω(P)

+
∑
P∈Y

∑
u∈V m

P

ψ(S, u)min {ω(u, fP), ω(u, lP)} +
∑
u∈VI

ψ(S, u)ω(u, q(u)).

By the triangular inequality ω(u, fP) ≤ ω(q(u), fP) + ω(u, q(u)) for P ∈ Y
and u ∈ V m

P (the same applies for lP). Since q(u) ∈ P , ω(q(u), fP) ≤ ω(P) and
ω(q(u), lP) ≤ ω(P). So, min {ω(u, fP), ω(u, lP)} ≤ ω(P) + ω(u, q(u)). Then:

C(X) ≤
∑
P∈Y

(
ψ(Sf

P , V
l
P) + ψ(Sl

P , V
f
P) + ψ(S, V m

P)
)
ω(P)

+
∑
P∈Y

∑
u∈V m

P

ψ(S, u) (ω(P) + ω(u, q(u))) +
∑
u∈VI

ψ(S, u)ω(u, q(u))

=
∑
P∈Y

(
ψ(Sf

P , V
l
P) + ψ(Sl

P , V
f
P) + ψ(S, V m

P)
)
ω(P)

+
∑
P∈Y

ω(P)ψ(S, V m
P) +

∑
u∈VT−τ

ψ(S, u)ω(u, q(u))

≤
∑
P∈Y

(
ψ(Sf

P , V
l
P) + ψ(Sl

P , V
f
P) + 2ψ(S, V m

P)
)
ω(P)

+
∑

u∈VX−τ

ψ(S, u)ω(u, q(u)).

Since each P ∈ Y is δ-balanced, ψ(S, V m
P) ≤ δ

(
ψ(Sf

P , V
l
P) + ψ(Sl

P , V
f
P)
)
.

Also, ω(u, q(u)) = 0 for each node u in ST , then:

C(X) ≤
∑
P∈Y

(1 + 2δ)
(
ψ(Sf

P , V
l
P) + ψ(Sl

P , V
f
P)
)
ω(P)

+
∑

u∈VT−ST

ψ(S, u)ω(u, q(u))

≤ (1 + 2δ)C(T).

�

144 S.V. Ravelo and C.E. Ferreira

The above lemma gives us a general result: given 0 < δ ≤ 1
2 , if a metric

p-OCT problem Π satisfies that for any spanning tree T of G there exists a
set of k internally disjoint δ-balanced-paths whose union results in ST , then for
each T there exists a (k + 1)-star XT such that C(XT) ≤ (1 + 2δ)C(T). Thus,
for an optimal spanning tree T ∗ there exists a valid (k + 1)-star of G which
is a (1 + 2δ)-approximation for Π . Then, an optimal valid (k + 1)-star of G is
a (1 + 2δ)-approximation for Π . Remember that, by lemma 1, we can find an
optimal valid (k + 1)-star in O(nk−p+2) (and therefore an approximation for the
optimum value).

Lemma 2. Consider a metric p-OCT problem for which we can guarantee for
every spanning tree T the existence of k internally disjoint δ-balanced-paths
whose union results in ST . Thus, there exists a (1 + 2δ)-approximation algo-
rithm with time complexity O(nk−p+2) where 0 < δ ≤ 1

2 .

The following proposition provides a sufficient condition for the existence of
an internally disjoint δ-balanced-path set whose union results in ST for any
spanning tree T of a metric p-OCT problem.

Proposition 2. Consider a metric p-OCT problem. Given 0 < δ ≤ 1
2 , if it

satisfies that every connecting-source path of any spanning tree T of G can be
divided in, at most k internally disjoint δ-balanced-paths, then there exists a set
of internally disjoint δ-balanced-paths of T with at most 2k(p−1) elements whose
union results in ST .

Proof. Let T be a spanning tree of G, and consider the corresponding sub-tree
ST , whose leaves are nodes of S (ST has at most p leaves), and ST is also a tree.
Then, the number of nodes with degree greater than two in ST is at most p− 1.

Consider now the collection of paths Y constructed from ST such that each
path has as endpoints nodes with degree different of two in ST or nodes of S,
and all the internal nodes of these paths are not in S and has degree two in ST .
It is easy to see that the number of paths in Y is at most 2p − 2 (that is, the
number of nodes in S which contains the leaves of ST plus the number of nodes
with degree greater than two in ST minus one). Also, observe that each path
in Y is a connecting-source path, so it can be divided in at most k internally
disjoint δ-balanced-paths. Then, by applying that division we obtain a set of
δ-balanced-paths with at most 2k(p− 1) elements whose union results in ST .�

Finally, from the results given by lemma 2 and proposition 2 we conclude:

Lemma 3. Consider a metric p-OCT problem. If, for this problem it holds that
for every connecting-source path P of any spanning tree of G there exists at most
k internally disjoint δ-balanced-paths whose union results in P , there exists a
(1 + 2δ)-approximation algorithm with time complexity O(n(2k−1)(p−1)+1) where
0 < δ ≤ 1

2 .

In next section we use this result to prove PTASs for three different metric
p-OCT problems, for which the condition given above holds.

PTAS’s for Some Metric p-source Communication Spanning Tree Problems 145

5 PTAS for Three p-OCT Metric Problems

In the previous section we provide a general result to obtain good approximations
for p-OCT metric problems. In this section we show some special cases for which
lemma 3 applies and consequently we are able to provide PTASs.

The first problem we introduce is the p-source Weighted Source Destination
Optimum Communication spanning Tree problem (p-WSDOCT) which is a
particular case of the p-OCT, where there is a sending requirement for each
source node and also all the nodes have a receiving requirement associated:

Problem 3. p-WSDOCT - p-source Weighted Source Destination Optimum
Communication spanning Tree problem.

Input: A graph G, a non-negative length function over the edges of G, ω :
E → Q+, a set of p sources S ⊆ V , a positive sending requirement σ : S → Q+

and a non-negative receiving requirement λ : V → Q+. The requirement function
between u ∈ S and v ∈ V is given by ψ(u, v) = σ(u)λ(v).

Output: A spanning tree T of G which minimizes the total requirement
routing cost: C(T) =

∑
u∈S

∑
v∈V σ(u)λ(v)d(T, u, v).

Now, using the result of lemma 3 we prove the following theorem:

Theorem 1. There exists a PTAS for metric p-WSDOCT with fixed param-
eter. Given 0 < δ ≤ 1

2 , the algorithm can find a (1 + 2ξδ)-approximation in

O

(
n

(
2 1

δ−δ2
−1

)
(p−1)+1

)
time complexity where ξ =

∑
u∈S σ(u)

min{σ(u)}u∈S
.

Proof. Consider a connecting-source path P for any spanning tree T of G, where:∑
u∈V m

P

λ(u) ≤ δ (1− δ)
∑
u∈V

λ(u).

Observe that:

ψ(S, V m
P) =

(∑
u∈S

σ(u)

)⎛⎝ ∑
u∈V m

P

λ(u)

⎞⎠ ≤ (∑
u∈S

σ(u)

)
δ (1− δ)

∑
u∈V

λ(u)

≤
(∑

u∈S

σ(u)

)
δ
(
1− (δ − δ2)

)∑
u∈V

λ(u)

=

(∑
u∈S

σ(u)

)
δ

(∑
u∈V

λ(u)− (δ − δ2)
∑
u∈V

λ(u)

)

≤
(∑

u∈S

σ(u)

)
δ

⎛⎝∑
u∈V

λ(u)−
∑

u∈V m
P

λ(u)

⎞⎠ .

Since V = V l
P ∪ V f

P ∪ V m
P :

ψ(S, V m
P) ≤

(∑
u∈S

σ(u)

)
δ

⎛⎝∑
u∈V l

P

λ(u) +
∑
u∈V f

P

λ(u)

⎞⎠

146 S.V. Ravelo and C.E. Ferreira

≤
(∑

u∈S

σ(u)

)
δ

∑
u∈Sf

P
σ(u)

min{σ(u)}u∈S

∑
u∈V l

P

λ(u)

+

(∑
u∈S

σ(u)

)
δ

∑
u∈Sl

P
σ(u)

min{σ(u)}u∈S

∑
u∈V f

P

λ(u)

=

∑
u∈S σ(u)

min{σ(u)}u∈S
δ
(
ψ(Sf

P , V
l
P) + ψ(Sl

P , V
f
P)
)
.

So, P is a
∑

u∈S σ(u)

min{σ(u)}u∈S
δ-balanced-path and every connecting-source path of T

can be divided in at most 1
δ−δ2 paths like P , which is a connecting-source path

that satisfies
∑

u∈V m
P

λ(u) ≤ δ (1− δ)
∑

u∈V λ(u).

Then, by applying lemma 3 we conclude that for metric p-WSDOCT there

exists a
(
1 + 2

∑
u∈S σ(u)

min{σ(u)}u∈S
δ
)
-approximation algorithm with time complexity

O

(
n

(
2 1

δ−δ2
−1

)
(p−1)+1

)
. �

Another particular case of p-WSDOCT is the p-source Weighted Destina-
tion Optimum Communication spanning Tree problem (p-WDOCT), where all
vertices of S have unitary sending requirement (σ(S) = 1).

Problem 4. p-WDOCT - p-source Weighted Destination Optimum Communi-
cation spanning Tree problem.

Input: A graph G, a non-negative length function over the edges of G, ω :
E → Q+, a set of p sources S ⊆ V and a non-negative receiving requirement
λ : V → Q+. The requirement function between u ∈ S and v ∈ V is given by
ψ(u, v) = λ(v).

Output: A spanning tree T of G which minimizes the total requirement
routing cost: C(T) =

∑
u∈S

∑
v∈V λ(v)d(T, u, v).

Observe that p-WDOCT is a particular case of p-WSDOCT in which:

ξ =

∑
u∈S σ(u)

min{σ(u)}u∈S
=

p

1
= p.

Then, using theorem 1 we conclude the following result for p-WDOCT:

Corollary 1. There exists a PTAS for metric p-WDOCT, which can find a

(1 + 2pδ)-approximation in O

(
n

(
2 1

δ−δ2
−1

)
(p−1)+1

)
time complexity where 0 <

δ ≤ 1
2 .

Notice that the weighted p-MRCT is also a particular case of p-WSDOCT

and the p-MRCT is a particular case of p-WDOCT so the results above imply
also new PTASs for the fixed parameter metric weighted p-MRCT and for the
metric p-MRCT.

PTAS’s for Some Metric p-source Communication Spanning Tree Problems 147

Table 1. Comparison of our approach with current state of art in the literature.
As it can be seen, for almost all the problems our approach improve the previous
approximation ratios, only for the case of 2-MRCT it does not give a better solution
(we obtain the same approximation scheme but with a greater complexity time). In
the case of the PTASs it was considered the approximation (1 + ε) being ε ∈ (0, 1].

Problem Best Approach In Literature Our Approach
Ratio Complexity References Ratio Complexity

2-MRCT PTAS O
(
n

1
ε
+1

)
[Wu, 2002] PTAS O

(
n

8
ε(2−ε)

)

p-MRCT 2 O
(
n3

)
[Wu et al., 2000a] PTAS O

(
n

(
8p2

ε(2p−ε)
−1

)
(p−1)+1

)

weighted

p-MRCT 2 O
(
n3

)
[Wu et al., 2000a] PTAS O

(
n

(
8ξ2

ε(2ξ−ε)
−1

)
(p−1)+1

)

p-WDOCT 2 O
(
np−1

)
[Wu, 2004] PTAS O

(
n

(
8p2

ε(2p−ε)
−1

)
(p−1)+1

)

fixed parameter

p-WSDOCT 2 O
(
np−1

)
[Wu, 2004] PTAS O

(
n

(
8ξ2

ε(2ξ−ε)
−1

)
(p−1)+1

)

p-USCOCT 2 O
(
np−1

)
[Wu, 2004] PTAS O

⎛
⎜⎝n

(
4log 2

2+ε
(r)−1

)
(p−1)+1

⎞
⎟⎠

Another particular case of p-OCT in which we can apply our results is the
p-Uniform Source Connecting Optimum Communication spanning Tree problem
(p-USCOCT). In this problem the minimum routing requirement between two
sources must be at least a fixed ratio of the sum of requirements between all the
pairs of nodes2:

Problem 5. p-USCOCT - p-Uniform Source Connecting Optimum Communica-
tion spanning Tree problem.

Input: A graph G, a non-negative length function over the edges of G, ω :
E → Q+, a set of p sources S ⊆ V , a fixed ratio r > 0 and a non-negative routing
requirement function between each node of S and each node of V , ψ : S × V →
Q+, where each pair of sources u, v ∈ S satisfies ψ(u, v) ≥ r

∑
u∈S

∑
v∈V ψ(u, v).

Output: A spanning tree T of G that minimizes the total requirement routing
cost: C(T) =

∑
u∈S

∑
v∈V ψ(u, v)d(T, u, v).

Similar ideas allow us to prove that for 0 < δ ≤ 1
2 we can divide any

connecting-source path P of a spanning tree of G in an instance of metric p-
USCOCT with no more than 2log 1

1+δ
(r) internally disjoint δ-balanced-paths.

Then by applying lemma 3 we obtain:

2 Metric p-USCOCT is NP-hard, a reduction from SAT is given in the full version of
the paper.

148 S.V. Ravelo and C.E. Ferreira

Theorem 2. There exists a PTAS for the metric p-USCOCT. Given 0 < δ ≤
1
2 , the algorithm guarantees a (1 + 2δ)-approximation of the optimum solution

in time complexity O

(
n

(
4log 1

1+δ
(r)−1

)
(p−1)+1

)
.3

6 Conclusions

In this work we consider different NP-hard variants of p-OCT: metric case of
p-MRCT, p-WDOCT fixed parameter WSDOCTand p-USCOCT. We prove
a lemma that allows us to present PTAS’s for these problems, being possible to
use that result in order to obtain other approximations for some other particular
cases of p-OCT. Also we prove that metric USCOCT is NP-hard. In table 1 we
summarize our approaches and compare with previous results in literature. Many
questions remain open regarding p-OCT and related problems. For example,
no PTAS for metric p-OCT is known. Also, when we do not consider metric
problems much is still to be researched.

References

[Bartal, 1996] Bartal, Y.: Probabilistic approximation of metric spaces and its algo-
rithmic applications. In: Proceedings of the 37th Annual IEEE Symposium on
Foundations of Computer Science, pp. 184–1963 (1996)

[Hu, 1974] Hu, T.C.: Optimum communication spanning trees. SIAM J. Comput. 3(3),
188–195 (1974)

[Johnson et al., 1978] Johnson, D.S., Lenstra, J.K., Kan, A.H.G.R.: The complexity of
the network design problem. Networks 8, 279–285 (1978)

[Talwar et al., 2003] Talwar, K., Fakcharoenphol, J., Rao, S.: A tight bound on ap-
proximating arbitrary metrics by tree metrics. In: Proceedings of the 35th Annual
ACM Symposium on Theory of Computing, pp. 448–455 (2003)

[Wu, 2002] Wu, B.Y.: A polynomial time approximation scheme for the two-source
minimum routing cost spanning trees. J. Algorithms 44, 359–378 (2002)

[Wu, 2004] Wu, B.Y.: Approximation algorithms for the optimal p-source communi-
cation spanning tree. Discrete and Applied Mathematics 143, 31–42 (2004)

[Wu and Chao, 2004] Wu, B.Y., Chao, K.M.: Spanning Trees and Optimization Prob-
lems. Chapman & Hall / CRC (2004) ISBN: 1584884363

[Wu et al., 2000a] Wu, B.Y., Chao, K.M., Tang, C.Y.: Approximation algorithms for
some optimum communication spanning tree problems. Discrete and Applied
Mathematics 102, 245–266 (2000)

[Wu et al., 2000b] Wu, B.Y., Chao, K.M., Tang, C.Y.: A polynomial time approxima-
tion scheme for optimal product-requirement communication spanning trees. J.
Algorithms 36, 182–204 (2000)

[Wu et al., 2000c] Wu, B.Y., Lancia, G., Bafna, V., Chao, K.M., Ravi, R., Tang, C.Y.:
A polynomial time approximation scheme for minimum routing cost spanning
trees. SIAM J. on Computing 29(3), 761–778 (2000)

3 The complete proof of this theorem can be found in the full version of the paper.

Fault-Tolerant Gathering of Asynchronous

Oblivious Mobile Robots under One-Axis
Agreement

Subhash Bhagat1, Sruti Gan Chaudhuri2, and Krishnendu Mukhopadhyaya1

1 Indian Statistical Institute, Kolkata, India
2 Jadavpur University, Kolkata, India

{sbhagat r,krishnendu}@isical.ac.in, srutiganc@it.jusl.ac.in

Abstract. In this paper, we have studied one of the fundamental coor-
dination problems for multi robot system, namely gathering, for n ≥ 2
asynchronous, oblivious mobile robots in the presence of f < n faulty
robots. Earlier works have reported that, in general, to solve gathering
problem for asynchronous robots, many assumptions are required, like
multiplicity detection or total agreement in coordinate axis or constant
amount of memory bits. However, in this paper we have proved that
gathering of asynchronous robots is possible with less number of such
assumptions and even in the presence of any number of faulty robots. In
our case, the robots only agree on the direction and orientation of any
one axis.

Keywords: Gathering, Crash fault, Asynchronous, Oblivious, Swarm
robots.

1 Introduction

A system of multiple autonomous mobile robots working in collaboration, is a
very emerging topic of research in the field of swarm robots. A group of small, in-
expensive robots is easy to deploy even in hazardous situations, like space, deep
sea or after some environmental disaster. They are also applicable for many other
tasks which are supposed to be performed by a group of objects, e.g., moving
a big object, cleaning a big surface, etc. Since, the system has multiple robots
with similar capabilities, if some of the robots fail i.e., they can not perform
their tasks, the remaining robots can complete the job. Gathering, (i.e., collect-
ing the robots to a point not defined in advance) of such robots is a fundamental
coordination problem for a group of mobile robots. In this paper, we have ad-
dressed this problem and presented a distributed algorithm for gathering a set
of robots. The robots are distributed in nature, i.e., they have their own compu-
tational unit and they act independently. They do not communicate by sending
or receiving messages. The robots are indistinguishable by their appearances;
they perform a given task cooperatively. They are represented by points on a
2D plane. Each robot treats its own position as its origin in its local coordi-
nate system. They agree on the direction and orientation of any one axis (e.g.

M.S. Rahman and E. Tomita (Eds.): WALCOM 2015, LNCS 8973, pp. 149–160, 2015.
c© Springer International Publishing Switzerland 2015

150 S. Bhagat, S. Gan Chaudhuri, and K. Mukhopadhyaya

Y axis/direction of north and south, for this paper). However, they do not have
any agreement on the orientation of other axis (X axis, for this paper). At any
point of time, a robot may be active or inactive. When the robots are active, they
operate by executing a cycle repeatedly. Under this cycle a robot has following
three states:

– Look: in this state, the robots sense or observe the positions of the other
robots in their surroundings with the help of some sensing devices. The
robots plot the positions of other robots in their local coordinate systems.

– Compute: in this state, depending upon what they have observed and the
requirement of the given task, the robots compute destinations to move to.

– Move: in this state the robots move to their destinations. The movement is
nonrigid i.e., the robots may stop before reaching their destinations.

The operation cycle is scheduled asynchronously, i.e., at any point of time a set
of robots may be in look state while some other sets of robots are computing
or moving. A robot can not differentiate between a static robot and a moving
robot. The robots are oblivious, i.e., at the end of a cycle, the robots remove all
computed data of that cycle. Some of the robots may be faulty i.e, they stop their
activity for ever but remain in the system. However, the robots can not decide
whether a robot they see is functional or defective. The robots can not detect if
more than one robots lie at a single point. We propose an distributed algorithm
that will gather all non-faulty robots (under the above model), starting from
any arbitrary set of initial positions, to a point not fixed in advance, in a finite
number of cycles.

1.1 Earlier Works

Gathering problem is the most visited research topic [2,6,4,5,9,10,12,15,16,17,19]
from the birth of the multi robot systems. The primary aim of these investiga-
tions has always been to find out the sets of minimum capabilities which the
robot should have to be gathered at a point in finite time1. Depending on the
activation scheduling the system of robots have been viewed in following two
models; (i) CORDA ([18]): under this model the robots are asynchronous, i.e.,
they independently execute the phases of the cycles; (ii) SYm (Suzuki, Yamashita
model [20]): the robots are semi-synchronous, i.e., a set of robots are active at
some time and perform the phases of the cycles simultaneously. There is a third
type called fully synchronous where all the robots are active and perform the
phases of the cycle at the same time. Prencipe [19] showed that, deterministic
gathering of n > 2 robots is impossible in CORDA and SYm model without the
assumption on multiplicity detection, i.e., the robots can detect a point consists
of multiple robots. If there is no agreement about the coordinate system Gather-
ing of even two robots is not possible without remembering the past. The results

1 There is some variation of gathering as, convergence [7]: where the robots come as
close as possible but do not gather at a single point. However, in this paper we only
discuss about the gathering at a single point.

Fault-Tolerant Gathering of Asynchronous Oblivious Mobile Robots 151

continues to hold even with multiplicity detection. Flocchini et al. [14], have re-
ported an algorithm for gathering two robots using constant number of memory
bits. Flocchini et al. [12], have showed that gathering is possible if the robots
have an agreement in direction and orientation of both the axes, even when the
robots can observe limited regions of certain radius, around themselves. All these
studies are based on a fact that the robots are fault free.

Two types of fault model have been reported in the literature; (i) crash fault:
the robots stop working for ever. (ii) byzantine fault: the robots exhibit arbitrary
behaviors or movements. In this paper we will focus only on crash fault. Agmon
and Peleg [1] proved that gathering of non faulty robots is possible under the
SYm model even in presence of a single faulty robot under crash fault model.
Défago et. al. [8], have studied fault tolerant gathering algorithm under SYm
model. Recently, Bouzid et. al.[3], reported that gathering is possible with arbi-
trary number of faults by the robots in ATOM model with chirality (agreement
in clockwise orientation) and multiplicity detection.

1.2 Our Contribution

To the best of our knowledge, there are no results reported on the possibility
of gathering, in presence of faulty robots, under one axis agreement. Flocchini
et. al. [13], have characterized all form-able patterns by a set of robots from
arbitrary initial configurations. However, point formation or gathering does not
lie in their classifications. In this paper, we have proposed an algorithm for
gathering of n ≥ 2 asynchronous oblivious robots under the agreement of only
one axis. Gathering of two oblivious robots has been proved to be impossible even
with multiplicity detection. However, in this paper we prove that gathering of
two oblivious robots is possible if they agree on the direction of any one axis. We
also prove that our algorithm can tolerate f < n crash faults i.e., our algorithm
guarantees gathering of all non-faulty robots in presence of f < n faulty robots
under crash faults. Earlier works have reported the possibility of gathering for
robot under the assumption on multiplicity detection and chirality. We propose
an algorithm for fault tolerant gathering of asynchronous robots without having
chirality and multiplicity detection but only having agreement in any one axis.
Our algorithm will gather all non-faulty robots in finite time.

2 Terminology

We consider a set, R = {r1, r2, . . . , rn}, of oblivious, indistinguishable n point
robots on a 2D plane. The robots follow the basic characteristics of the tradi-
tional model [11] with some additional features. A robot can be either active or
inactive(idle). The active robots execute the cycle look-compute-move repeatedly
in asynchrony following CORDA model.

Under this model the robots can stop (and start a new cycle) before reaching
their respective destinations. However, they must move, on each movement, at
least a distance δ > 0 if their destination is more than δ distance apart from

152 S. Bhagat, S. Gan Chaudhuri, and K. Mukhopadhyaya

L1(C)

L2(C)

Lk(C

Fig. 1. An example of L(C)

it2. This assumption in the description of the model [11] is necessary to assure
that a robot will not take infinite time to reach its destination. An inactive
robot will not remain idle for an infinite time [11]. There is no global coordinate
system (defined by origin and axes) for the robots. Each robot has its own local
coordinate system which may differ from the others. However, the robots only
agree on Y axis which is conventionally north-south direction3. The robots have
unlimited visibility range, i.e., they can observe all robots in R and plot them
in their own coordinate systems. The robots may become faulty at any stage
of execution cycle. In this paper, we only consider crash faults model where a
faulty robot stops executing cycles forever. If there is any faulty robot in the
system, then it is not removed from the system i.e., it physically remains in
the system without executing the cycles. The robots can not identify the faulty
robots. A crash fault model is denoted by (n, f), in which at most f < n robots
may become faulty at any stage of execution.

By a configuration C, we mean the set of points on the plane occupied by the
robots in R i.e. C = {p1, p2, . . . , pk}, k ≤ n, where pi is the position of one or
multiple robots in R (a point in C may be occupied by more than one robot,
however the robots can not differentiate between a point having single robot and
a point having multiple robots). By Ct, we denote the geometric configuration

of robots at time t. C̃ is the set of all such possible configurations of the robots
by R. Following notations are used in our proposed algorithm.

– The agreement on north-south directions enables us to classify the robots
into different groups according to their positions and to obtain an order-
ing among these groups as follows: Horizontal line is drawn through each
point (Fig. 1) in C. Note that these lines may contain multiple robots. These
horizontal lines are sorted according to there positions along north to south

2 If the destination is less than δ distance apart then the robot reach it without
stopping in between.

3 Note that we can also take the agreement on X axis. In that case, all computations
that require the notion of north-south direction, have to be modified for east-west
direction.

Fault-Tolerant Gathering of Asynchronous Oblivious Mobile Robots 153

direction. Let Li(C) be the ith horizontal line and L(C) be the collection of
all such lines in the sorted order. Let HLi(C) be the set of distinct robot
positions on Li(C) (if two or more robots occupy same position, we consider
it once) in C. If there are k number of such horizontal lines in C, we define
H(C) = {HL1(C), . . . , HLk(C)}.

L1(C)

Fig. 2. An example of C̃1

L1(C)

Fig. 3. An example of C̃>1

– We define an equivalence relation ≺ on C̃ as follows: ∀ C, C′ ∈ C̃, C ≺ C′ iff
|HL1(C)| = |HL1(C′)| = 1 or both |HL1(C)| and |HL1(C′)| are greater than
1. Note that this relation yields only two equivalence classes. In one class,
each member C has |HL1(C)| = 1 and we denote this class by C̃1 (Fig. 2). In
the other class each member C′ has |HL1(C′)| > 1 and we denote this class

by C̃>1 (Fig. 3).
– ComputeLevels() is a function which takes the current configuration C as

argument and returns L(C) in sorted order according to the positions of the
lines from north to south direction.

– ComputeGroups() is a function which takes a configuration C as argument
and returns H(). The robots compute H(C) as follows:
• Sort the points in C in descending order according to y-coordinates.
• Group the points having same y-coordinate in the above sorted list and
denote the group by HLi(C) if the y-coordinate of the group is the ith

largest element in the list.
• return H(C), the set of all such groups HLi(C), in sorted order.

– CheckLevel() is a function which takes L(C) and a robot ri as arguments
and returns k such that ri lies on Lk(C).

– ComputeCorners() is a function which takes HLi(C) as argument and
returns the two corner positions occupied by robots of |HLi(C)| on Li(C).
ByMt, we denote the two robot positions computed by ComputeCorners()
at time t.

154 S. Bhagat, S. Gan Chaudhuri, and K. Mukhopadhyaya

• Sort the points in HLi(C) according to their own x-coordinates.
• Take the two points having the smallest and the largest x-coordinates
and put them in a set M.

• return M.

Note that here the robots compute the corner robots using the ordering
information w.r.t. their own coordinate system, however, the agreement on
the corner robots is unique for all robots.

– ComputeTriangle() is a function which takes two robot positions, pi and
pj lying on the same horizontal line Lk(C) for some k, as arguments and
computes the equilateral triangle �piTpj where length of each side is equal
to the distance between pi and pj i.e., |pipj| and the point T lies in the north
to the line Lk(C). It returns the point T . By �t, we denote the triangle
computed by ComputeT riangle() at time t. Note that in lemma 3, we shall
prove that T remains invariant whenever it is possible to define it. So through
out this paper, we use same notation T to represent this position.

– Closest() is a function which takes a robot ri and a set of positions M
as arguments and returns the closest position in M from ri (break the tie
arbitrarily).

Using above functions we describe an algorithm ComputeDestination()
which computes a destination point for a robot on the plane. Finally Gathering
Algorithm() combines all mentioned functions and builds the final gathering
configuration (a point). These two algorithms are presented in section 3. Each
robot in R executes GatheringAlgorithm() independently in its ”compute”
stage. Our proposed algorithm is wait-free, i.e., all robots are allowed to move
simultaneously, if their movement strategies support.

3 Algorithm

In this section we describe a distributed gathering algorithm which can tolerate
f (< n) crash faults for a set of robots R. The objective of our algorithm is to
find a unique point so that all non-faulty robots can agree on it and gather at
that point within finite time. As the robots are oblivious and asynchronous, after
some steps the gathering point should remain invariant even as the robots change
their positions during the execution of the algorithm. If the initial configuration
of the robots provides us such an invariant point then we are done. In that case
the only responsibility of the robots is to move to that point in such a way
that this point remains intact till all robots reach there. On the other hand,
if such a point is not available, some of the robots change their positions so
that an invariant gathering point becomes computable after a finite number of
movements of these robots.

Our algorithm is based on the ordering information ofR as reflected inH(C) =
{HL1(C), . . . , HLk(C)} for some k. We also exploit the partition information of

C̃ provided by the equivalence relation ≺. For an arbitrary robot configuration
C, the algorithm first checks whether C ∈ C̃1 or C ∈ C̃>1 and accordingly decides

Fault-Tolerant Gathering of Asynchronous Oblivious Mobile Robots 155

the strategy for the movements of the robots. If C ∈ C̃1, the robots which are
not in HL1(C) move towards the robot in HL1(C). If C ∈ C̃>1, then the present

configuration is converted into one which belongs to C̃1 and then the strategy
for the previous case is followed. The different scenarios and the corresponding
solution strategies are:

– Case 1: C ∈ C̃1
The robot ri ∈ HL1(C) retains its current position and all other robots not
in HL1(C) move towards ri along a path not crossing L1(C) (Fig. 4).

L1(C)ri

Fig. 4. An example of Case 1

– Case 2: C ∈ C̃>1

Consider the two corner robots, say rj and rk, on L1(C). Compute the equi-
lateral triangle �rjTrk. The robots rj and rk move towards T along the re-
spective sides of the triangle. The rest non-faulty robots compute the nearest
robot among rj and rk and move towards it (break the tie arbitrarily) along
the line segment joining them to their respective destinations (Fig. 5).

pj pk

T

L1(C)

Fig. 5. An example of Case 2

Next we present the formal description of the algorithms. The algorithms
are executed in all robot sites in their compute state independently and asyn-
chronously. Using ComputeDestination() the robots determine the destina-
tion points to move to. Then they reach their respective destinations using

156 S. Bhagat, S. Gan Chaudhuri, and K. Mukhopadhyaya

GatheringAlgorithm(). In the next section, we discuss the correctness of these
algorithms.

Algorithm 1. ComputeDestination()

Input: ri,L(C),H(C).
Output: A destination point of ri.

1 l ← CheckLevels(ri,L(C));
2 h← |HL1(C)|;
3 if l == 1 and h == 1 then
4 r ← rj ∈ HL1(C);
5 else
6 M ← ComputeCorners(HL1(C));
7 if position of ri ∈M then
8 T ← ComputeT riangle(M);
9 r ← T ;

10 else
11 r ← Closest(ri,M);

12 return r;

Algorithm 2. GatheringAlgorithm()

Input: ri ∈ R
Output: ri moves towards its destination.

1 L(C)← ComputeLevels(C);
2 H(C)← ComputeGroups(C);
3 r ← ComputeDestination(ri, L(C),H(C));
4 Move towards r along the line segment rir ;

4 Correctness

In this section, we prove that all non-faulty robots will gather at a point in finite
time. The robots can not detect the presence of multiple robots (multiplicity
detection) at one point. They interpret multiple robots, occupying the same
location, as a single robot. If HL1(t) has a single location, it is the destination
point for all the robots who might compute at time t. If there are robots at
different locations in HL1(t), the two farthest locations define an equilateral
triangle. The tip of that triangle would be the point of gathering if at least
one of the extreme robots completes journey to its destination. If not and both
of them stop on the same horizontal line similar situation continues with the
tip remaining invariant. If they stop on different horizontal lines, we have HL1()
having a single point and gathering takes place there. In any case no robot moves
to a point outside the equilateral triangle initially defined.

Observation 1. Suppose �ABC is an equilateral triangle. If D and E are two
points on side AB and AC such that |BD| = |CE|, then �ADE is also equilat-
eral.

Fault-Tolerant Gathering of Asynchronous Oblivious Mobile Robots 157

A

B C

D E

Fig. 6. An example of Observation 1

Lemma 1. Suppose for the initial configuration Ct0 , |HL1(Ct0)| ≥ 2. Then there
exists some t′ ≥ t0 such that all the robots on L1(Ct) lie on the non-horizontal
sides of �t0 , ∀ t ≥ t′.

pi pj

T

L1(Ct0)

Fig. 7. An example of Lemma-1

Proof. The active robots in Ct0 , move in one of the following ways (Fig. 7): (i)
the robots occupying the positions inMt0 move towards T along the respective
non-horizontal sides of �t0 and (ii) rest of the robots move to the points in
Mt0 along the line segment joining them to their respective destinations. Until
a robot in Mt0 moves or a robot reaches its destination corner point, no robot
crosses L1(Ct0). Suppose at time t′, at least one active robot inMt0 starts moving
towards T along the corresponding side of �t0 . At time t ≥ t′, any active robot
will find itself either on L1(Ct) or below it. Using observation 1, any robot on
L1(Ct) has reached its current position by either moving along a non-horizontal
side of �t0 or moving towards its current position occupied by the robot(s) on
the respective non-horizontal side of �t0 . Thus all the robots on L1(Ct) lie on
the non-horizontal sides of �t0 . ��

Lemma 2. There exits some t′ such that |HL1(Ct)| does not exceed two for all
t ≥ t′.

Proof. If |HL1(Ct0)| = 1, all the non-faulty robots move towards the robot in
HL1(Ct0) without crossing L1(Ct0). In this case the result holds with t′ = t0.

158 S. Bhagat, S. Gan Chaudhuri, and K. Mukhopadhyaya

If |HL1(Ct0)| ≥ 2, using lemma 1, let t′ be the time from which L1() contains
only the robot positions which lie on the two non-horizontal sides of �t0 . For
t ≥ t′, |HL1(Ct)| can not exceed two. ��

Lemma 3. Whenever ComputeCorners() and ComputeT riangle() are called,
they always return positions of the robots on the non-horizontal sides of the
triangle �t0 and T respectively.

Proof. ComputeCorners() and ComputeT riangle() are called by the active
robots only when they find |HL1()| ≥ 2. If a robot finds itself as one of the
corner points detected by ComputeCorners(), it calls ComputeT riangle(). Un-
til at least one robot occupying a position in Mt0 moves, ComputeCorners()
and ComputeT riangle() compute the same points on every call and these points
are the three vertices of �t0 . When at least one robot in Mt0 starts mov-
ing, combining observation 1, lemma 1 and lemma 2, we can say the following:
ComputeCorners() and ComputeT riangle() are called by the active robots after
finding that (i) |HL1()| = 2 and (ii) the robots in L1() lie on the non-horizontal
sides of �t0 . Thus, the lemma follows. ��

Theorem 1. GatheringAlgorithm() solves the gathering problem for (n, n − 1)
crash fault model in finite time.

Proof. Our approach is to find a unique point so that all the non-faulty robots
can agree upon this point for gathering and the point remains intact even when
the robots move towards it. If |HL1(Ct0)| = 1 for the initial configuration Ct0 , we
have a unique point for gathering, namely the point in HL1(Ct0). All the non-
faulty robots compute this point as their destination point and move towards it.
Since robots move towards this destination point along the line segments joining
them to this destination point, they never touch or cross L1(Ct0) except at the
destination point. This implies that the destination point remains intact under
the motion of the robots. No robot waits for the completion of any action by
any other robot. Thus GatheringAlgorithm() can solve gathering problem for
(n, n− 1) fault model.

Next consider the case when |HL1(Ct0)| ≥ 2. Robots try to make |HL1()| = 1
whenever |HL1()| is more than 1. By lemma 2, there exists a moment after which
|HL1()| = 1 or 2. During the execution of our algorithm, if |HL1()| becomes 1
and all other non-faulty active robots become aware of it, then the point inHL1()
becomes the desired gathering point. Otherwise by lemma 3, some active robots
reach T and make |HL1()| = 1. Note that if any robot reaches the point T , then
T becomes a static point on which all non-faulty robots can agree for gathering.
Once |HL1()| is fixed to 1, the correctness proof is same as above. We can see
that till there is single non-faulty robot in the system, our algorithm guarantees
that at some time |HL1()| would become 1. Thus, GatheringAlgorithm() solves
gathering problem for (n, n − 1) fault model. It is worthwhile to note that our
approach is wait-free.

In each computational cycle, the functions used by the robots run in poly-
nomial time. Since the number of robots and the number of functions used by

Fault-Tolerant Gathering of Asynchronous Oblivious Mobile Robots 159

the robots are finite, each computational cycle would take polynomial time. On
each non-null movement, any active robot moves at least δ > 0 distance. As the
distances between the robots are finite, to reach their destinations, robots have
to spend a finite number of computational cycles (as our algorithm is wait-free,
no dead-lock occurs in the system). So we conclude that GatheringAlgorithm()
is capable of gathering all non-faulty robots in finite time. ��

5 Conclusion

In this paper, we have proposed a distributed algorithm that gathers n ≥ 2
asynchronous oblivious robots in finite time, under the agreement of only one
axis even in the presence of f(< n) faulty robots. To the best of our knowledge,
this is the first reported result on the possibility of gathering, in the presence
of faulty robots, under one axis agreement. In this paper, the visibility range
is assumed to be unlimited and not obstructed by the presence of other robots
(i.e., the robots are assumed to be see through), fault tolerant gathering under
limited or obstructed visibility is still an open problem.

References

1. Agmon, N., Peleg, D.: Fault-tolerant gathering algorithms for autonomous mo-
bile robots. In: Proceedings of the Fifteenth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA, pp. 1070–1078. Society for Industrial and Applied
Mathematics, Philadelphia (2004)

2. Bouzid, Z., Das, S., Tixeuil, S.: Wait-free gathering of mobile robots. CoRR,
abs/1207.0226 (2012)

3. Bouzid, Z., Das, S., Tixeuil, S.: Gathering of mobile robots tolerating multiple crash
faults. In: 2013 IEEE 33rd International Conference on Distributed Computing
Systems (ICDCS), pp. 337–346 (July 2013)

4. Cieliebak, M., Flocchini, P., Prencipe, G., Santoro, N.: Solving the robots gathering
problem. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.)
ICALP 2003. LNCS, vol. 2719, pp. 1181–1196. Springer, Heidelberg (2003)

5. Cieliebak, M., Flocchini, P., Prencipe, G., Santoro, N.: Distributed computing by
mobile robots: Gathering. SIAM Journal on Computing 41(4), 829–879 (2012)

6. Cieliebak, M., Prencipe, G.: Gathering autonomous mobile robots. In: In Proc.
SIROCCO, pp. 57–72 (2002)

7. Cohen, R., Peleg, D.: Convergence properties of the gravitational algorithm in
asynchronous robot systems. SIAM Journal on Computing 34(6), 1516–1528 (2005)

8. Défago, X., Gradinariu, M., Messika, S., Raipin-Parvédy, P.: Fault-tolerant and self-
stabilizing mobile robots gathering. In: Dolev, S. (ed.) DISC 2006. LNCS, vol. 4167,
pp. 46–60. Springer, Heidelberg (2006)

9. Degener, B., Kempkes, B., Langner, T., Meyer auf der Heide, F., Pietrzyk, P.,
Wattenhofer, R.: A tight runtime bound for synchronous gathering of autonomous
robots with limited visibility. In: Proceedings of the 23rd ACM Symposium on
Parallelism in Algorithms and Architectures, SPAA 2011, pp. 139–148. ACM Press,
New York (2011)

160 S. Bhagat, S. Gan Chaudhuri, and K. Mukhopadhyaya

10. Dieudonné, Y., Petit, F.: Self-stabilizing gathering with strong multiplicity detec-
tion. Theoretical Computer Science 428(0), 47–57 (2012)

11. Flocchini, P., Prencipe, G., Santoro, N.: Distributed Computing by Oblivious Mo-
bile Robots. Synthesis Lectures on Distributed Computing Theory. Morgan & Clay-
pool Publishers (2012)

12. Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Gathering of asynchronous
robots with limited visibility. Theoretical Computer Science 337(1-3), 147–168
(2005)

13. Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Arbitrary pattern formation
by asynchronous, anonymous, oblivious robots. Theor. Comput. Sci. 407(1-3), 412–
447 (2008)

14. Flocchini, P., Santoro, N., Viglietta, G., Yamashita, M.: Rendezvous of two robots
with constant memory. In: Moscibroda, T., Rescigno, A.A. (eds.) SIROCCO 2013.
LNCS, vol. 8179, pp. 189–200. Springer, Heidelberg (2013)

15. Gordon, N., Elor, Y., Bruckstein, A.: Gathering multiple robotic agents with crude
distance sensing capabilities. In: Dorigo, M., Birattari, M., Blum, C., Clerc, M.,
Stützle, T., Winfield, A.F.T. (eds.) ANTS 2008. LNCS, vol. 5217, pp. 72–83.
Springer, Heidelberg (2008)

16. Izumi, T., Katayama, Y., Inuzuka, N., Wada, K.: Gathering autonomous mobile
robots with dynamic compasses: An optimal result. In: Pelc, A. (ed.) DISC 2007.
LNCS, vol. 4731, pp. 298–312. Springer, Heidelberg (2007)

17. Katayama, Y., Tomida, Y., Imazu, H., Inuzuka, N., Wada, K.: Dynamic compass
models and gathering algorithms for autonomous mobile robots. In: Prencipe, G.,
Zaks, S. (eds.) SIROCCO 2007. LNCS, vol. 4474, pp. 274–288. Springer, Heidelberg
(2007)

18. Prencipe, G.: Instantaneous actions vs. full asynchronicity: Controlling and coordi-
nating a set of autonomous mobile robots. In: Restivo, A., Ronchi Della Rocca, S.,
Roversi, L. (eds.) ICTCS 2001. LNCS, vol. 2202, pp. 154–171. Springer, Heidelberg
(2001)

19. Prencipe, G.: Impossibility of gathering by a set of autonomous mobile robots.
Theoretical Computer Science 384(2-3), 222–231 (2007); Structural Information
and Communication Complexity (SIROCCO 2005)

20. Suzuki, I., Yamashita, M.: Formation and agreement problems for anonymous mo-
bile robots. In: Proc. 31st Annual Conference on Communication, Control and
Computing, pp. 93–102 (1993)

Enumerating Eulerian Trails

via Hamiltonian Path Enumeration

Hiroyuki Hanada1, Shuhei Denzumi2, Yuma Inoue2, Hiroshi Aoki2,
Norihito Yasuda1, Shogo Takeuchi1, and Shin-ichi Minato1,2

1 ERATO Minato Discrete Structure Manipulation System Project,
Japan Science and Technology Agency, Sapporo, Hokkaido, Japan

2 Graduate School of Information Science and Technology,
Hokkaido University, Sapporo, Hokkaido, Japan

hana-hiro@live.jp

Abstract. Given an undirected graph G, we consider enumerating all
Eulerian trails, that is, walks containing each of the edges in G just once.
We consider achieving it with the enumeration of Hamiltonian paths
with the zero-suppressed decision diagram (ZDD), a data structure that
can efficiently store a family of sets satisfying given conditions. First we
compute the line graph L(G), the graph representing adjacency of the
edges in G. We also formulated the condition when a Hamiltonian path
in L(G) corresponds to an Eulerian trail in G because every trail in G
corresponds to a path in L(G) but the converse is not true. Then we
enumerate all Hamiltonian paths in L(G) satisfying the condition with
ZDD by representing them as their sets of edges.

Keywords: Eulerian trail, Hamiltonian path, path enumeration, line
graph, zero-suppressed binary decision diagram.

1 Introduction

In the graph theory, an Eulerian trail of an undirected graph G is a walk that
contains each of the edges in G just once. We can easily judge whether a con-
nected undirected graph G has an Eulerian trail: G has an Eulerian trail if and
only if it has no or just two vertices of odd degree [1, 2]. In addition, it is also
known that we can obtain an Eulerian trail of G in a simple manner called
Fleury’s algorithm [1]. However, it is considered difficult to enumerate all Eule-
rian trails: its time complexity is proved to be “#P-complete” (roughly speaking,
time complexity “P-complete” for each trail) [3–5].

To solve such a problem with feasible computational time and space, we con-
sider enumerating Eulerian trails by way of enumerating Hamiltonian paths. A
Hamiltonian path of an undirected graph G is a walk that contains each of
the vertices in G just once. Although enumerating all Hamiltonian paths is not
so easy in general, either, many approaches have been proposed to enumerate
them [6–10], and we especially focus on the algorithm using zero-suppressed
binary decision diagram (ZDD) [11] with the advantage described next.

M.S. Rahman and E. Tomita (Eds.): WALCOM 2015, LNCS 8973, pp. 161–174, 2015.
c© Springer International Publishing Switzerland 2015

162 H. Hanada et al.

Here we consider enumerating all Eulerian trails in a simple graph G, that is,
there exists at most one edge between every pair of vertices and there does not
exist any loop (an edge whose two ends are the same vertex) [1]. The algorithm
is explained as the following three parts:

– First we compute the line graph L(G) so that every Eulerian trail in a graphG
correspond to a Hamiltonian path in L(G) (Sect. 3.1). Note that the converse
does not hold, that is, not all paths in L(G) correspond to trails in G.

– Then we derive the condition when a path in L(G) corresponds to a trail in G
(Sect. 3.2). We formulate the condition by the “labels” defined for the edges in
L(G).

– Finally we enumerate Hamiltonian paths in L(G) satisfying the condition
above with the algorithm based on ZDD [11]. ZDD is a data structure that
can store a family of sets with small memory. We store such paths as sets of
edges in a ZDD (Sect. 4.1).We also use the operation on ZDD of excluding sets
satisfying a given condition, in order to exclude Hamiltonian paths that do not
satisfy the condition above.

If the graph G is not simple, in order to obtain a simple one, we insert some
vertices to G (Sect. 4.2).

2 Definitions

We denote by (V,E) the graph whose set of vertices is V and whose set of edges
is E, respectively.

For an undirected graphG, a pair of a sequence of vertices (v1, v2, . . . , vm) and a
sequence of edges (e1, e2, . . . , em−1) is called a walk if the two ends of ei are vi and
vi+1 for i ∈ {1, 2, . . . ,m− 1}. We call a sequence of either vertices or edges also a
walk if there exists the other sequence satisfying the condition above.

A walk is called to be closed if its sequence of vertices (v1, v2, . . . , vm) satisfies
v1 = vm. A trail is a walk whose edges in the sequence are distinct. A path is
a walk whose vertices in the sequence are distinct (except for the precondition
v1 = vm if the walk is closed). Note that any path is also a trail. A closed path
is called a cycle. [1]

For a connected undirected graph G, it is called a semi-Eulerian graph (or an
Eulerian graph) if there exists a trail (or a closed trail) containing all edges in
G. Such a trail is called an Eulerian trail. Similarly, for a connected undirected
graph G, it is called a semi-Hamiltonian graph (or a Hamiltonian graph) if there
exists a path (or a cycle) containing all vertices in G. Such a path is called a
Hamiltonian path. [1]

3 Representing Eulerian Trails as Hamiltonian Paths in
the Line Graph

3.1 Line Graph

Given a connected undirected graph G, we use its line graph L(G) so that every
Eulerian trail in G gives a Hamiltonian path in L(G). The line graph L(G) is a

Enumerating Eulerian Trails via Hamiltonian Path Enumeration 163

Fig. 1. An example of a line graph. In
the line graph, characters on edges rep-
resent the vertices in the original graph
where the edges in the original graph
are adjacent (see the “label” defined in
Definition 2).

Fig. 2. An example of a trail in a graph
and the corresponding path in the line
graph

graph characterizing the adjacency of the edges in G as follows: L(G) has vertices
corresponding one-to-one to the edges in G, and there exists an edge in L(G)
between the two vertices u and v if and only if two edges in G corresponding
to u and v are adjacent [2, 12]. An example is shown in Fig. 1. In this paper we
define it formally as follows:

Definition 1. Given two undirected graphs G = (V,E) and G′ = (V ′, E′), G′

is called the line graph of G, denoted by L(G), if

– V ′ corresponds to E one-to-one, that is, there exists a bijection l : E → V ′,
and

– For any v′1, v
′
2 ∈ V ′, there exists an edge between v′1 and v′2 if l−1(v′1),

l−1(v′2) ∈ E are adjacent in G, or no edge otherwise.

It is known in 1960s that L(G) is a (semi-)Hamiltonian graph if G is a (semi-)
Eulerian graph [13, 14]. Moreover, a sufficient and necessary condition for G is
known when L(G) is (semi-)Hamiltonian.

Property 1. [13] For an undirected graphG = (V,E), L(G) is either Hamiltonian
or semi-Hamiltonian1 if and only if G is sequential, where G is called sequential
if there exists a permutation of E: (e1, e2, . . . , em) (ei ∈ E, m = |E|) such that
ei and ei+1 are adjacent for all i ∈ {1, 2, . . . ,m− 1}.

If the sequence of edges (e1, e2, . . . , em) is an Eulerian trail of G then it is also
sequential, but the converse does not always hold. Therefore, every Eulerian trail
in G corresponds to a Hamiltonian path in L(G) but the converse does not always
hold. For example of Fig. 1, an Eulerian trail inG “1→2→5→4→3→8→7→6”cor-
responds to a Hamiltonian path inL(G) (Fig. 2); however, “1→2→4→3→8→6→7
→5” is a Hamiltonian path in L(G) but not an Eulerian trail in G.

1 The original work [13] treats only Hamiltonian case, however, it is easy to prove
semi-Hamiltonian case with the similar way.

164 H. Hanada et al.

Fig. 3. An example of a path in the line graph L(G) of a simple graph G that does
not have a corresponding trail in the original graph

Thus, to enumerate Eulerian trails in G as Hamiltonian paths in L(G), we
consider excluding such excessive paths. However, the condition of exclusion has
not been derived as far as the authors know. (For directed graphs, it is known in
1963 at latest that there is a one-to-one correspondence between the trails in G
and the paths in L(G), that is, no exclusion is needed2 [6].) In the next section
we derive the condition when G is a simple graph.

3.2 The Condition When a Path in a Line Graph Represents a
Trail in the Original Graph

Let us assume G is a connected undirected simple graph and consider when a
path p in L(G) does not correspond to a trail in G (not limited to Hamiltonian
or Eulerian). An example is shown in Fig. 3. In this case, the path in L(G) with
three vertices does not correspond to a trail in the original graph because three
successive edges in G share a vertex.

In this section we prove that a path in L(G) does not correspond to a trail in
G only if the case above occurs, that is, three edges in G corresponding to three
successive vertices in the path in L(G) shares a vertex.

First, to state the fact formally, we define labels of the edges in L(G) as follows:

Definition 2. For an undirected simple graph G and an edge e′ = (u′, v′) (e′ ∈
E′, u′, v′ ∈ V ′) in the line graph L(G) = (V ′, E′), we define the label of e′,
denoted by λ(e′), by the only vertex in G where the two edges in G: l−1(u′) and
l−1(v′) are adjacent.

Note that the label must be unique for any e′ because no two edges in a simple
graph G exist between the same pair of vertices. See Fig. 1 in Sect. 3.1 for an
example.

From the definition of the label, in case three edges in G share a vertex like
in Fig. 3, the labels in the corresponding two edges in L(G) must be the same.
The fact can be formulated as follows:
2 In this paper we omit the definition of the line graph of a directed graph. See the
reference.

Enumerating Eulerian Trails via Hamiltonian Path Enumeration 165

Theorem 1. Let G = (V,E) be a connected undirected simple graph and p be a
path in L(G) = (V ′, E′) whose sequence of vertices is (v′1, v

′
2, . . . , v

′
m) (v′i ∈ V ′).

Then the followings are equivalent: (A) there exists a trail in G whose sequence
of edges is (l−1(v′1), l

−1(v′2), . . . , l
−1(v′m)) (l−1(v′i) ∈ E), and (B) the same edge

label does not appear successively in the sequence of edges for p.

Proof. Let v′a
e′a→ v′b

e′b→ v′c (v′i ∈ V ′, e′i ∈ E′) be a subpath of p. Then we prove
the corresponding sequence of edges (l−1(v′a), l

−1(v′b), l
−1(v′c)) is a subtrail in G

if and only if the condition (B) is satisfied.
We focus on how l−1(v′a), l

−1(v′b), l
−1(v′c) ∈ E are connected in G, which is

classified to the following three cases:

(X) In case the labels of e′a and e′b are the same, the three edges l−1(v′a), l
−1(v′b),

l−1(v′c) ∈ E shares the vertex of the label. Thus these three edges are
connected at a vertex in G (Case 1 in Fig. 4).

(Y) In case the labels of e′a and e′b are different,
(Y1) If the two edges l−1(v′a) and l−1(v′c) are adjacent in G, then there

exists an edge between v′a and v′c in L(G), where its label is differ-
ent from the other two. Thus the three edges yield a cycle (Case 2
in Fig. 4).

(Y2) If the two edges l−1(v′a) and l−1(v′c) are not adjacent in G, then they
yield a non-cycle path (Case 3 in Fig. 4).

From the consideration, we prove (A) and (B) are equivalent.

Proof of (A)⇒ (B): Suppose p, a path in L(G), has two successive edges with

the same label, that is, there exist a subpath v′a
e′a→ v′b

e′b→ v′c in L(G) with
λ(e′a) = λ(e′b). In this case l−1(v′a), l

−1(v′b) and l−1(v′c), three edges inG, must
be adjacent with the form of (X) among (X), (Y1) and (Y2) above. This con-
tradicts the precondition that (l−1(v′a), l

−1(v′b), l
−1(v′c)) is a subtrail in G.

Proof of (B)⇒ (A): Let p be a path in L(G) without any two successive edges
with the same label. Then, for any three successive vertices in p, corresponding
three edges inGmust take the form of (Y1) or (Y2). This implies no branching
edges exist in the sequence of edges and thus the whole p corresponds to a trail
in G. ��

4 Enumerating Hamiltonian Paths in the Line Graph
Corresponding to Eulerian Trails

4.1 Representing Hamiltonian Paths by Zero-Suppressed Binary
Decision Diagram

As an algorithm of enumerating Hamiltonian paths satisfying given conditions,
we use an enumeration algorithm based on the zero-suppressed binary decision
diagram (ZDD) [11], a data structure originally for representing binary functions
and also for storing families of sets. A famous algorithm for the enumeration with
ZDD is proposed by Knuth [15], called SIMPATH in his website [16]. First we
show the outline of ZDD.

166 H. Hanada et al.

Fig. 4. All possible relationships of connections of three edges l−1(v′a), l
−1(v′b), l

−1(v′c)
given as a subpath in the line graph (v′a, v

′
b, v

′
c) of a simple graph

Definition 3. [11,15] Given a sequence of boolean variablesA = (a1, a2, . . . , an) :
{0, 1}n anda boolean function f(a1, a2, . . . , an) : {0, 1}n → {0, 1}, zero-suppressed
binary decision diagram (ZDD) for f is a minimal directed acyclic graph (DAG)
such that:

– There are two vertices “0-terminal” and “1-terminal”. These vertices are sinks,
that is, they do not have any outgoing edges.

– All other vertices are named by elements in A. (Two or more vertices with the
same name may exist.) Each of them has two outgoing edges named “0-edge”
and “1-edge”. For any vertex named ai, the edges are connected to a vertex
named aj (j > i), “0-terminal” or “1-terminal”.

– f(a1, a2, . . . , an) takes 1 for the arguments defined by paths from the root ver-
tex to “1-terminal” in the diagram as follows: for every path above, ai (i =
1, 2, . . . , n) takes 1 if there exists a vertex named ai which is a source of “1-
edge” in the path, otherwiseai takes 0.For the other arguments f(a1, a2, . . . , an)
takes 0.

ZDD can represent a family of sets by regarding A as the universal set, the
assignments for variables a1, a2, . . . , an as the existence of the elements in a set,
and the function value f(a1, a2, . . . , an) as taking 1 if the set is contained in the
family or 0 otherwise. ZDD is invented as a variant of BDD (binary decision
diagram) [17] so that the diagram becomes smaller when f takes zero for most
of the elements in A, that is, the number of sets stored in the family is much
fewer than 2n (the number of all possible sets). An example is shown in Fig. 5.

As stated in the definition, ZDD must be minimal, that is, the vertices in
ZDD must be removed or merged as long as the resulted binary function (or
family of sets) is not changed. Concretely, we apply the operations in Fig. 6 to
make the ZDD minimal [11].

Not only expressing a family of sets by a ZDD, we can conduct set operations
like “excluding sets containing certain elements” on it [11,15]. We use the opera-
tions to implement the condition when a Hamiltonian path in L(G) corresponds
to an Eulerian trail in G (Theorem 1(B)).

4.2 Algorithm for Enumerating Eulerian Trails

To represent paths in a graph with a ZDD, we represent every path as a set
of edges, with the universal set for the ZDD being the set of all edges in the

Enumerating Eulerian Trails via Hamiltonian Path Enumeration 167

Fig. 5. An example of ZDD for a family of sets. It represents the family of
five sets {‘c’, ‘d’}, {‘b’, ‘c’, ‘d’}, {‘a’}, {‘a’, ‘d’} and {‘a’, ‘c’} over the universal set
{‘a’, ‘b’, ‘c’, ‘d’}.

Fig. 6. The reduction rules of ZDD [11]. The first one is to remove an excessive vertex:
in case there is a vertex whose 1-edge is connected to 0-term, remove it and connect its
parent to its destination of 0-edge. The second one is to merge two vertices contributing
to the same binary function.

graph [15] (Fig. 7(B)(C)). Note that different paths have different sets of edges,
which is not the case for trails.

To enumerate all Hamiltonian paths in L(G) satisfying the condition of The-
orem 1(B), however, the condition cannot be directly applied because the orders
of the edges the paths traverse are not stored in the ZDD. Thus, for each Hamil-
tonian path p in L(G) given as a set of edges, we instead examine the condition
of Theorem 1(B) by “for every pair of adjacent edges in L(G) with the same
label, they does not appear simultaneously in a path” rather than examining
every pair of adjacent edges only in the path. We can apply the condition in the
following two manners:

1. A straightforward manner is that we first store all Hamiltonian paths in
L(G) to a ZDD with SIMPATH algorithm, and then remove all paths not
satisfying the condition. Concretely, we repeat the following for every pair
of adjacent edges X,Y in L(G) with the same label: remove all paths (set of
edges) in the ZDD containing both X and Y .

2. The other manner is based on the behavior of SIMPATH algorithm: for each
edge in L(G) (sorted in a certain order), it adds edges to a ZDD one by one
with excluding sets of edges that cannot be paths. Thus we simultaneously

168 H. Hanada et al.

Fig. 7. An example of ZDD representation of Hamiltonian paths satisfying Theorem
1 in a line graph. In the figure of (D), unspecified ZDD edges are regarded as being
connected to 0-terminal. (For example, the destination of 0-edge for ‘B6’ is 0-terminal.

Fig. 8. An example of adding a vertex and an edge for a semi-Eulerian graph to assure
unique start/goal vertices in L(G). In this case, because the degree of the vertex ‘D’ is
3, an odd number larger than 1, we add a dummy vertex ‘*’ and an edge ‘9’.

Enumerating Eulerian Trails via Hamiltonian Path Enumeration 169

exclude sets of edges that do not satisfy the condition above. (We adopted
this way in the experiment.)

Lastly we show the whole algorithm of enumerating Eulerian trails including
for non-simple graphs.

1. Given a connected undirected graph G, make G a simple graph without
changing the number of the Eulerian trails in it so that Theorem 1 can be
applied. Precisely,
– In case there exists a pair of vertices with two or more edges between

them, split each of the edges into two by inserting a vertex except for
arbitrary one edge.

– In case there exists a loop edge (Sect. 2), split it into three by inserting
two vertices3.

2. Add some vertices and edges to G so that the start and goal vertices of
Hamiltonian paths in L(G) become unique, without changing the number of
the Eulerian trails in it. Precisely,
– In case G is semi-Eulerian, for each of the two vertices with odd degree

(Sect. 1), create a dummy vertex and an edge to connect to the vertex of
odd degree unless the degree is 1. This assures the start and goal edges of
the Eulerian trails in G being unique, that is, the start and goal vertices
of the Hamiltonian paths in L(G) being unique (See Fig. 8).

– In case G is Eulerian, (1) we add two new vertices u1 and u2 to G, (2)
remove arbitrary edge (v1, v2) from G and (3) create two edges (u1, v1)
and (u2, v2). (Namely, we “split” an edge in G into two.) As a result, G
becomes semi-Eulerian.

3. Create L(G) from G. Simultaneously, classify all edges in L(G) by their
labels.

4. Enumerate all Hamiltonian paths in L(G) satisfying the condition of Theo-
rem 1(B) stated before.

5 Experiment

5.1 Setting

We implemented the algorithm of Sect. 4.2 with Graphillion [18], a Python
library for graphs and their paths based on ZDD in the manner in Sect. 4.1. We
used the implementation of the Hamiltonian path enumeration in Graphillion
with the default parameter.

We enumerated the Eulerian trails in the four types of graphs shown in Figs.
9 to 12. Their numbers of vertices, edges and degrees are shown in Tables 1 and
2. Because the line graph L(G) has d(d − 1)/2 edges for each vertex of degree

3 In this case we treat two ends of the loop edge are distinguished: for example,
we treat there are two Eulerian trails (not one) in the graph with three vertices
{v1, v2, v3} and three edges {(v1, v2), (v2, v2), (v2, v3)} starting at v1 and ending at
v3. The algorithm for treating them not distinguished is not developed yet.

170 H. Hanada et al.

d in G, the time and space for the computation are expected to grow much for
increasing vertex degree even if the number of edges in G is not so increased.
Thus we experimented graphs with constant maximum degree (Ring, Diamond)
and increasing degree (Bunch, Complete). As seen in Table 2, the number of
edges in Bunch and Complete are multiplied by Θ(k) after the conversions to
the line graphs.

Fig. 9. The graph Ring(k) (k = 3) Fig. 10. The graph Diamond(k) (k = 3).
This graph is a variant of Aztec diamond
[19].

Fig. 11. The graph Bunch(k) (k = 5).
The start and the goal vertices are the two
points if k is odd (i.e. the graph is semi-
Eulerian), otherwise one of the edges are
divided into two to set the start and the
goal (Operation 2 of the whole algorithm
in Sect. 4.2). As a result, number of Eule-
rian trails are the same for Bunch(2m− 1)
and Bunch(2m) for anym.

Fig. 12. The graph Complete(k) (k = 5).
Such a graph is called the complete graph
[1,2,12]. It has Eulerian trails if and only
if k is odd.

We measured the computation times of the enumeration; times for setting up
graph structures (converting given graphs to their line graphs, adding dummy
vertices for making them simple and unique the start and goal vertices) and ob-
taining paths which are Hamiltonian and satisfying the condition of Theorem 1.
The experiment was conducted on a Linux (Xubuntu 14.04) computer with the
CPU “AMD A4-5000 APU” (clock: 1.5GHz) and 4GB RAM. The running time
for each graph is limited to one hour.

Enumerating Eulerian Trails via Hamiltonian Path Enumeration 171

Table 1. Graphs examined in the experiment

Name Structure #Vertices #Edges Maximum degree

Ring(k) Fig. 9 2k + 2 4k + 1 4
Diamond(k) Fig. 10 2k(k + 1) 4k2 4
Bunch(k) Fig. 11 2 k k

Complete(k) Fig. 12 k k(k − 1)

2
k − 1

Table 2. The properties of the graphs after making the graph simple and adding
dummy vertices (Sect. 4.2).

Name #Vertices #Edges #LineGraphEdges Maximum degree

Ring(k) 3k + 3 5k + 2 13k + 1 4

Diamond(k) 2k(k + 1) + 2 4k2 + 1 4k(3k − 2) 4

Bunch(k) k + 3

{
2k + 1 (k: odd)

2k (k: even)

{
k2 − 1 (k: odd)

k2 + 2k − 1 (k: even)

{
k + 1 (k: odd)

k (k: even)

Complete(k) k + 2 k(k − 1)

2
+ 1

k2(k − 1)

2
k − 1

Table 3. Number of Eulerian trails and computation times (sec) of four types of graphs

Ring(k) Diamond(k) Bunch(k) Complete(k)
k #trails time #trails time #trails time #trails time

1 6 0.0093 1 0.0066 1 0.0073 —
2 36 0.0139 40 0.0152 1 0.0065 —
3 216 0.0184 132,160 0.0487 6 0.0099 1 0.0063
4 1,296 0.0222 33,565,612,800 2.6198 6 0.0101 —
5 7,776 0.0266 Memory out 120 0.0224 132 0.0169
6 46,656 0.0309 120 0.0238 —
7 279,936 0.0356 5,040 0.2487 64,988,160 49.6530
8 1,679,616 0.0402 5,040 0.2678 —
9 10,077,696 0.0450 362,880 10.5978 Time out
10 60,466,176 0.0493 362,880 10.5284
11 362,797,056 0.0555 Memory out
12 2,176,782,336 0.0597
13 13,060,694,016 0.0647
14 78,364,164,096 0.0697
15 470,184,984,576 0.0747

20 3.6× 1015 0.1066
30 2.2× 1023 0.1887

172 H. Hanada et al.

Table 4. Numbers of vertices and edges in the line graph. Note that the numbers
of vertices and edges are equivalent to #Edges and #LineGraphEdges in Table 2,
respectively. Underlined numbers denote the cases of failed computations (memory-
out or time-out).

L(Ring(k)) L(Diamond(k)) L(Bunch(k)) L(Complete(k))
k vertices edges vertices edges vertices edges vertices edges

1 7 14 5 4 3 2 —
2 12 27 17 32 4 3 —
3 17 40 37 84 7 14 4 3
4 22 53 65 160 8 15 —
5 27 66 102 269 11 34 11 30
6 32 79 12 35 —
7 37 92 15 62 22 105
8 42 105 16 63 —
9 47 118 19 98 37 252
10 52 131 20 99
11 57 144 23 142
12 62 157
13 67 170
14 72 183
15 77 196
...
20 102 261
30 152 391

5.2 Result

We show the results of computation times and numbers of trails in Table 3.
Table 4 describes the numbers of vertices and edges in the line graph.

From Table 4 with the three graphs Diamond(k), Bunch(k) and Complete(k),
it seems to be possible to enumerate Eulerian trails if there are about 120 edges
or less in the line graph. However, as shown by Ring(k), more edges would be
acceptable according to the shape of graphs. It is easily assumed, but yet to be
examined, that the Hamiltonian paths in L(Ring(k)) satisfying Theorem 1 are
well compressed by ZDD.

As for the computation times, they grow rapidly for increasing k except for
Ring(k) in almost linear against k, which is natural since the number of edges
in the line graphs grow in O(k2) or O(k3) (see also Table 2). However, the linear
time for Ring(k) is unexpectedly fast because, in general, we need O(2n) time
and space to compute ZDD for a universal set of size n.

There remains the problem of what parameter is essential for fast computa-
tion. From the property of ZDD, it is clear that the number of edges affects
much. However, we should examine other parameters from the result of Ring(k):
in fact, Eulerian trails in Ring(20) (102 vertices and 261 edges in the line graph)
is much easier to be computed than that in Diamond(5) (102 vertices and 269
edges in the line graph).

Enumerating Eulerian Trails via Hamiltonian Path Enumeration 173

6 Conclusion

In this research we considered enumerating all Eulerian trails in an undirected
graph G, which in general requires high computational cost. We focus on ZDD-
based Hamiltonian path enumeration, which can enumerate not only all Hamil-
tonian paths but also Hamiltonian paths satisfying certain conditions efficiently.
We consider converting G into the line graph L(G), where every Eulerian trail in
G corresponds to a Hamiltonian path in L(G) (Sect. 3.1). In addition, because
not all Hamiltonian paths in L(G) correspond to Eulerian trails in L(G), we
formulated the condition by defining “labels” of the edges in L(G) (Theorem 1
in Sect. 3.2). As a result of the experiment, we could enumerate Eulerian trails
in G if L(G) has 120 or less edges, although more edges can be accepted for
certain type of graphs.

We consider the following problems as future works: finding parameters of
graphs determining the computational time other than the number of vertices
and edges, and developing more memory-efficient data structure.

References

1. Wilson, R.J.: Introduction to Graph Theory, 4th edn. Pearson Education (1996)
2. Harary, F.: Graph Theory, 1st edn. Addison-Wesley (1969)

3. Mihail, M., Winkler, P.: On the number of Eulerian orientations of a graph. In:
Proceedings of the Third Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 1992, pp. 138–145 (1992)

4. Creed, P.: Sampling Eulerian orientations of triangular lattice graphs. Journal of
Discrete Algorithms 7(2), 168–180 (2009)

5. Ge, Q., Štefankovič, D.: The complexity of counting Eulerian tours in 4-regular
graphs. Algorithmica 63(3), 588–601 (2012)

6. Kasteleyn, P.W.: A soluble self-avoiding walk problem. Physica 29(12), 1329–1337
(1963)

7. Rubin, F.: A search procedure for Hamilton paths and circuits. Journal of the
ACM 21(4), 576–580 (1974)

8. Mateti, P., Deo, N.: On algorithms for enumerating all circuits of a graph. SIAM
Journal on Computing 5(1), 90–99 (1976)

9. van der Zijpp, N.J., Catalano, S.F.: Path enumeration by finding the constrained
k-shortest paths. Transportation Research Part B: Methodological 39(6), 545–563
(2005)

10. Liu, H., Wang, J.: A new way to enumerate cycles in graph. In: International
Conference on Internet andWeb Applications and Services/Advanced International
Conference on Telecommunications, p. 57 (2006)

11. Minato, S.: Zero-suppressed BDDs and their applications. International Journal on
Software Tools for Technology Transfer 3(2), 156–170 (2001)

12. Diestel, R.: Graph Theory, 4th edn. Springer (2010)

13. Chartrand, G.: On Hamiltonian line-graphs. Transactions of the American Math-
ematical Society 134, 559–566 (1968)

14. Harary, F., Nash-Williams, C.S.J.A.: On Eulerian and Hamiltonian graphs and line
graphs. Canadian Mathematical Bulletin 8, 701–709 (1965)

174 H. Hanada et al.

15. Knuth, D.E.: 7.1.4 Binary Decision Diagrams. In: Combinatorial Algorithms,
vol. 4A. The Art of Computer Programming, vol. 4A. Pearson Education (2011)

16. Knuth, D.E.: Don Knuth’s home page, http://www-cs-staff.stanford.edu/~uno/
17. Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE

Transactions on Computers C-35(8), 677–691 (1986)
18. Inoue, T., Iwashita, H., Kawahara, J., Minato, S.: Graphillion: Software library

designed for very large sets of graphs in python. Technical Report TCS-TR-A-13-
65, Division of Computer Science, Hokkaido University (2013)

19. Elkies, N., Kuperberg, G., Larsen, M., Propp, J.: Alternating-sign matrices and
domino tilings (part I). Journal of Algebraic Combinatorics 1(2), 111–132 (1992)

http://www-cs-staff.stanford.edu/~uno/

The Impact of Communication Patterns

on Distributed Self-Adjusting Binary
Search Trees�

Thim Strothmann

Computer Science Department, University of Paderborn, Germany
thim@mail.upb.de

Abstract. This paper introduces the problem of communication pattern
adaption for a distributed self-adjusting binary search tree. We propose
a simple local algorithm that is closely related to the nearly thirty-year-
old idea of splay trees and evaluate its adaption performance in the dis-
tributed scenario if different communication patterns are provided. To
do so, the process of self-adjustment is modeled similarly to a basic net-
work creation game in which the nodes want to communicate with only
a certain subset of all nodes. We show that, in general, the game (i.e.,
the process of local adjustments) does not converge, and convergence is
related to certain structures of the communication interests, which we
call conflicts. We classify conflicts and show that for two communication
scenarios in which convergence is guaranteed, the self-adjusting tree per-
forms well. Furthermore, we investigate the different classes of conflicts
separately and show that, for a certain class of conflicts, the performance
of the tree network is asymptotically as good as the performance for con-
verging instances. However, for the other conflict classes, a distributed
self-adjusting binary search tree adapts poorly.

Keywords: Binary Search Tree, Self Optimization, Basic Network Cre-
ation Game, Sink Equilibrium, Distributed Data Structure.

1 Introduction

Over 30 years ago, Sleator and Tarjan [15] introduced an interesting paradigm to
design efficient data structures. Instead of optimizing general metrics, like tree
depth, they proposed a self-adjusting data structure. To be more precise, the
authors introduced splay trees, self-adjusting binary search trees in which fre-
quently accessed elements are closer to the root. This therefore improves the
average access times weighted by the popularity of the elements. Avin et al. [4]
recently proposed SplayNet, a distributed generalization of splay trees, which is
heavily inspired by [15]. In contrast to classical splay trees where requests (i.e.,
lookups) always originate from the root of the tree, communication in SplayNets
happens between arbitrary node pairs in the network. As such, SplayNets can be

� This work was partially supported by the German Research Foundation (DFG)
within the Collaborative Research Center “On-The-Fly Computing” (SFB 901).

M.S. Rahman and E. Tomita (Eds.): WALCOM 2015, LNCS 8973, pp. 175–186, 2015.
c© Springer International Publishing Switzerland 2015

176 T. Strothmann

interpreted as a distributed data structure, e.g., a structured peer-to-peer (p2p)
system or distributed hash table (DHT). Following the ideas of Avin et al., we
further investigate the dynamics of a distributed locally self-adjusting tree.

An intuitive requirement to a distributed data structure is that nodes that
communicate more frequently with each other become topologically closer to
each other. An important factor that influences the performance of a distributed
data structure is the peculiarity of the underlying communication interest pat-
tern. Likewise to the original concept of splay trees, each node in the distributed
splay tree should only have access to local information to decide whether it
needs to change its position in the tree. In our specific scenario, the only kinds
of information that each node has access to are its parent, its children and infor-
mation about the distances to nodes it wants to communicate with. With only
little knowledge about the structure of the tree and only limited possibilities to
change the structure (called rotations), a distributed self-adjusting tree can be
seen as a local algorithm whose performance is affected by the communication
interests. We want to focus on this specific aspect and try to answer the question
of how the performance of a distributed self-adjusting tree is influenced by dif-
ferent communication patterns. However, instead of using empirical entropies as
a building block for the analysis (as done in [4]), the analytical method we use is
heavily inspired by the concept of Basic Network Creation Games (BNCG) [2].
By doing so we can extend the analysis of [4] in convergent scenarios to a wider
variety of instances. Furthermore, we contrast the previous positive results of [4]
by giving concrete examples in which a distributed self-adjusting tree performs
poorly, compared to an optimal static network.

We focus on a binary search tree network structure, since trees are one of the
most elemental networks. They allow a simple and local routing strategy and
are a fundamental constituent of more complex networks. Additionally, many
network protocols rely on spanning trees or cycle-free backbones. Taking the
same line as [4], we do not see our work as an introduction for a new network
structure, but as a step towards a better understanding of the inherent dynamics
of self-adjusting networks and their limitations.

1.1 Model and Notions

We model the dynamic process of a distributed self-adjusting tree whose struc-
ture is changed as a game in which the nodes of a binary search tree are the
players. An instance of the Self-Adjusting Binary Search Tree Game (SABST-
game) Γ = (GC , GI) is given by an initial connection graph GC = (V,EC)
with V = {1, . . . , n} being the set of players, which is required to be a binary
search tree (BST), and a (communication) interest graph GI = (V,EI). GC is
undirected, whereas GI is directed. The connection graph represents the dis-
tributed self-adjusting tree network and can be altered during the game. We
use IS(v) := {u ∈ V : (v, u) ∈ EI} to refer to the neighborhood of player v in
GI and denote it as the interest set of player v. Since the connection graph is
a binary search tree, we can compare two nodes by comparing their identifiers.
The depth of a node v is the length of a path from the root to v. If v has a

Communication Patterns and Distributed Self-Adjusting BSTs 177

smaller depth than some node u, we say that v is above u, otherwise v is below
u. We say that two edges (u, v), (x, y) from GI intersect if x is in the interval
[u, v] for u < v or [v, u] for u > v and y is not, or vice versa.

Given a connection graph, we formalize the private cost of a player v as the
sum over all distances to the nodes in its interest set: c(v) :=

∑
u∈IS(v) d(v, u).

Here d(v, u) denotes the shortest path distance between u and v in GC . Note
that by using the sum, each player tries to minimize the average distance. To
improve its private cost, a player may perform rotations in the connection graph.
These rotations are closely related to the splay operation of splay trees [15]; a
single right rotation of a node (abbreviated with RR(x)) is visualized in Fig-
ure 1 (node x rotates over the node y). For a response, a player u is not only
allowed to perform a single rotation on itself, but also multiple rotations on it-
self. Additionally, u can tell nodes from IS(u) to perform rotations. This is due
to the fact that by performing rotations on only itself, a node can only move
upwards in the tree. Thus, u can only move closer to a node v ∈ IS(u) that is
in its subtrees in GC , if it can tell v to perform rotations. Consequently, players
have the opportunity to decrease their private cost as much as possible, instead
of being restricted by the current connection graph. If a player u decreases its
private cost by a series of rotations, we refer to this as a better response. If the
decrease is maximal compared to all other possible better responses, we refer to
this as a best response. To provide an easy way of computing best responses, we
will stick close to the idea of the double splay algorithm of [4]. A node u first
rotates itself upward such that it is the lowest common ancestor of all v ∈ IS(u)
(i.e., it becomes the root of this particular subtree), then all nodes v are rotated
as close as possible to u. Note that according to [4] a general optimal solution
as well as best responses can be computed in polynomial time. We denote the
connection graph to be in a rotation equilibrium, if no node can perform a better
response. We say that a game converges if every sequence of best responses con-
verges,irrespective of the initial connection graph. Otherwise, we say that the
game is non-convergent.

y

x z

A B C D

y

x

z

A B C D

RR(x)

Fig. 1. A single right rotation of node x. The triangles represent (possibly empty)
subtrees that are not changed by the rotation.

The dynamic process of changing the connection graph (i.e., the game) pro-
ceeds in rounds. A round is finished when all players with non-empty interest
sets have played a better response at least once. However, we do not enforce
an order in a single round, but consider an arbitrary order. The overall quality
of a connection graph GC is measured by the social cost c(GC) =

∑
v∈V c(v).

178 T. Strothmann

Our goal is to analyze the social cost of worst-case rotation equilibria and com-
pare them with a general optimal solution. We use the ratio of the two measures,
the Price of Anarchy (PoA), to do so.

1.2 Related Work

Self-adjusting networks have many possible application scenarios, varying from
self-optimizing peer-to-peer topologies (e.g., [11]) over green computing [10]
(because of reduced energy consumption) to adaptive virtual machine migra-
tions [3,13]. Self-adjusting routing schemes were examined to deal with conges-
tion, e.g., in scale-free networks [16].

Our work combines ideas from two interesting and very different research
areas: self-adjusting binary search trees and basic network creation games. Self-
adjusting binary search trees have a long history [1,5,15]. The focus of this paper
is on splay trees [15]. Introduced in 1985, they have an amortized time bound
of O(log n) for the standard tree operations of searching, insertion and deletion.
Additionally, splay trees are as efficient as static, optimal search trees for a suf-
ficiently long sequence of node accesses. Splay trees achieve this by applying a
restructuring operation for each access in the tree. This splay operation moves
the recently accessed node to the root of the tree by performing rotations on
the nodes. Since their establishment, splay trees have been extensively analyzed
and many variants have been proposed (see [8,14,17] which all use the dynamics
of splay trees). Closest to our work is the aforementioned paper of [4], in which
a fully decentralized generalization of splay trees called SplayNet is presented.
SplayNets adapt to a communication pattern σ. The upper bound for the amor-
tized communication cost is based on the empirical entropies of σ. Furthermore,
SplayNets have a provable online optimality under special requests scenarios.

Basic Network Creation Games (BNCG) were introduced by Alon et al. in
2010 [2]. They are a variant of the original Network Creation Game (NCG) by
Fabrikant et al. [7]. In the BNCG model, an initial connection graph is given and
players are allowed to change the graph by performing what are called improving
edge swaps. For an edge swap, a node is able to exchange a single incident edge
with a new edge to an arbitrary other node. In contrast to the original NCG,
best responses are polynomially computable. The cost for a single node is either
induced by the sum of the distances to all other nodes (SUM-version) or by the
maximal distance (MAX-version). The authors showed that for the SUM-version
of the game all trees in an equilibrium have a diameter of 2, and that the diameter
of all swap equilibria is 2O(

√
logn). For the MAX-version they showed that all

trees in an equilibrium have a diameter of at most 3, and that the diameter of
general swap equilibria is Ω(

√
n). Lenzner [12] proved that if the game is played

on a tree, it admits an ordinal potential function, which implies guaranteed
convergence to a pure nash equilibrium. However, when played on general graphs,
this game allows best response cycles. For computing a best response, they show
a similar contrast: a linear-time algorithm for computing a best response on trees
is provided, which works even if players are allowed to swap multiple edges at a
time. On the other hand, they proved that this task is NP-hard even on simple

Communication Patterns and Distributed Self-Adjusting BSTs 179

general graphs, in case more than one edge can be swapped. [6] extended the
BNCG model by introducing what are called interests to the game. Thus, the
players are now no longer interested in communicating with all other nodes, but
only with a specific subset. For the MAX-version they give a tight upper bound
of Θ(

√
n) for the Price of Anarchy, if the connection graph is a tree, and Θ(n)

for general connection graphs.

1.3 Our Contribution

To the best of our knowledge, this is the first work that evaluates dynamics of
self-adjusting topologies by using (basic) network creation games. We introduce
a new BNCG that is closely related to the model of [2] but incorporates the
dynamics inherent to self-adjusting binary search trees. We show that the game
does not converge in general, and the distributed self-adjusting binary search
tree will never stop changing its structure. However, for certain interest graphs
which guarantee convergence, we prove a tight upper bound on the Price of
Anarchy of Θ(1). For non-convergent game instances, we use an altered variant
of the concept sink equilibria (introduced in [9]). We define the corresponding
measure worst-case Price of Sinking to evaluate the worst-case performance of
the distributed self-adjusting tree, in contrast to an optimal solution. We prove
that there exists an interest graph class such that the worst-case Price of Sinking
is constant. However, we also show that, for other interest graph classes, the
worst-case Price of Sinking is Ω(n

logn).

2 Analysis

In general, the SABST-game does not converge and the dynamic process never
settles on stable binary search tree. In fact, it is possible to construct a simple
SABST-game with four nodes that can never converge (see Figure 2). Conse-
quently, the Price of Anarchy cannot be computed for general instances of the
game. In Section 2.1 we identify two classes of interest graphs that do converge
and have a constant Price of Anarchy.

4

2

3

Best Response (3)

1

4

3

2

1

Best Response (4)

Fig. 2. An example SABST-game instance that does not converge. Interest graph edges
are dashed, connection graph edges are continuous.

However, we can relate non-convergent behavior to properties of GI , called
conflicts. Once an interest graph contains a conflict, it is easy to show that the

180 T. Strothmann

game can never converge to an equilibrium. We can observe three classes of
conflicts: cyclic conflicts, BST conflicts and focal point conflicts (see Figure 3
for examples). Cyclic conflicts are cycles in GI . A BST conflict occurs, if nodes
have more than two outgoing edges in GI (with one small exception, see Section
2.1) or if either two edges of GI intersect in case the nodes are ordered according
to their identifier. Focal point conflicts are nodes in GI with an indegree greater
than one. In Section 2.2 we analyze the conflict classes individually.

4

2

31

(a) A cyclic
conflict

4

2

31

(b) A BST
conflict

4

2

31

(c) A focal point
conflict

Fig. 3. Small examples for the three conflict classes

2.1 Convergence and Rotation Equilibria

Two classes of interest graphs imply convergence: interest graphs that are binary
search trees, and interest graphs that are star graphs (a central node v has
interest in all other nodes).

Theorem 1. Let Γ = (GC , GI) be a SABST-game with GI either forming a
binary search tree or a star graph. Then, any sequence of best responses con-
verges independent of the initial connection graph. The Price of Anarchy is at
most 2.

Theorem 1 implies that, for the two mentioned communication interest pat-
terns, a distributed self-adjusting binary search tree converges to a steady BST
and has almost optimal cost for communication: i.e., it has an approximation
factor of at most 2 compared to the optimal BST. Theorem 1 follows from the
following two lemmas.

Lemma 1. Let Γ = (GC , GI) be a SABST-game with GI forming a binary
search tree. Γ converges to a social optimum.

Proof. We call a node/player happy if it cannot perform a rotation to improve
its private cost. Let H denote the set of all nodes v ∈ V , with the property that
the complete subtree of GI rooted at v is happy. To prove convergence we show
that the size of H is monotonically increasing.

We first show that once a node has entered H, it will never leave H. Let v
be a node from H whose parent in GI is not happy. Consequently, v and all

Communication Patterns and Distributed Self-Adjusting BSTs 181

nodes in the subtree rooted at v in GI are happy and they cannot decrease their
private cost and form a connected component in GC . Let CCv be this connected
component and v′ be a node that is unhappy and performs a rotation. If v′ and
IS(v′) are both above or below CCv in GC , then the rotations performed by v′

do not affect v and its subtrees. If v′ is below CCv and IS(v′) is above CCv (or
vice-versa), v′ has to rotate over CCv. To do so, it performs only right or only
left rotations, because v′ is either smaller or greater than all nodes in CCv. But
from the definition of a rotation (see Figure 1), we can deduce that performing
only left or only right rotations does not affect the structure of the subgraph
that v′ rotates over. Thus, all nodes in CCv remain happy. The last case is if
v′ is interested in v, above v in GC and v′ rotates v upwards. This implies that
there exists at least an unhappy node v− that is on the path from v′ to v in GC .
Consequently, v− is either above v′ in GI , a sibling of v′ in GI , or in the other
subtree of v′ than v in GI . But in none of these cases can v− be in between v′

and v in GC , since GC is a binary search tree. Thus, v does not leave H and
the size of H does not decrease. H is monotonically increasing, because in each
round the parents of the nodes already in H will enter H and initially all leaves
from GI are in H, since their interest set is empty.

Now assume that Γ does not converge to a social optimum. Let T ′ be the
connection graph in a rotation equilibrium and T ′ �= GI : i.e., ∃u ∈ V with
posGI (u) �= posT ′(u), where posGI (u) and posT ′(u) denote the position of u in
GI and T ′ depending on v’s depth. Let v′ be the node with minimal depth in T ′

which has a child u with posGI (u) �= posT ′(u). Consequently, v′ is unhappy and
can perform a rotation to decrease its private cost, which contradicts the fact
that T ′ is in a rotation equilibrium. Consequently, the connection graph in the
rotation equilibrium is the same as GI and the PoA is 1. ��

Note that this result only holds for binary trees, since for general trees the size
of H is not monotonically increasing: i.e., if a unhappy node performs a better
response, happy nodes can become unhappy again.

Lemma 2. Let Γ = (GC , GI) be a SABST-game with GI forming a star graph:
i.e., all edges point from one single center node to all other nodes. Γ converges
and has a PoA of at most 2.

Note, that the star graph, is an exception to the conflict class of BST conflicts.
However, this is the only exception, because by observation one can show that
the game does not converge anymore if there is an edge (u, v) ∈ EI with u being
not the center node. The proof of Lemma 2 can be found in the full version.
Lemma 1 and 2 prove Theorem 1. The rest of this section justifies the approach
of focusing on a single connected component of edges from GI . We say a node
w affects the private cost of a node v in a rotation equilibrium if w lies on the
the shortest path from v to a node u with u ∈ IS(v) .

Lemma 3. Consider a connected component E′
I of edges without conflicts from

the interest graph GI = (V,EI), the corresponding node set V ′ = {v ∈ V |∃u ∈
V ∧ (u, v) ∈ E′

I ∨ (v, u) ∈ E′
I} and a single interest edge eI = (u′, v′). If eI is

182 T. Strothmann

neither a part of E′
I nor induces a conflict with E′

I , u and v do not affect the
private cost of the nodes from V ′ in a rotation equilibrium and vice-versa.

Again the proof can be found in the full version. We can easily extend Lemma 3
such that the single edge eI can be replaced by a set of edges. Therefore, we can
analyze multiple connected components from GI separately. Furthermore, the
proof can be extended in such a way that G′

I contains conflicts, instead of being
connected. The game will not converge anymore, but has the property that a
single edge (or even a set of edges) will no longer affect the private cost of G′

I

eventually.

2.2 Non-convergence and Sink Equilibria

As mentioned before, the three identified classes of conflicts imply non-convergent
behavior. Therefore, rotation equilibria do not necessarily exist and the Price of
Anarchy is no longer well defined. To overcome this obstacle, we use the solu-
tion concept sink equilibrium, which was introduced by Goemans et al. [9]. A
sink equilibrium is not defined for a single connection graph GC of a game in-
stance, but for the configuration graph of an instance. The configuration graph
GS = (V ∗, E∗) of an instance Γ = ((V,EC), (V,EI)) has a vertex which is equal
to the set of valid connection graphs (i.e., all possible BSTs) for the given node
set V . The edge set E∗ corresponds to better responses of the players: i.e., an
edge (u, v) is in E∗ if a response of a single player in the connection graph rep-
resented by u leads the connection graph in v. A sink equilibrium is a strongly
connected component without outgoing edges in the configuration graph. Ana-
logical to the Price of Anarchy we define a new measurement of how well selfish
players perform compared to a social optimum. [9] uses the expected social cost
of a sink equilibrium to compute what is called Price of Sinking (PoS). How-
ever, we want to focus on the worst-case behavior of nodes. Therefore, instead
of looking at the expected social cost of sink equilibria, we choose a state with
worst-case social cost of all sink equilibria and compare it to the social cost of a
social optimum. We call this measure the worst-case Price of Sinking (wcPoS).
If the wcPoS is low, then every state in a sink equilibrium has social cost close
to the optimal social cost and therefore the self-adjusting binary search tree still
performs well, even though it does not converge to a fixed tree.

Before analyzing the different classes of conflicts separately and giving results
on their worst-case Price of Sinking, we first prove a general result about sink
equilibria in the SABST-game. Due to the definition of the wcPoS, we are faced
with the problem of finding a state in a sink equilibrium with maximal social cost.
Lemma 4 simplifies this task. A response order τ is a permutation of the players
V . We say a response order is applied to connection graph GC (respectively, a
state from the configuration graph), when the players of the game play their
responses according to τ starting from GC .

Lemma 4. Given an instance of the SABST-game Γ , a response order τ and
a state s from the configuration graph GS = (V ∗, E∗) of Γ . If ∀s′ ∈ V ∗ it holds
that τ applied on s′ results in s, then s lies in a unique sink equilibrium of GS.

Communication Patterns and Distributed Self-Adjusting BSTs 183

Proof. Assume that there is another sink equilibrium SE ′ and let v′ be a state
from SE ′. We know that v∗ can be reached from v′ by τ . But by the definition of
a sink equilibrium this implies that v∗ and v′ are in the same sink equilibrium,
which is a contradiction to the original assumption.

Therefore, we can deduce a worst-case sink equilibrium state s, if we can give
a response order τ that constructs the connection graph represented in s.

Cyclic Conflicts. We first take a closer look on interest graphs with only
cyclic conflicts. We only need to consider interest graphs that are simple cycles
(i.e., cycles that do not intersect and are not contained in each other) because
these cases imply a BST conflict or a focal point conflict. W.l.o.g. we focus
on the cyclic conflict over all nodes Gc.c.

I = (V,EI) with V = {1, . . . , n} and
EI = {(n, 1) ∪ (i, i+ 1) : i = 1, . . . , n− 1}.

Theorem 2. Let Γ c.c. = (GC , G
c.c.
I) be a SABST-game, the wcPoS is O(1).

Consequently, as long as the communication interests contain only cyclic con-
flicts, the performance of the self-adjusting tree is asymptotically as good as
the performance without conflicts. To prove Theorem 2, we need to show the
following to lemmas.

Lemma 5. For the SABST-game Γ c.c., every state in the unique sink equilib-
rium has social cost of 2(n− 1).

Proof. Let τ ′ = (n, . . . , 1) be a response order. If τ ′ is applied onGC the resulting
connection graph is the one visualized in Figure 4, which is in a unique sink
equilibrium. The social cost is 2(n − 1). Now independent of a response order,
there is only one unhappy node in the connection graph that can decrease its
private cost. This leads to a connection graph with social cost 2(n − 1) and a
single unhappy node again. Consequently, independent of a response order in
each round there is a single unhappy node and social cost of 2(n− 1), ��

2

3

1

n

Fig. 4. The connection graph for Γ c.c. after response order τ ′ is applied

Lemma 6. Every social optimum for Γ c.c. has social cost of Ω(2(n− 1)).

184 T. Strothmann

Proof. We call a connection graph edge eC traversed by an interest graph edge
eI = (u, v), if eC is contained in the shortest path from u to v in the connection
graph.We show that every connection graph edge of a social optimum is traversed
by at least two interest graph edges. Let e′C be an arbitrary connection graph edge
from a socially optimal connection graph. If e′C is removed, the connection graph
is split in two connected components A and B. Since Gc.c.

I is a simple cycle over
all nodes, there exist interest graph edges e′I = (a′, b′) and e′′I = (a′′, b′′) with
a′, a′′ ∈ A, a′ �= a′′ and b′, b′′ ∈ B, b′ �= b′′. Consequently, e′C is traversed twice.

��

Lemma 5 and Lemma 6 together conclude the proof.

BST Conflicts and Focal Point Conflicts. For BST conflicts and focal point
conflicts we do not prove an upper bound for the wcPoS, but show that both
conflict classes contain interest graphs such that the wcPoS is lower bounded
by Ω(n

log(n)). Therefore, best responses of selfish players can lead to a state in

a sink equilibrium, which has high social cost compared to a social optimum.
This shows that the intuition of the double splay algorithm [4] performs poorly
in these scenarios. We start with interest graphs with only BST conflicts. More
specifically we focus on interest graphs with only direct conflicts in which two
edges ofGI intersect if the nodes are ordered according to their identifier. Interest
graphs with only direct conflicts have a node degree smaller than 2, since all other
conflict types need a node degree of at least 2. We focus on interest graphs that
maximize the number of direct conflicts. These are of the form Gd.c.

I = (V,EI)
with V = {1, . . . n}, n even and EI = {(i, i + n

2) : i = 1, . . . , n
2 }, because every

interest edge intersects with every other interest edge.

Theorem 3. Let Γ d.c. = (GC , G
d.c.
I) be a SABST-game, the wcPoS is Ω(n

log(n)).

To prove Theorem 3, we first prove that the configuration graph of Γ contains
a unique sink equilibrium with a state that has social cost of Θ(n2).

Lemma 7. The configuration graph of Γ d.c. contains a state in the unique sink
equilibrium with social cost of Θ(n2).

Proof. We pick the response order τ ′ = (1, . . . , n) If we now apply τ ′ to any
initial connection graph, we end up with the connection graph presented in
Figure 5. The exact proof of this fact is skipped, but relies mainly on the idea
that each player performs rotations such that the nodes from its interest set are

in one of its subtrees. The social cost is
∑n

2 −1
i=0 (2i+1) = n2

4 = Θ(n2). Since this
connection graph can be reached from any initial connection graph by τ ′, we
know that it is a state in the unique sink equilibrium of Γ d.c.. ��

Contrasting the last lemma, we now give a general upper bound for the social
cost of a social optimum for Γ .

Lemma 8. A social optimum for Γ d.c. has social cost of at most O(n logn).

Communication Patterns and Distributed Self-Adjusting BSTs 185

2

1

n

n/2

n-2

n-1

n/2+2

n/2+1

Fig. 5. The connection graph for a Γ d.c. if response order τ ′ = (1, . . . , n) is applied

Proof. We arrange the connection graph nodes such that they form a balanced
binary search tree. Since every node is only interested in at most a single other
node we know that the private cost for a single node can be upper bound by
2 log(n). Therefore, the social cost are at most O(n log n). ��

For interest graphs with only focal point conflicts we can state a similar
result. We use the interest graph Gf.c.

I = (V,EI) with V = {1, . . . n} and
EI = {(1, n), (2, n), . . . , (n − 1, n)}, which has the maximal possible focal point
conflict.

Theorem 4. Let Γ f.c. = (GC , G
f.c.
I) be a SABST-game the wcPoS is Ω(n

log(n)).

The proof technique for Theorem 4 is analogous to Theorem 3. Moreover,
Theorems 3 and 4 imply that a SABST-game Γ = (GC , GI) in which GI contains

a subgraph G′
I of size k that is either Gf.c.

I or Gd.c.
I , the wcPoS is Ω(k

log(k)).

Therefore, we can conclude that the performance of a distributed self-adjusting
binary search tree gets worse with increasing size of the communication patterns
given by Gf.c.

I or Gd.c.
I . Notice that O(n2) is an upper bound for the social cost

of a SABST-game with an interest graph with n many edges. Therefore, the
upper bound for the wcPoS is O(n).

3 Conclusion and Open Problems

We analyzed the performance of a distributed self-adjusting binary search tree
for different communication patterns. We have shown that, if the communication
interests contain no conflicts or only cyclic conflicts, the performance of a self-
adjusting tree is almost optimal (PoA of Θ(1) and wcPos of Θ(1)). However,
if the communication interests contain BST conflicts or focal point conflicts, a
distributed generalization of splay trees performs poorly (wcPoS of Ω(n

logn)).
There are a lot of different possibilities to extend our work. For example, it

would be interesting to analyze the SABST-game with an arbitrary combination
conflicts and give upper or lower bounds for the worst-case Price of Sinking.
Moreover, it is interesting to compute the Price of Sinking as defined in [9] and
thereby get statements about the average performance.

186 T. Strothmann

Acknowledgements. The author thanks Alexander Skopalik for stimulating
discussions that improved the quality of the paper, and Christian Scheideler for
his scientific guidance.

References

1. Adelson-Velsky, G.M., Landis, Y.M.: An algorithm for the organization of infor-
mation. Deklady Akademii Nauk USSR 16 16(2), 263–266 (1962)

2. Alon, N., Demaine, E.D., Hajiaghayi, M., Leighton, T.: Basic network creation
games. In: SPAA, pp. 106–113 (2010)

3. Arora, D., Bienkowski, M., Feldmann, A., Schaffrath, G., Schmid, S.: Online strate-
gies for intra and inter provider service migration in virtual networks. In: IPTcomm
(2011)

4. Avin, C., Haeupler, B., Lotker, Z., Scheideler, C., Schmid, S.: Locally self-adjusting
tree networks. In: IPDPS, pp. 395–406 (2013)

5. Bayer, R.: Symmetric binary b-trees: Data structure and maintenance algorithms.
Acta Inf. 1, 290–306 (1972)

6. Cord-Landwehr, A., Hüllmann, M., Kling, P., Setzer, A.: Basic network creation
games with communication interests. In: SAGT, pp. 72–83 (2012)

7. Fabrikant, A., Luthra, A., Maneva, E., Papadimitriou, C.H., Shenker, S.: On a
network creation game. In: PODC, pp. 347–351 (2003)

8. Galperin, I., Rivest, R.L.: Scapegoat trees. In: SODA, pp. 165–174 (1993)
9. Goemans, M.X., Mirrokni, V.S., Vetta, A.: Sink equilibria and convergence. In:

FOCS, pp. 142–154 (2005)
10. Heller, B., Seetharaman, S., Mahadevan, P., Yiakoumis, Y., Sharma, P., Banerjee,

S., McKeown, N.: Elastictree: Saving energy in data center networks. In: NSDI,
pp. 249–264 (2010)

11. Leitao, J.C.A., da Silva Ferreira Moura Marques, J.P., Pereira, J.O.R.N.,
Rodrigues, L.E.T.: X-BOT: A protocol for resilient optimization of unstructured
overlays. In: SRDS, pp. 236–245 (2009)

12. Lenzner, P.: On dynamics in basic network creation games. In: Persiano, G. (ed.)
SAGT 2011. LNCS, vol. 6982, pp. 254–265. Springer, Heidelberg (2011)

13. Shang, Y., Li, D., Xu, M.: Energy-aware routing in data center network. In: Green
Networking, pp. 1–8 (2010)

14. Sherk, M.: Self-adjusting k-ary search trees. In: Dehne, F., Santoro, N., Sack, J.-R.
(eds.) WADS 1989. LNCS, vol. 382, pp. 381–392. Springer, Heidelberg (1989)

15. Sleator, D.D., Tarjan, R.E.: Self-adjusting binary trees. In: STOC, pp. 235–245
(1983)

16. Tang, M., Liu, Z., Liang, X., Hui, P.M.: Self-adjusting routing schemes for time-
varying traffic in scale-free networks. Phys. Rev. E 80, 026114 (2009)

17. Wang, C.C., Derryberry, J., Sleator, D.D.: O(log log n)-competitive dynamic binary
search trees. In: SODA, pp. 374–383 (2006)

An Efficient Silent Self-Stabilizing Algorithm

for 1-Maximal Matching in Anonymous
Networks

Yuma Asada and Michiko Inoue

Nara Institute of Science and Technology, Ikoma, Nara 630-0192 Japan
{asada.yuma.ar4,kounoe}@is.naist.jp

Abstract. We propose a new self-stabilizing 1-maximal matching algo-
rithm which is silent and works for any anonymous networks without a
cycle of a length of a multiple of 3 under a central unfair daemon. Let n
and e be the numbers of nodes and edges in a graph, respectively. The
time complexity of the proposed algorithm is O(e) moves. Therefore, the
complexity is O(n) moves for trees or rings whose length is not a multiple
of 3. That is a significant improvement from the best existing results of
O(n4) moves for the same problem setting.

Keywords: distributed algorithm, self-stabilization, graph theory,
matching problem.

1 Introduction

Self-Stabilization [3] can tolerate several inconsistencies of computer networks
caused by transient faults, erroneous initialization, or dynamic topology change.
It can recover and stabilize to consistent system configuration without restarting
program execution.

Maximum or maximal matching is a well-studied fundamental problem for
distributed networks. A matching is a set of pairs of adjacent nodes in a network
such that any node belongs to at most one pair. It can be used in distributed ap-
plications where pairs of nodes, such as a server and a client, are required. This
paper proposes an efficient anonymous self-stabilizing algorithm for 1-maximal
matching. A 1-maximal matching is a 2

3 -approximation to the maximum match-
ing, and expected to find more matching pairs than a maximal matching which
is a 1

2 -approximation to the maximum matching.
Self-stabilizing algorithms for the maximum and maximal matching problems

have been well studied[5]. Table 1 summarizes the results, where n and e denote
the numbers of nodes and edges, respectively.

Blair and Manne[1] showed that a maximum matching can be solved with
O(n2) moves for non-anonymous tree networks under a read/write daemon. For
anonymous networks, Karaata et al.[8] proposed a maximummatching algorithm
with O(n4) moves for trees under a central daemon, and Chattopadhyay et
al.[2] proposed a maximum matching algorithm with O(n2) rounds for bipartite
networks under a central daemon.

M.S. Rahman and E. Tomita (Eds.): WALCOM 2015, LNCS 8973, pp. 187–198, 2015.
c© Springer International Publishing Switzerland 2015

188 Y. Asada and M. Inoue

Table 1. Self-stabilizing matching algorithms

Reference Matching Topology Anonymous Daemon Complexity

[1] maximum tree no read/write O(n2) moves
[8] maximum tree yes central O(n4) moves
[2] maximum bipartite yes central O(n2) rounds
[7] maximal arbitrary yes central O(e) moves
[4] 1-maximal tree, ring* yes central O(n4) moves
[10] 1-maximal arbitrary no distributed O(n2) rounds

this paper 1-maximal arbitrary* yes central O(e) moves

* without a cycle of length of a multiple of 3.

Hsu and Huang[7] proposed a maximal matching algorithm for anonymous
networks with arbitrary topology under a central daemon. They showed the time
complexity of O(n3) moves, and, it has been revealed that the time complexity
of their algorithm is O(n2) moves by Tel[11] and Kimoto et al.[9] and O(e) moves
by Hedetniemi et al. [6].

Goddard et al.[4] proposed a 1-maximal matching with O(n4) moves for
anonymous trees and rings whose length is not a multiple of 3 under a central
daemon. They also showed that there is no self-stabilizing 1-maximal match-
ing algorithm for anonymous rings with length of a multiple of 3. Manne et al.
[10] also proposed a 1-maximal matching algorithm for non-anonymous networks
with any topology under a distributed unfair daemon. Their algorithm stabilizes
in O(n2) rounds and O(2n · Δ · n) moves, where Δ is the maximum degree of
nodes.

Our Contribution. In this paper, we propose a new self-stabilizing 1-maximal
matching algorithm. The proposed algorithm is silent and works for any anony-
mous networks without a cycle of a length of a multiple of 3 under a central
unfair daemon. We will show that the time complexity of the proposed algo-
rithm is O(e) moves. Therefore, the complexity is O(n) moves for trees or rings
whose length is not a multiple of 3. That is a significant improvement of the best
existing result of O(n4) for the same problem setting[4].

The remaining of the paper is organized as follows. In Section 2, we define dis-
tributed systems and the 1-maximal matching problem. A 1-maximal matching
algorithm is proposed in Section 3, and proves for its correctness and perfor-
mance are given in Section 4. Finally Section 5 concludes this paper.

2 Preliminaries

A distributed system consists of multiple asynchronous processes. Its topology
is represented by an undirected connected graph G = (V,E) where a node in V
represents a process and an edge in E represents the interconnection between
the processes. A node is a state machine which changes its states by actions.
Each node has a set of actions, and a collection of actions of nodes is called a
distributed algorithm. Let n and e denote the numbers of nodes and edges in a
distributed system.

An Efficient Silent Self-Stabilizing Algorithm for 1-maximal matching 189

In this paper, we consider state-reading model as a communication model
where each node can directly read the internal state of its neighbors. An action
of a node is expressed 〈label〉 :: 〈guard〉 '→ 〈statement〉. A guard is a Boolean
function of all the states of the node and its neighbors, and a statement updates
its local state. We say a node is privileged if it has an action with a true guard.
Only privileged node can move by selecting one action with a true guard and
executing its statement.

Moves of nodes are scheduled by a daemon. Among several daemons consid-
ered for distributed systems, we consider an unfair central daemon in this paper.
A central daemon chooses one privileged node at one time, and the selected node
atomically moves. A daemon is unfair in a sense that it can choose any node
among privileged nodes.

A problem P is specified by its legitimate configurations where configura-
tion is a collection of states of all the nodes. We say a distributed algorithm A
is self-stabilizing if A satisfies the following properties. 1) convergence: The
system eventually reaches to a legitimate configuration from any initial state,
and 2) closure: The system once reaches to a legitimate configuration, all the
succeeding moves keep the system configuration legitimate. A self-stabilizing al-
gorithm is silent if, from any arbitrary initial configuration, the system reaches
a terminal configuration where no node can move. A self-stabilizing algorithm
is anonymous if it does not use global IDs of nodes. We only assume that nodes
have pointers and a node can determine whether its neighbor points to itself,
some other nodes, or no node.

A matching in an undirected graph G = (V,E) is a subset M of E such that
each node in V is incident to at most one edge in M . We say a matching is
maximal if no proper superset of M is a matching as well. A maximal match-
ing M is 1-maximal if, for any e ∈ M , any matching cannot be produced by
removing e from M and adding two edges to M −{e}. A maximal matching is a
1
2−approximation to the maximum matching. On the other hand, a 1-maximal
matching is a 2

3−approximation. In this paper, we propose a silent and anony-
mous self-stabilizing algorithm for the 1-maximal matching problem for graphs
without a cycle of length of a multiple of 3.

3 Algorithm MM1

First, we will show an overview of a proposed self-stabilizing 1-maximal matching
algorithmMM1. Each node i uses stages to construct 1-maximal matching. There
are seven stages; S1a, S1b, S2a, S2b, S3, S4, and S5. Stages S1a and S1b mean
that the node is not matching with any node. A stage S2a means the node is
matching with a neighbor node, and, S2b, S3, S4, S5 mean the node is trying
to increase matches. A node i has three variables; leveli, m-ptri, i-ptri. We
describe how to use the variables in our algorithm.

S1a, S1b, S2a. We say a node is free if the node is in S1a or S1b. A node in S1a
does not invite any nodes, while a node in S1b invites its neighbor node. Fig.1
shows how free nodes make a match. When a free node i finds a free neighbor

190 Y. Asada and M. Inoue

node j, i invites j by i-ptri (i is in S1b). Then invited node j updates its level
to 2 and points to i by m-ptrj to accept the invitation (j is in S2a). Finally i
points to j by m-ptri to make a match (i is in S2a). A node in S2a is at level 2
and does not invite any nodes. If two adjacent nodes i and j point to each other
by m-ptr, we consider they are matching, that is (i, j) ∈M .

S2b, S3, S4, S5. Matching nodes try to increase the number of matches if they
have free neighbor nodes. Fig.2 shows how to increase matches, where matches are
increased by breaking amatch between i and j, and creating newmatches between
i and k, and j and l. In Fig.2(a), nodes i and j invite their free neighbors k and l if
they do not invite i and j, respectively (i and j are in S2b).When both nodes notice
that i and j invite free neighbor nodes, they change their level to 3 (i and j are in
S3). That indicates that they are ready to be approved as in Fig.2(b). Then k and
l point to the inviting nodes by i-ptr to approve their invitations (k and l are in
S1b). Node i and j change their level to 4 if the neighbors approve the invitations
(i and j are in S4) as in Fig.2(c), and change their level to 5 when they notice that
both invitations are approved (i and j are in S5). This indicates that they are ready
to break amatch as in Fig.2(d). Then they create newmatches with the free nodes,
where k and l first move to S2a (Fig.2(e)) and then i and j move to S2a (Fig.2(f)),
respectively. A node in S1a or S1b can make a match with the other node while
an inviting node is in S3. However, once the inviting node moves to S4, it cannot
change its i-ptr while the inviting node is in S4.

Reset. Each node always checks its validity, and resets to S1a if it finds its
invalidity. We consider two kinds of validities, one node validity and two nodes
validity. The one node validity means that a state represents some stage. For
example, if a level is 1 and m-ptr points to some neighbor, the state is one
node invalid. The two nodes validity means that a relation between states of two
adjacent nodes is consistent. For example, if a node i is in S2a, a node pointed
to by m-ptr should point to i by m-ptr at level 2 or by i-ptr at level 1 or 5.
The full definition of the validity function is shown in Fig.3. A node does not
move while some neighbor is one node invalid.

(a)

jileveli = 1 levelj = 1

(b)

i-ptri

jileveli = 1 levelj = 2

i-ptri

(c)
m-ptrj

jileveli = 2 levelj = 2

m-ptri

(d)
m-ptrj

jileveli = 1 levelj = 1
S1a S1a S1b S1a

S1b

S2a

S2a

S2a

Fig. 1. Making a match between free nodes

An Efficient Silent Self-Stabilizing Algorithm for 1-maximal matching 191

jik l

(c)

m-ptri m-ptrj
S4 S4

S1bS1b
leveli = 4 levelj = 4 levell = 1levelk = 1

i-ptri i-ptrji-ptrk i-ptrl

jik l

(f)

m-ptri m-ptrj
S2a S2a

S2aS2a
leveli = 2 levelj = 2 levell = 2levelk = 2

m-ptrk m-ptrl

jik l

(a)

m-ptri m-ptrj
S2a S2a

S1aS1a
leveli = 2 levelj = 2 levell = 1levelk = 1

jik l

(b)

m-ptri m-ptrj
S3 S3

S1aS1a
leveli = 3 levelj = 3 levell = 1levelk = 1

i-ptri i-ptrj

jik l

(e)

m-ptri m-ptrj
S5 S5

S2aS2a
leveli = 5 levelj = 5 levell = 2levelk = 2

i-ptri i-ptrjm-ptrk m-ptrl

jik l

(d)

m-ptri m-ptrj
S5 S5

S1bS1b
leveli = 5 levelj = 5 levell = 1levelk = 1

i-ptri i-ptrji-ptrk i-ptrl

Fig. 2. Increasing matches

Cancel. A node cancels an invitation or progress to increase matches, if it
detects that the invitation cannot be accepted or it cannot increase matches.
When canceling, a node goes back to S1a if it is at level 1, and to S2a if it is at
level 2 or higher.

The algorithm MM1 uses some statement macros and a guard function. The
variables, validity functions, statement macros and a guard function are shown
in Fig.3, and a code of MM1is shown in Fig.4. In the algorithm, each node i
uses N(i) to represent a set of its neighbors. That is a set of local IDs for each
node and the algorithm does not use any global IDs. We only assume that each
node can determine whether its neighbor point to itself, some other node, or no
node by pointers i-ptr and m-ptr.

4 Correctness

Lemma 1. There are no nodes at level 5 in any terminal configuration of MM1.

Proof. By contradiction. Assume that a node i is in S5 in a terminal configura-
tion. In this case, i-ptri = k holds for some k, and levelk = 1∧ i-ptrk = i or
levelk = 2∧m-ptrk = i holds since i is in S5. If it is levelk = 1, k can execute
migrate1. If it is levelk = 2, i can execute migrate2. A contradiction. ��

Lemma 2. A node that points to its neighbor node by m-ptr also pointed by the
neighbor’s m-ptr in any terminal configuration of MM1.

Proof. By contradiction. There is no node at level 5 in any terminal configuration
and all nodes are valid. Assume that there are adjacent nodes i and j such that
m-ptri = j ∧ m-ptrj �= i. A node i is in S2a since validity S2b(i), S3 (i) or S4 (i)
do not hold. A node j is at level 1 and i-ptrj = i from S2a(i). Since i is in S2a
and j is levelj = 1 ∧ i-ptrj = i, j can execute match3. A contradiction. ��

192 Y. Asada and M. Inoue

Variables
leveli ∈ {1, 2, 3, 4, 5}
m-ptri ∈ N(i) ∪ {⊥}
i-ptri ∈ N(i) ∪ {⊥}

Valid Predicates
S1b valid(i,k): leveli = 1 ∧ m-ptri =⊥ ∧i-ptri = k
S2a valid(i,j): leveli = 2 ∧ m-ptri = j ∧ m-ptri =⊥
S2b valid(i,j,k): leveli = 2 ∧ m-ptri = j ∧ m-ptri = k ∧ j �= k
S3 valid(i,j,k): leveli = 3 ∧ m-ptri = j ∧ m-ptri = k ∧ j �= k
S4 valid(i,j,k): leveli = 4 ∧ m-ptri = j ∧ m-ptri = k ∧ j �= k
S5 valid(i,j,k): leveli = 4 ∧ m-ptri = j ∧ m-ptri = k ∧ j �= k

One Node Validity
S1a valid1(i): leveli = 1 ∧ m-ptri =⊥ ∧i-ptri =⊥
S1b valid1(i): ∃k ∈ N(i) S1b valid(i,k)
S2a valid1(i): ∃j, k ∈ N(i) S2a valid(i,j)
S2b valid1(i): ∃j, k ∈ N(i) S2b valid(i,j,k)
S3 valid1(i): ∃j, k ∈ N(i) S3 valid(i,j,k)
S4 valid1(i): ∃j, k ∈ N(i) S4 valid(i,j,k)
S5 valid1(i): ∃j, k ∈ N(i) S4 valid(i,j,k)
valid1(i): S1a valid(i) ∧ S1b valid(i) ∧ S2a valid(i) ∧ S2b valid(i) ∧ S3 valid(i)∧
S4 valid(i) ∧ S5 valid(i)
invalid1(i): ¬ valid1(i)

Valid Functions (One Node Validity and Two Node Validity)
S1a(i): S1a valid1(i)
S1b(i): S1b valid1(i)
S2a(i): ∃j ∈ N(i)(S2a valid(i,j) ∧ (levelj = 2 ∧ m-ptrj = i) ∨ (levelj =

1 ∧ i-ptrj = i) ∨ (levelj = 5 ∧ i-ptrj = i))

S2b(i): ∃j, k ∈ N(i)(S2b valid(i,j,k) ∧ (levelj = 2 ∨ levelj = 3 ∨ levelj =
4) ∧ m-ptrj = i)

S3(i): ∃j, k ∈ N(i)(S3 valid(i,j,k) ∧ (levelj = 2 ∨ levelj = 3 ∨ levelj =
4) ∧ m-ptrj = i)

S4(i): ∃j, k ∈ N(i)(S4 valid(i,j,k) ∧ (levelj = 2 ∨ levelj = 3 ∨ levelj =
4 ∨ levelj = 5) ∧ m-ptrj = i ∧ i-ptrj �=⊥ ∧levelk = 1 ∧ i-ptrk = i)

S5(i): ∃j, k ∈ N(i)(S5 valid(i,j,k) ∧ (levelk = 1 ∧ i-ptrk = i) ∨ (levelk =
2 ∧ m-ptrk = i))
valid(i): S1a(i) ∧ S1b(i) ∧ S2a(i) ∧ S2b(i) ∧ S3(i) ∧ S4(i) ∧ S5(i)
invalid(i): ¬ valid(i)

Statement Macros
make match: i-ptri =⊥, m-ptri = j, leveli = 2
reset state: i-ptri =⊥, m-ptri =⊥,leveli = 1
abort exchange: i-ptri =⊥, leveli = 2

Guard Function
no invalid1 neighbor(i): ∀x ∈ N(i) valid1(x)

Fig. 3. Variables, validity functions, statement macros and guard function

An Efficient Silent Self-Stabilizing Algorithm for 1-maximal matching 193

Reset
reset1 :: invalid1(i) �→ reset state
reset2 :: invalid1(i) ∧ no invalid1 neighbor(i) �→ reset state

S1a
match1 :: S1a(i) ∧ no invalid1 neighbor(i) ∧ ∃x ∈ N(i)(i-ptrx = i ∧ levelx =
1) �→ i-ptri =⊥,m-ptri = x, leveli = 2
approve1 :: S1a(i)∧no invalid1 neighbor(i)∧∃x ∈ N(i)(i-ptrx = i∧ levelx =
3) �→ i-ptri = x
invite1 :: S1a(i)∧no invalid1 neighbor(i)∧∃x ∈ N(i)levelx = 1 �→ i-ptri = x

S1b
match2 :: S1b(i)∧no invalid1 neighbor(i)∧∃x ∈ N(i)(i-ptrx = i∧levelx = 1)∧
∃k ∈ N(i)(S1b valid(i,k) ∧ levelk < 4) �→ i-ptri =⊥, m-ptri = x,leveli = 2
match3 :: S1b(i)∧no invalid1 neighbor(i)∧∃k ∈ N(i)(S1b valid(i,k)∧ m-ptrk =
i ∧ levelk = 2) �→ make match
migrate1 :: S1b(i)∧no invalid1 neighbor(i)∧∃k ∈ N(i)(S1b valid(i,k)∧i-ptrk =
i ∧ levelk = 5) �→ make match
cancel1 :: S1b(i)∧no invalid1 neighbor(i)∧∃k ∈ N(i)(S1b valid(i,k)∧(levelk =
2 ∨ (levelk = 3 ∧ i-ptrk �= i) ∨ (levelk = 4 ∧ i-ptrk �= i) ∨ (levelk =
5 ∧ i-ptrk �= i))) �→ i-ptri =⊥

S2a
invite2 :: S2a(i) ∧ no invalid1 neighbor(i) ∧ ∃x ∈ N(i)(levelx = 1 ∧ i-ptrx �=
i) ∧ ∃j ∈ N(i)(S2a valid(i,j) ∧ m-ptrj = i) �→ i-ptri = x

S2b
cancel2 :: S2b(i) ∧ no invalid1 neighbor(i) ∧ ∃j, k ∈ N(i)(S2b valid(i,j,k) ∧
levelk ≥ 2) �→ abort exchange
proceed1 :: S2b(i) ∧ no invalid1 neighbor(i) ∧ ∃j, k ∈ N(i)(S2b valid(i,j,k) ∧
i-ptrj �=⊥) �→ leveli = 3

S3
cancel3 :: S3(i) ∧ no invalid1 neighbor(i) ∧ ∃j, k ∈ N(i)(S3 valid(i,j,k) ∧
((levelj = 2 ∧ i-ptrj =⊥) ∨ levelk ≥ 2)) �→ abort exchange

proceed2 :: S3(i) ∧ no invalid1 neighbor(i) ∧ ∃j, k ∈ N(i)(S3 valid(i,j,k) ∧
i-ptrk = i ∧ levelk = 1) �→ leveli = 4

S4
cancel4 :: S4(i)∧no invalid1 neighbor(i)∧∃j, k ∈ N(i)(S4 valid(i,j,k)∧levelj =
2 ∧ i-ptrj =⊥) �→ abort exchange

proceed3 :: S4(i) ∧ no invalid1 neighbor(i) ∧ ∃j, k ∈ N(i)(S4 valid(i,j,k) ∧
(levelj = 4 ∨ levelj = 5)) �→ leveli = 5

S5
migrate2 :: S5(i) ∧ no invalid1 neighbor(i) ∧ ∃j, k ∈ N(i)(S5 valid(i,j,k) ∧
levelk = 2 ∧ m-ptrk = i ∧ i-ptrk =⊥ ∧levelj = 5) �→ i-ptri =⊥, m-ptri =
k, leveli = 2

Fig. 4. Algorithm MM1

194 Y. Asada and M. Inoue

Lemma 3. There are no two nodes i and j such that leveli = 1, levelj = 3
or 4, i-ptri = j and i-ptrj = i in any termination configuration of MM1 for
any graphs without a cycle of length of a multiple of 3.

Proof. By contradiction. There is no node at level 5 in any terminal configuration
and all nodes are valid. Assume that there are adjacent nodes i and j such that
leveli = 1, levelj = 3 or 4, i-ptri = j, and i-ptrj = i. If levelj = 3, j can
execute proceed2 since j is in S3.

Consider the case of levelj = 4. There is a node k ∈ N(j) such that levelk = 2
or 3 or 4, m-ptrj = k, i-ptrk �=⊥. Node k can execute proceed1 if levelk = 2 and
j can execute proceed3 if levelk = 4. Hence levelk is limited to 3. Therefore,
there is a node l ∈ N(k) such that i-ptrk = l and levell = 1. Node l satisfies
i-ptrl �= k because it is in a terminal configuration. Therefore, there is a nodem ∈
N(l) such that i-ptrl = m and levelm = 4. Repeating the above observation, we
can show there is an infinite sequence of nodes at levels 1, 4, 3, 1, 4, 3, · · ·. However,
there is no such a sequence since there is no cycle of length of a multiple of 3. A
contradiction. ��

Theorem 1. A maximal matching is constructed in any terminal configuration
of MM1 for any graphs without a cycle of length of a multiple of 3.

Proof. By contradiction. There is no node at level 5 in any terminal configuration
and all nodes are valid. Assume that a matching is not maximal in some terminal
configuration. There are adjacent nodes i and j at level 1 by the assumption and
Lemma 2.

If a node i or j is in S1a, it can execute invite1. Therefore, both nodes are
in S1b (Observation 1). Let k be a node pointed by i-ptri. The level of k is not
5 by Lemma 1.

In case of levelk = 1, k is in S1b by Observation 1. Let x be a node pointed
by i-ptrk. A node k can execute match2 to make a match with i if levelx �= 4.
Therefore, levelx = 4 and this implies i-ptrx �= k by Lemma 3, and k can
execute cancel1. In case of levelk = 2, k can execute invite2 if k is in S2a.
Node i can execute cancel1 if k is in S2b since m-ptrk �= i by Lemma 2. If
levelk = 3 or 4, i can execute cancel1 since i-ptrk �= i by Lemma 3. A
contradiction. ��

Theorem 2. A 1-maximal matching is constructed in any terminal configura-
tion of MM1 for any graphs without a cycle of length of a multiple of 3.

Proof. By contradiction. Assume that a matching is not 1-maximal in some
terminal configuration. Since it is terminal, a maximal matching is constructed
by Theorem 1. Therefore, there are matching nodes i and j and both have
neighbors at level 1 from Lemma 2.

Both i and j are at level 2 or higher since they are matching. They are not
in S2a since they have level 1 neighbors and can execute invite1 if they are
in S2a, or not at level 5 by Lemma 1. Since i and j are in S2b, S3 or S4,
both nodes point to some neighbor by i-ptr, and the neighbors are at level 1.

An Efficient Silent Self-Stabilizing Algorithm for 1-maximal matching 195

That is because, i or j can execute cancel2 in S2b, cancel3 in S3 and reset2

in S4 if it points to a node at level 2 or higher.
Nodes i and j are not in S2b since i-ptri �= ⊥ and i-ptrj �= ⊥, and therefore,

they can execute proceed1 if they are in S2b.
Consider the case where i or j is in S3. Assume i is in S3 w.l.o.g., and let

k be a level 1 node that i points to by i-ptr. A node k can execute approve

if i-ptrk �= ⊥, and node i can execute proceed2 if i-ptrk = i. Therefore,
i-ptrk = x for some x �= i. Since there is no adjacent level 1 nodes by Theorem
1, there is no level 5 node by Lemma 1, and m-ptrs point to each other between
two matching nodes by Lemma 2, x is at level 2, 3, or 4, and m-ptrx �= k. A
node x is not at level 2 since k can execute cancel1 if x is at level 2. In case
where x is at level 3 or 4, i-ptrx �= k by Lemma 3, and therefore, k can also
execute cancel1. Therefore, none of i and j is not in S3.

That is, both i and j are in S4, however, both can execute proceed3 in this
case. A contradiction. ��

Lemma 4. If a node i at level 1 is valid, that is S1a(i) or S1b(i) holds, i is
valid while it is at level 1 in MM1.

Proof. Validity functions S1a(i) and S1b(i) check only the variables of a node i.
That is the validity of a node at level 1 is independent of its neighbors’ states.
Any move for S1a or S1b keeps the state of node valid, a valid node at level 1 is
valid while it is at level 1. ��

Lemma 5. Once a node executes one of match1, match2, match3, migrate1
and migrate2, the node never executes reset1 or reset2 in MM1.

Proof. By contradiction. Assume some nodes execute resets (reset1 or reset2)
after executing match1, match2, match3, migrate1 or migrate2. Let i be a
node that executes such a move r of a reset first. Let m be the last move of
among match1, match2, match3, migrate1 and migrate2 before the reset. Since
no move except reset1 and reset2 brings invalid states and i already executed
m, when i executes r, i is two node invalid. Therefore, i detects some invalidity
between i and some neighbor.

Let k be a node such that i-ptri = k when i executes r. If k causes the reset
r, i is at level 4 or 5 at that time. When i moves to S4 by proceed2, i confirms
that k’s validity, levelk = 1 and i-ptrk = i. Node k never resets while it is
at level 1 by Lemma 4 and the validity between i and k is preserved. Node k
may move to S2a by migrate1 but never resets before r by the assumption, and
therefore, the validity i and k is also preserved.

Therefore, i executes r by detecting invalidity between i and j such that
m-ptri = j. Since m is the last chance to set m-ptr for i, i sets m-ptri = j by
m. When i executes m, j is in S1b, S2a, or S5.

In case of S1b, when i executes m, i confirms j’s validity and i-ptrj = i.
Node j is valid while it is at level 1 by Lemma 4. Node i moves to S2b after j
sets m-ptrj = i and moves to S2a by match2 or match3. Therefore, while j is
at level 1, i-ptrj = i always holds and therefore i cannot reset. After j moves

196 Y. Asada and M. Inoue

to level 2 by match2 or match3, j does not reset before r from the assumption.
Therefore, the validity between i and j is preserved until r.

In case of S5, that is i migrates to j, when i executes m, i confirms i-ptrj = i.
Since the validity of a node in S5 only depends on its state and a state of a node
pointing to by i-ptr, j is valid if the validity between i and j is preserved. Since
i does not reset between m and r, the validity is preserved while j is in S5. After
j moves to level 2 by migrate2, j does not reset before r from the assumption.
Therefore, the validity between i and j is preserved until r.

In case of S2a, i confirms the validity between i and j and m-ptrj = i when
i executes m. Since j is in S2a, i-ptrj does not point to any node. Therefore,
even if j points to some node by i-ptr after m, the validity between j and the
pointed node is preserved like between i and k. Therefore j is valid if the validity
between i and j is preserved while m-ptrj = i and levelj ≤ 4 (When j moves
to S5, it does not take care of i). Since i does not reset between m and r, the
validity is preserved. ��

We say a move is a progress move if it is by match1, match2, match3, or
migrate1. A level of node changes from 1 to 2 by a progress move.

Lemma 6. Each node resets at most once in MM1.

Proof. Once a node executes reset1 or reset2, it moves to S1a. The node never
resets while it is at level 1 from Lemma 4. The node executes a progress move
to move to level 2, and never resets after that by Lemma 5. ��

Lemma 7. Each node execute a progress move at most once in MM1.

Proof. A progress move changes levels of a node from 1 to 2, and a node never
resets if it executes a progress move by Lemma 5. That is the node never goes
back to level 1. Therefore, once a node executes a progress move it never executes
a progress move again. ��

Lemma 8. In MM1, cancel1, cancel2, cancel3 and cancel4 are executed
O(e) times.

Proof. In MM1, a node i executes a cancel (cancel1, cancel2, cancel3 or
cancel4) when it is initially possible, some neighbor node executed a cancel, or
some neighbor node executed a progress move.

Consider that some node j executes a progress move that changes a stage of
j to S2a. Nodes that point to j by i-ptr will execute a cancel as follows. If such
a node k is in S1b, k will execute cancel1, and if such a node k is in S2b or S3,
k will execute cancel2 or cancel3.

If some node executes cancel2 or cancel3, it causes more cancels. If there is
an adjacent node x and trying to increase matches, it will also cancels by cancel3

or cancel4. That cancel may further causes one more cancel. If x already invited
some node y to migrate to x, y will execute cancel1.

Now we classify cancels with direct cancels and indirect cancels. The direct
cancel is a cancel caused by some progress move or its initial state. The indirect
cancel is a cancel caused by a cancel of its neighbor.

An Efficient Silent Self-Stabilizing Algorithm for 1-maximal matching 197

S1a S1b

in-
valid

S2a S2b S3 S4 S5

Fig. 5. Transitions of stages

From the above observation, any cancel causes at most two indirect cancels.
Let degj be the degree of j. There are at most degj nodes that execute a cancel
due to the progress move of j. From Lemma 7, j executes a progress move at
most once, and therefore there are at most Σi∈V degi = e direct cancels caused
by progress moves. Moreover, there are at most n direct cancels caused by initial
states. Therefore, the total number of moves by cancels are O(e). ��

Lemma 9. In MM1, migrate2 is executed O(n) times.

Proof. Let m1 and m2 be two consecutive moves by migrate2 of a node i. The
node i moves to S2a by m1 and then invites some neighbor node j at level 1 to
migrate to i. Then, node j executes migrate1 that points to i by m-ptr. That
is, there is a move by migrate1 that points to i between two consecutive moves
by migrate2 of node i. Therefore, the total number of moves by migrate2 ≤
the total number of moves by migrate1 +n. From Lemma 7, it is bounded by
O(n). ��

Theorem 3. MM1 is silent and takes O(e) moves to construct 1-maximal
matching for any graphs without a cycle of length of a multiple of 3.

Proof. Fig. 5 shows stage transition in MM1. In MM1, each node moves to a
higher stage from the current stage in the order of S1a, S1b, S2a, S2b, S3, S4 and
S5 except reset1, reset2, cancel1, cancel2, cancel3, cancel4 and migrate2.
Therefore, if a node does not execute these actions, the number of moves is at
most 6.

Let Ri, Ci and Mi be the numbers of moves of a node i by reset (reset1 or
reset2), cancel (cancel1, cancel2, cancel3 or cancel4), and migrate2. Let
MOVi denote the total number of moves of a node i. From the observation, it
is bounded as follows.

MOVi ≤ 7(Ri + Ci +Mi + 1)

From Lemmas 6, 8 and 9, we have

Σi∈V Ri = O(n), Σi∈V Ci = O(e), and Σi∈V Mi = O(n).

Therefore, the total number of moves in MM1 can be derived as follows.

Σi∈V MOVi ≤ 7(Σi∈V Ri +Σi∈V Ci +Σi∈V Mi +Σi∈V 1) = O(e)

198 Y. Asada and M. Inoue

Since each node always takes a finite number of moves, MM1 always reaches
a terminal configuration where 1-maximal matching is constructed by Theorem
2. This also implies MM1 is silent. ��

5 Conclusion

We proposed a 1-maximal matching algorithm MM1 that is silent and works for
any anonymous networks without a cycle of a length of a multiple of 3 under a
central unfair daemon. The time complexity of MM1 is O(e) moves. Therefore,
it is O(n) moves for trees or rings whose length is not a multiple of 3. We had
a significant improvement from Goddard et al.[4] that is also an anonymous
1-maximal matching algorithm but works for only trees or rings which length is
not a multiple of 3 and the time complexity is O(n4).

References

1. Blair, J.R., Manne, F.: Efficient self-stabilizing algorithms for tree networks. In:
Proceedings of 23rd International Conference on Distributed Computing Systems,
pp. 20–26. IEEE (2003)

2. Chattopadhyay, S., Higham, L., Seyffarth, K.: Dynamic and self-stabilizing dis-
tributed matching. In: Proceedings of the Twenty-first Annual Symposium on
Principles of Distributed Computing, pp. 290–297. ACM (2002)

3. Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Commun.
ACM 17(11), 643–644 (1974), http://doi.acm.org/10.1145/361179.361202

4. Goddard, W., Hedetniemi, S.T., Shi, Z., et al.: An anonymous self-stabilizing algo-
rithm for 1-maximal matching in trees. In: Proc. International Conference on Par-
allel and Distributed Processing Techniques and Applications, pp. 797–803 (2006)

5. Guellati, N., Kheddouci, H.: A survey on self-stabilizing algorithms for indepen-
dence, domination, coloring, and matching in graphs. Journal of Parallel and Dis-
tributed Computing 70(4), 406–415 (2010)

6. Hedetniemi, S.T., Jacobs, D.P., Srimani, P.K.: Maximal matching stabilizes in time
O(m). Information Processing Letters 80(5), 221–223 (2001)

7. Hsu, S.C., Huang, S.T.: A self-stabilizing algorithm for maximal matching. Infor-
mation Processing Letters 43(2), 77–81 (1992)

8. Karaata, M.H., Saleh, K.A.: Distributed self-stabilizing algorithm for finding max-
imum matching. Comput. Syst. Sci. Eng. 15(3), 175–180 (2000)

9. Kimoto, M., Tsuchiya, T., Kikuno, T.: The time complexity of Hsu and Huang’s
self-stabilizing maximal matching algorithm. IEEE Trans. Infrmation and Sys-
tems E93-D(10), 2850–2853 (2010)

10. Manne, F., Mjelde, M., Pilard, L., Tixeuil, S.: A self-stabilizing 2/3-approximation
algorithm for the maximum matching problem. Theoretical Computer Sci-
ence 412(40), 5515–5526 (2011)

11. Tel, G.: Introduction to distributed algorithms. Cambridge university press (2000)

http://doi.acm.org/10.1145/361179.361202

Dynamic Online Multiselection

in Internal and External Memory

Jérémy Barbay1,�, Ankur Gupta2,��, Srinivasa Rao Satti3,� � �,
and Jonathan Sorenson2

1 Departamento de Ciencias de la Computación (DCC)
Universidad de Chile
jeremy@jbarbay.cl

2 Department of Computer Science and Software Engineering
Butler University

{agupta,jsorenso}@butler.edu
3 School of Computer Science and Engineering

Seoul National University
ssrao@cse.snu.ac.kr

Abstract. We consider the dynamic version of the online multiselection
problem for internal and external memory, in which q selection queries
are requested on an unsorted array of N elements. Our internal memory
result is 1-competitive with the offline result of Kaligosi et al.[ICALP
2005]. In particular, we extend the results of Barbary et al.[ESA 2013]
by supporting arbitrary insertions and deletions while supporting online
select and search queries on the array. Assuming that the insertion of
an element is immediately preceded by a search for that element, we
show that our dynamic online algorithm performs an optimal number of
comparisons, up to lower order terms and an additive O(N) term.

For the external memory model, we describe the first online multis-
election algorithm that is O(1)-competitive. This result improves upon
the work of Sibeyn [Journal of Algorithms 2006] when q > m, where m is
the number of blocks that can be stored in main memory. We also extend
it to support searches, insertions, and deletions of elements efficiently.

1 Introduction

The multiselection problem asks for elements of rank ri from the sequence R =
(r1, r2, . . . , rq) on an unsorted array A of size N drawn from an ordered universe
of elements. We define B(Sq) as the information-theoretic lower bound on the
number of comparisons required in the comparison model to answer q queries,

� Supported by Project Regular Fondecyt number 1120054.
�� Supported in part by the Butler Holcomb Awards grant and the Arete Initiative.

� � � Supported by Basic Science Research Program through the National Research
Foundation of Korea (NRF) funded by the Ministry of Education, Science and
Technology (Grant number 2012-0008241).

M.S. Rahman and E. Tomita (Eds.): WALCOM 2015, LNCS 8973, pp. 199–209, 2015.
c© Springer International Publishing Switzerland 2015

200 J. Barbay et al.

where Sq = {si} denotes the queries ordered by rank. We define Δi = si+1 − si,
where s0 = 0 and sq+1 = N . Then,

B(Sq) = logN !−
q∑

i=0

log (Δi!) =

q∑
i=0

Δi log
N

Δi
−O(N).1

The online multiselection problem asks for elements of rank ri, where the se-
quence R is given one element at a time. The lower bound B(Sq) also applies to
search queries in the offline model, as well as both types of queries in the online
model.

The dynamic online multiselection problem supports the search, insert and
delete operations, described below:

– select(r), returns the position of the r-th element in A;
– search(a), returns the position of the largest element y ≤ a from A;
– insert(a), inserts a into A; and
– delete(i), deletes the ith sorted entry from A.

1.1 Previous Work

The offline multiselection problem has been well-studied for the internal memory
model [DM81, Pro95, JM10]. Kaligosi et al. [KMMS05] give an optimal offline
algorithm that uses B(Sq)+o(B(Sq)+O(N) comparisons. In the external memory
model [AV88] with parameters M and B, we define n = N/B and m = M/B.
Sibeyn [Sib06] solves external multiselection using n+nq/m1−ε I/Os, where ε is
any positive constant. The first term comes from creating a static index structure
using n I/Os, and the reminder nq/m1−ε comes from answering q searches using
that index. In addition, this result requires the condition that B ∈ Ω(logm n).
When q = m, Sibeyn’s multiselection algorithm takes O(nmε) I/Os, whereas
the optimum is Θ(n) I/Os. In fact, his bounds are within ω(Bm(Sq)), for any
q ≥ m, where Bm(Sq) is the lower bound on the number of I/Os required (see
Section 4.1 for the definition of Bm(Sq)).

Motwani and Raghavan [MR86] introduced the static online multiselection
problem, where the selection and search queries arrive online, as a “Deferred
Data Structure” for sorting (i.e., the input array is sorted over time, as queries
are answered). They also described deferred data structures for some other prob-
lems in computational geometry. Barbay et al. [BGJ+13] described a simpler
solution and refined their analysis so that it matches the offline results from
Kaligosi et al. [KMMS05]. Ching et al. [YTC90] extended Motwani and Ragha-
van’s solution [MR86] to add the support of the insertion and deletion operators,
with optimal amortized complexity in the worst case over instances with a fixed
number q of queries. Our solution is simpler, and our analysis finer, in the worst
case over instances where the positions hit by the queries are fixed. To the best
of our knowledge, there are no existing dynamic results for the multiselection
problem in the external memory model.

1 We use logb a to refer to the base b logarithm of a. By default, we let b = 2.

Dynamic Online Multiselection in Internal and External Memory 201

1.2 Our Results

For the dynamic online multiselection problem in internal memory, we describe
the first algorithm that supports a sequence R of q selection, search, insert,
and delete operations, of which q′ are search, insert, and delete, using B(Sq) +
o(B(Sq)) +O(N + q′ logN) comparisons.2

For the external memory model [AV88], we describe an online multiselection
algorithm on an unsorted array stored on disk in n blocks, using O(Bm(Sq))
I/Os, where Bm(Sq) is a lower bound on the number of I/Os required to support
the given queries. This result improves upon the work of Sibeyn [Sib06] when
q > m, where m is the number of blocks that can be stored in main memory. We
also extend it to support search, insert, and delete operations using O(Bm(Sq)+
q logB N) I/Os.

2 Background

Our dynamic online multiselection algorithm is an extension of the static algo-
rithm of Barbay et al. [BGJ+13]. To describe our algorithm, we first start by
briefly describing their algorithm in this section. For complete details, we refer
the reader to the description of the static solution [BGJ+13].

2.1 Terminology

We call an element A[i] at position i in array A a pivot if A[1 . . . i − 1] < A[i] ≤
A[i + 1 . . . n].

Query and Pivot Sets. Let R denote a sequence of q selection queries, ordered
by time of arrival. Let St = {s1, s2, . . . , st} denote the first t queries from R,
sorted by position. We also include s0 = 1 and st+1 = n in St for convenience of
notation, since the minimum and maximum are found during preprocessing. Let
Pt = {pi} denote the set of k pivots found by the algorithm when processing St,
sorted by position. Note that p1 = 1, pk = n, V[pi] = 1 for all i, and St ⊆ Pt.

Pivot Tree and Recursion Depth. The pivots chosen by the algorithm form a
binary tree structure, defined as the pivot tree T of the algorithm over time.3

Pivot pi is the parent of pivot pj if, after pi was used to partition an interval, pj
was the pivot used to partition either the right or left half of that interval. The
root pivot is the pivot used to partition A[2..n − 1] due to preprocessing. The
recursion depth, d(pi), of a pivot pi is the length of the path in the pivot tree
from pi to the root pivot. All leaves in the pivot tree are also selection queries,
but it may be the case that a query is not a leaf.

2 For the dynamic result, we make the (mild) assumption that the insertion of an
element is immediately preceded by a search for that element. In that case, we show
that our dynamic online algorithm performs an optimal number of comparisons, up
to lower order terms and an additive O(N) term.

3 Intuitively, a pivot tree corresponds to a recursion tree, since each node represents
one recursive call made during the quickselect algorithm [Hoa61].

202 J. Barbay et al.

Intervals. Each pivot was used to partition an interval in A. Let I(pi) denote the
interval partitioned by pivot pi, and let |I(pi)| denote its length. Such intervals
form a binary tree induced by their pivots. If pi is an ancestor of pivot pj then
I(pj) ⊂ I(pi). The recursion depth of an array element is the recursion depth
of the smallest interval containing that element, which in turn is the recursion
depth of its pivot.

Gaps. Define the query gap ΔSt

i = si+1 − si and similarly the pivot gap ΔPt

i =

pi+1 − pi. By telescoping we have
∑q

i=1 Δ
St

i =
∑k

j=1 Δ
Pt

j = n− 1.

2.2 Description of the Static Algorithm

For the sake of completeness, we briefly outline the following lemma from Bar-
bay et al. [BGJ+13], which describes the optimal online multiselection algorithm
for static data:

Lemma 1 (Static Online Multiselection [BGJ+13]). Given an unsorted
array A of N elements, there exists an algorithm that supports a sequence R of q
online selection queries using B(Sq)(1+o(1))+O(N) comparisons and O(B(Sq))
time in the worst case.

Barbay et al. [BGJ+13] describe a variant of the static algorithm from Kaligosi
et al. [KMMS05]. Both solutions consider runs, which are sorted sequences from A

of length roughly 	 = 1+�log(d(p)+1)� in the interval I(p). They use a bitvector W
to identify the endpoints of runs within each interval. Then, they compute the
median μ of the medians of these sequences, and partition the runs based on μ.
After partitioning, they recurse on the two sets of runs, sending select queries to
the appropriate side of the recursion. To maintain the invariant on run length on
the recursions, they merge short runs of the same size optimally until all but 	
of the runs are again of length between 	 and 2	.

To perform the operation A.select(s), they first use bitvector V to identify the
interval I containing s. If |I| ≤ 4	2, they sort the interval I (making all elements
of I pivots) and answer the query s. Otherwise, they compute the value of 	 for
the current interval, and proceed as in Kaligosi et al. [KMMS05] to answer the
query s.

3 Optimal Online Dynamic Multiselection

In this section, we support insertions and deletions on the array, as well as
selection and search queries. We are originally given the unsorted list A. To
support insert and delete efficiently, we maintain newly-inserted elements in a
separate data structure, and mark deleted elements in A. These insert and delete
operations are occasionally merged to make the array A up-to-date. Let A′ denote
the current array with length N ′. We support two additional operations:

– insert(a), which inserts a into A′, and;
– delete(i), which deletes the ith sorted entry from A′.

Dynamic Online Multiselection in Internal and External Memory 203

3.1 Preliminaries

Our solution uses the dynamic bitvector of Hon et al. [HSS03]. This structure
supports the following operations on a dynamic bitvector V. The rank b(i) opera-
tion tells the number of b bits up to the ith position in V. The selectb(i) operation
gives the position in V of the ith b bit. The insertb(i) operation inserts bit b in
the ith position. The delete(i) operation deletes the bit in the ith position. The
flip(i) operation flips the bit in the ith position.

Note that one can determine the ith bit of V by computing rank1(i)−rank1(i−
1). (For convenience, we assume that rank b(−1) = 0.) The result of Hon et
al. [HSS03, Theorem 1] can be re-stated as follows, for the case of maintaining
a dynamic bit vector (the result of [HSS03] is stated for a more general case).

Lemma 2 ([HSS03]). Given a bitvector V of length N , there exists a data
structure that takes N + o(N) bits and supports rank b and selectb in O(logt N)
time, and insert, delete and flip in O(t) time, for any t where (logN)O(1) ≤
t ≤ N . This structure assumes access to a precomputed table of size N ε, for any
fixed ε > 0.

All the pivots (and their positions) generated during select , search, insert , and
delete operations on array A are maintained as in Barbay et al. [BGJ+13] using
a bitvector V. In addition, we also maintain two bitvectors, each of length N ′:
(i) an insert bitvector I such that I[i] = 1 if and only if A′[i] is newly inserted,
and (ii) a delete bitvector D such that if D[i] = 1, the ith element in A has been
deleted. If a newly inserted item is deleted, it is removed from I directly. Both I

and D are implemented as instances of the data structure described in Lemma 2.
We maintain the values of the newly inserted elements in a balanced binary

search tree T . The inorder traversal of the nodes of T corresponds to the in-
creasing order of their positions in A′. We support the following operations on
this tree: (i) given an index i, return the element corresponding to the ith node
in the inorder traversal of T , and (ii) insert/delete an element at a given inorder
position. By maintaining the subtree sizes of the nodes in T , these operations
can be performed in O(logN) time without having to perform any comparisons
between the elements.

Our preprocessing steps are the same as in the static case. In addition, bitvec-
tors I and D are each initialized to N 0s. The tree T is initially empty.

After performing |A| insert and delete operations, we merge all the elements in
T with the array A, modify the bitvector B appropriately, and reset the bitvectors
I and D (with all zeroes). This increases the amortized cost of the insert and
delete operations by O(1), without requiring additional comparisons.

3.2 Dynamic Online Multiselection

We now describe how to support the operators A′.insert(a), A′.delete(i),
A′.select(i), and A′.search(a).

204 J. Barbay et al.

A′.insert(a). First, we search for the appropriate unsorted interval [, r] contain-
ing a, using a binary search on the original (unsorted) array A. Now perform
A.search(a) on interval [, r] (choosing which subinterval to expand based on the
insertion key a) until a’s exact position j in A is determined. The original array A

must have chosen as pivots the elements immediately to its left and right (posi-
tions j − 1 and j in array A); hence, one never needs to consider newly-inserted
pivots when choosing subintervals. Insert a in sorted order in T at position
I.select1(j) among all the newly-inserted elements. Calculate j′ = I.select0(j),
and set a’s position to j′′ = j′ − D.rank1(j

′). Finally, we update our bitvectors
by performing I.insert1(j

′′) and D.insert0(j
′′). Note that, apart from the search

operation, no other operation in the insertion procedure performs comparisons
between the elements.

A′.delete(i). Compute i′ = D.select0(i). If i
′ is newly-inserted (i.e., I[i′] = 1),

then remove the node (element) with inorder number I.rank1(i
′) from T . Per-

form I.delete(i′) and D.delete(i′). If instead i′ is an older entry, perform D.flip(i′).
In other words, we mark position i′ in A as deleted even though the corresponding
element may not be in its proper place.4

A′.select(i). If I[i] = 1, return the element corresponding to the node with
inorder number I.rank1(i) in T . Otherwise, compute i′ = I.rank0(i)−D.rank1(i),
and return A.select(i′).

A′.search(a). Search for the unsorted interval [, r] containing a using a binary
search on the original (unsorted) array A. Then perform A.search(a) on inter-
val [, r] until a’s exact position j is found. If a appears in A (which we discover
through search), we need to check whether it has been deleted. We compute
j′ = I.select0(j) and j′′ = j′ − D.rank1(j

′). If D[j′] = 0, return j′′. Otherwise,
it is possible that the item has been newly-inserted. Compute p = I.rank1(j

′),
which is the number of newly-inserted elements that are less than or equal to a.
If T [p] = a, then return j′′; otherwise, return failure.

We now analyze the above algorithm to show that the above algorithm achieves
the comparison cost as in Theorem 1, and a running time as in Corollary 1.

Theorem 1 (Dynamic Online Multiselection). Given an unsorted array A′

of N elements, we provide a dynamic online algorithm that can support q ∈ O(N)
select, search, insert, and delete operations, of which r are search, insert, or
delete, using at most B(Sq)(1 + o(1)) +O(N + r logN) comparisons.

Proof. LetN ′ denote the current length of the dynamic array A′, after a sequence
of queries and insertions. Let Q be the sequence of q selection operations per-
formed (either directly or indirectly through other operations) on A′, ordered by
time of arrival. Let Sq be the queries of Q, ordered by position. We now analyze

4 If a user wants to delete an item with value a, one could simply search for it first to
discover its rank, and then delete it using this function.

Dynamic Online Multiselection in Internal and External Memory 205

the number of comparisons performed by a sequence of queries and insert and
delete operations.

We consider the case when the number of insert and delete operations is less
thanN . In other words,we are between two re-buildings of our dynamic data struc-
ture. Recall that each of the r search, insert , and delete operations in the sequence
will perform a constant number of search operations. To execute these searches,
we requireO(r logN ′) comparisons. Note that our algorithmdoes not perform any
comparisons for delete(i) operations, until some other query is in the same interval
as i. The deleted elementwill participate in the other costs (merging, pivot-finding,
and partitioning) for these other queries, but its contribution can be bounded by
O(logN), which we have as a credit.

Since a delete operation does not perform any additional comparisons beyond
those needed to perform a search, we assume that all the updates are insertions in
the rest of this section. Since each inserted element becomes a pivot immediately,
it does not contribute to the comparison cost of any other select operation. Also,
note that in the algorithm of Lemma 1, no pivot is part of a run and hence cannot
affect the choice of any future pivot.

Since Q is essentially a set of q selection queries, we can bound its total
comparison cost for selection queries by Lemma 1, which gives a bound of
B(Sq)(1 + o(1)) +O(N). This proves the theorem. ��

By modifying Theorem 1 to account for the costs of the dynamic bit vector
from Lemma 2, we obtain the following result.

Corollary 1. Given a dynamic array A′ of N original elements, there exists a
dynamic online data structure that can support q = O(N) select, search, insert,
and delete operations, of which r are search, insert and delete and u of which
are insert and delete, we provide a deterministic online algorithm that uses time
within O(B(Sq) + q logt N + r logN + ut), for any t where (logN)O(1) ≤ t ≤ N .

4 External Online Multiselection

In the external memory model, we consider only two memory levels: the internal
memory of sizeM , and the (unbounded) disk memory, which operates by reading
and writing data in blocks of size B. We refer to the number of items of the input
by N . For convenience, we define n = N/B and m = M/B as the number of
blocks of input and memory, respectively. We make the reasonable assumption
that 1 ≤ B ≤ M/2. In this model, we assume that each I/O read or write is
charged one unit of time, and that an internal memory operation is charged no
units of time. To achieve the optimal sorting bound of SortIO(N) ∈ Θ(n logm n)
in this setting, it is necessary to make the tall cache assumption [BF03]: M ∈
Ω(B1+ε), for some constant ε > 0, and we will make this assumption for the
remainder of the paper.

Suppose we are given an unsorted array A of length N stored in n = N/B
blocks in the external memory. The techniques that we use in internal memory
are not immediately applicable to the external memory model: in the extreme

206 J. Barbay et al.

case where we have q = N queries, the internal memory solution would re-
quire O(n log2(n/m)) I/Os. This compares poorly to the optimal O(n logm n)
I/Os performed by the optimal mergesort algorithm for external memory.

4.1 A Lower Bound for Multiselect in External Memory

As in the case of internal memory, the lower bound on the number of I/Os
required to perform a given set of selection queries can be obtained by subtracting
the number of I/Os required to sort the elements between the ‘query gaps’ from
the sorting bound. More specifically, let St = {si} be the first t queries from a
query sequence R, sorted by position, and for 1 ≤ i ≤ t, let ΔSt

i := si+1 − si be
the query gaps, as defined in Section 2.1. Then the lower bound on the number
of I/Os required to support the queries in St is given by

Bm(St) := n logm n−
t∑

i=0

(
ΔSt

i /B
)
logm

(
ΔSt

i /B
)
−O(n),

where we assume that logm

(
ΔSt

i /B
)
= 0 when ΔSt

i < mB = M in the above

definition. Note that Bm(St) ∈ Ω(n) for all t ≥ 1.

4.2 Partitioning in External Memory

The main difference between our algorithms for internal and external memory
is the partitioning procedure. In the internal memory algorithm, we partition
the values according to a single pivot, recursing on the half that contains the
answer. In the external memory algorithm, we modify this binary partition to a
d-way partition, for some d ∈ Θ(m), by finding a sample of d “roughly equidis-
tant elements.” The next lemma describes how to find such a sample, and then
partition the range of values into d+ 1 subranges with respect to the sample.

As is usual in the external memory model [AV88], we assume that B ∈
Ω(logm n)—which allows us to store a pointer to a memory block of the input
using a constant number of blocks. This is similar to the word-size assumption
for the transdichotomous word RAM model [FW93]. In addition, the algorithm
of Sibeyn [Sib06] only works under this assumption, though this is not explicitly
mentioned.

Lemma 3. Given an unsorted array A containing N elements in external mem-
ory and an integer parameter d < m/2, one can perform a d-way partition in
O(n+d) I/Os, such that the size of each partition is in the range [n/(2d), 3n/(2d)].

Proof. Let s = �
√

m/4�. We perform the s-way partition described in [AV88]
to obtain s + 1 super-partitions. We reapply the s-way partitioning method to
each super-partition to obtain d < m/2 partitions in total.

Finally, our algorithm scans the data, keeping one input block and d+1 output
blocks in main memory. An output block is written to external memory when it

Dynamic Online Multiselection in Internal and External Memory 207

is full, or when the scan is complete. The algorithm performs n I/O to read the
input, and at most (n + d + 1) I/Os to write the output into d + 1 partitions,
thus showing the result. ��

4.3 Algorithm Achieving O(Bm(Sq)) I/Os

We now show that our lower bound is asymptotically tight, by describing an
O(1)-competitive algorithm.

Theorem 2 (External Static Online Multiselection). Given an unsorted
array A occupying n blocks in external memory, we provide a deterministic algo-
rithm that supports a sequence R of q online selection queries using O(Bm(Sq)))
I/Os under the condition that B ∈ Ω(logm n).

Proof. Our algorithm uses the same approach as the simple internal memory
algorithm described for the static version of the problem [BGJ+13], except that
it chooses d− 1 pivots at once. In other words, each node v of the pivot tree T
containingΔv elements has a branching factor of d. We subdivide itsΔv elements
into d partitions using Lemma 3. This requires O(δv+d) I/Os, where δv = Δv/B.

We also maintain the bitvector V of length N , as described before. For each
A.select(i) query, we access position V[i]. If V[i] = 1, return A[i], else scan left and
right from the ith position to find the endpoints of this interval Ii using |Ii|/B
I/Os. The analysis of the remaining terms follows directly from the internal
memory algorithm, giving O(Bm(Sq)) +O(n) = O(Bm(Sq)) I/Os. ��

To add support for the search operator, instead of taking O(logN) time per-
forming binary search on the blocks of V, we build a B-tree T maintaining all piv-
ots from A. (During preprocessing, we insert A[1] and A[n] into T .) The B-tree T
will be used to support search queries in O(logB N) I/Os instead of O(logN)
I/Os. We modify the proof of Theorem 2 to obtain the following result.

Corollary 2. Given an unsorted array A occupying n blocks in external mem-
ory, we provide a deterministic algorithm that supports a sequence R of q online
selection and search queries using O(Bm(Sq) + q logB N) I/Os under the condi-
tion that B ∈ Ω(logm n).

Proof. The first term follows directly from the proof of Theorem 2. Now we
explain the source of the second term, q logB N).

We build a B-tree T maintaining all pivots from A. (During preprocessing, we
insert A[1] and A[n] into T .) Naively, for q queries, we must insert qm logm N new
pivots into T . The B-tree construction for these pivots would require O(min{qm
(logm N), N}(logB N)) I/Os, which is prohibitive.

Instead, we notice that the pivots for an individual query z are all inserted in
some unsorted interval Iz = [l, r], where l and r are consecutive leaves of the pivot
tree T (in left-to-right level order). For z, we may spend logB(min{qm(logm N),
N}) ∈ O(logB N) I/Os navigating to Iz using T . Our approach is to insert all
O(m logm N) = O((M/B) logmN) ⊆ O(M) pivots within Iz in a single batched

208 J. Barbay et al.

manner. This process can easily be done in a bottom-up fashion by merging
nodes in the tree T of an implicit B-tree T ′ for the O(M) pivots using O(m)
I/Os.

Thus, we haveO(min{qm logm N,N}) pivots in T , and using the batched inser-
tionprocess above,weonlyneedO(min{qm(logm N)/B,N/B}) = O(min{qm, n})
I/Os. We must also add O(q logB N) I/Os to navigate to the correct interval for
each query.

For q queries, the algorithm takes O(Bm(Sq)) +O(n) +O(q logB N) = O(Bm

(Sq) + q logB N) I/Os, matching the result. ��

Combining the ideas from Corollary 2 and Theorem 1, we can dynamize the
above algorithm. The proof follows from the fact that we can maintain the bit
vectors I and D described in the multiselection algorithms of Section 3 using a
B-tree in external memory.

Theorem 3 (External Dynamic Online Multiselection). Given an un-
sorted array A occupying n blocks in external memory, we provide a determinis-
tic algorithm that supports a sequence R of q online select, search, insert, and
deleteoperations using O(Bm(Sq)+ q logB N) I/Os under the condition that B ∈
Ω(logm n).

Note that if q ∈ O(Bm(Sq)/ logB N), then Corollary 2 and Theorem 3 require
only O(Bm(Sq)) I/Os, matching the bounds from Theorem 2. Hence, our results
are asymptotically optimal when Bm(Sq)/q = O(logB N).

References

[AV88] Aggarwal, A., Vitter, J.S.: The input/output complexity of sorting and related
problems. Commun. ACM 31(9), 1116–1127 (1988)

[BF03] Brodal, G., Fagerberg, R.: On the limits of cache-obliviousness. In: Proceedings
of the ACM Symposium on Theory of Computing, pp. 307–315 (2003)

[BGJ+13] Barbay, J., Gupta, A., Jo, S., Rao, S.S., Sorenson, J.: Theory and imple-
mentation of online multiselection algorithms. In: Bodlaender, H.L., Italiano, G.F.
(eds.) ESA 2013. LNCS, vol. 8125, pp. 109–120. Springer, Heidelberg (2013)

[DM81] Dobkin, D.P., Ian Munro, J.: Optimal time minimal space selection algorithms.
J. ACM 28(3), 454–461 (1981)

[FW93] Fredman, M.L., Willard, D.E.: Surpassing the information theoretic bound
with fusion trees. J. Comput. Syst. Sci. 47(3), 424–436 (1993)

[Hoa61] Hoare, C.A.R.: Algorithm 65: find. Commun. ACM 4(7), 321–322 (1961)
[HSS03] Hon, W.-K., Sadakane, K., Sung, W.-K.: Succinct data structures for search-

able partial sums. In: Proceedings of the International Symposium on Algorithms
and Computation, pp. 505–516 (2003)

[JM10] Jiménez, R.M., Mart́ınez, C.: Interval Sorting. In: Abramsky, S., Gavoille, C.,
Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS,
vol. 6198, pp. 238–249. Springer, Heidelberg (2010)

[KMMS05] Kaligosi, K., Mehlhorn, K., Munro, J.I., Sanders, P.: Towards optimal
multiple selection. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C.,
Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 103–114. Springer, Heidelberg
(2005)

Dynamic Online Multiselection in Internal and External Memory 209

[MR86] Motwani, R., Raghavan, P.: Deferred data structuring: Query-driven prepro-
cessing for geometric search problems. In: Symposium on Computational Geome-
try, pp. 303–312 (1986)

[Pro95] Prodinger, H.: Multiple quickselect - Hoare’s find algorithm for several ele-
ments. Inf. Process. Lett. 56(3), 123–129 (1995)

[Sib06] Sibeyn, J.F.: External selection. J. Algorithms 58(2), 104–117 (2006)
[YTC90] Ching, Y.-T., Mehlhorn, K., Smid, M.H.M.: Dynamic deferred data structur-

ing. Information Processing Letters 35(1), 37–40 (1990)

Competitive Analysis
for Multi-objective Online Algorithms

Morten Tiedemann�, Jonas Ide, and Anita Schöbel

DFG RTG 1703, Institute for Numerical and Applied Mathematics,
University of Göttingen, Lotzestr. 16-18, D-37083 Göttingen, Germany

{m.tiedemann,j.ide,schoebel}@math.uni-goettingen.de

Abstract. So far, the concept of competitive analysis for online problems
is in general applied to single-objective online problems. However, many
online problems can be extended to multi-objective online problems in a
natural way, but a uniform theory for the analysis of these problems is not
provided in the literature. We expand the concept of competitive analysis
to multi-objective online problems and achieve a consistent framework for
the analysis of multi-objective online problems. Furthermore, we analyze
the multi-objective time series search problem and present deterministic
algorithms with best possible competitive ratios.

Keywords: competitive analysis, online optimization, multi-objective
optimization, time series search.

1 Introduction

Online optimization is a helpful tool for various single-objective decision prob-
lems. However, online problems may also be of multi-objective nature. Imagine
you want to sell your antique car and you are facing a sequence of offers by dif-
ferent people which you have to reject or accept immediately since the potential
buyers are not willing to wait for a decision at a later time. On the one hand,
you are eager to reach a high price, on the other hand, you want to know your
antique car in safe keeping. Consequently, you evaluate each offer not only by
the price, but also by your appreciation for the potential buyer. This leads to a
bi-objective online problem.

In general, the concept of competitive analysis for online problems is only
applied to single-objective online problems. However, the decision process of
many online problems is subject to multiple objectives in real-world situations,
but a uniform theory for the analysis of multi-objective online problems is not
provided in the literature. In this work, we close this gap and expand the concept
of competitive analysis to multi-objective online problems.

1.1 Previous Work

For an overview on the topic of competitive analysis for single-objective online
problems, we refer to the textbook by Borodin and El-Yaniv [2], and, for an
� Corresponding author.

M.S. Rahman and E. Tomita (Eds.): WALCOM 2015, LNCS 8973, pp. 210–221, 2015.
c© Springer International Publishing Switzerland 2015

Competitive Analysis for Multi-objective Online Optimization 211

overview on the topic of multi-objective optimization, we refer to the textbook
by Ehrgott [3].

To the best of our knowledge, there exists no general definition of competitive
analysis for multi-objective online problems. However, some approaches in the
field of online optimization are related to multi-objective online optimization.

Resource augmentation refers to a relaxed notion of competitive analysis, in
which the online player is allowed more resources than the adversary, see for ex-
ample [7],[9]. Competitive ratios are then stated with respect to a fixed resource
augmentation, which can be seen as a bi-objective online problem. Furthermore,
for preemptive online scheduling problems, the trade-off between the competi-
tive ratio and the cost of preemption is considered for example in [8], which is
also a bi-objective setting. However, the competitive ratios considered for these
problems are the classical single-objective competitive ratios, while we derive a
notion for a multi-objective competitive ratio, i.e., for defining a competitive
ratio for a multi-objective online problem.

Online algorithms are closely related to approximation algorithms. In the field
of multi-objective optimization, a solution x of a multi-objective maximization
problem is called a ρ-approximation of a solution x′ if fi(x) ≥ ρ · fi(x′) for
i = 1, . . . , n, where fi, i = 1, . . . , n are the components of the objective function
and 0 < ρ ≤ 1. A set of feasible solutions X ′ is called a ρ-approximation of a
set of efficient solutions if, for every feasible solution x, X ′ contains a feasible
solution x′ that is a ρ-approximation of x, see for example [1],[5]. In our ap-
proach, the output generated by an online algorithm is a single solution instead
of a set of solutions, due to the online nature of the problem. Therefore, the
competitiveness of a multi-objective online algorithm as introduced in this work
is not directly deducible from the concept of ρ-approximation, but in some cases
a close relation between our approach of competitive analysis for multi-objective
online algorithms and multi-objective approximation algorithms is given.

1.2 Our Contribution

We introduce a general framework for the competitive analysis of multi-objective
online problems which expands the known theory of competitive analysis for
single-objective online problems to the multi-objective case. The fact that solu-
tions to multi-objective optimization problems are sets rather than singletons as
in the case of single objective optimization problems, requires a proper adapta-
tion of the definition of competitiveness for multi-objective online problems.

For c =
(
c1, . . . , cn

)ᵀ, we define a multi-objective online algorithm alg as
c-competitive if, for each input sequence, there exists an efficient solution to the
offline problem for which alg is ci-competitive (in the original sense) in the
i-th component for i = 1, . . . , n. Additionally, a multi-objective online algorithm
alg is labeled as strongly c-competitive if, for each input sequence, alg is ci-
competitive (in the original sense) in the i-th component for i = 1, . . . , n for all
efficient solutions to the offline problem. For f : Rn '→ R, the infimum over the
set of all values f(c) such that alg is (strongly) c-competitive is then defined as
the (strong) competitive ratio with respect to f of alg.

212 M. Tiedemann, J. Ide, and A. Schöbel

Furthermore, we analyze the multi-objective time series search problem by
means of the introduced notions of competitiveness with respect to functions
f1(c) = maxi=1,...,n ci, f2(c) = 1

n

∑n
i=1 ci, and f3(c) = n

√∏n
i=1 ci, and present

deterministic algorithms featuring the best possible (strong) competitive ratios.
The rest of this paper is structured as follows. In Sect. 2, we formally intro-

duce multi-objective online problems and the concept of competitive analysis
for multi-objective online problems. In Sect. 3, the multi-objective time series
search problem is defined and deterministic competitive online algorithms as well
as matching lower bounds on the competitive ratios with respect to f1, f2, and
f3 achievable by any deterministic algorithm are presented. Finally, Sect. 4 con-
tains a summary of our contribution and directions for future research.

2 Competitive Analysis for Multi-Objective Online
Algorithms

In this section, we first introduce the notion of a multi-objective online prob-
lem and, secondly, define the concept of competitive analysis for multi-objective
online problems.

2.1 Multi-Objective Online Problems

In the following, we define the concept of competitive analysis for multi-objective
online problems with respect to minimization problems. If not mentioned other-
wise, the definition for the corresponding maximization problem is analogous.

First of all, we define a multi-objective optimization problem P as a triple
(I,X , f), consisting of a set of inputs I, a set of feasible outputs (or solutions)
X (I) ∈ Rn associated with every input I ∈ I, and the objective function f given
as f : I × X '→ Rn

+ where, for x ∈ X (I), f(I,x) represents the objective value
of the solution x with respect to input I ∈ I.

Given input I ∈ I, an algorithm alg for a multi-objective optimization prob-
lem P computes a feasible solution alg[I] ∈ X (I). The objective associated with
this feasible output is denoted by alg(I) = f(I,alg[I]). According to [3, p. 24],
a feasible solution x̂ ∈ X (I) is called efficient if there is no other x ∈ X (I)
such that f(I, x) # f(I, x̂), where # denotes a componentwise order, i.e., for
x, y ∈ Rn, x # y :⇔ xi ≤ yi, for i = 1, . . . , n, and x �= y. An optimal algorithm
opt for P is such that, for all inputs I ∈ I, opt[I] is the set of efficient solutions
to P , i.e., opt[I] = {x ∈ X (I) |x is an efficient solution to P}. The objective
associated with a solution x ∈ opt[I] is denoted by opt(x).

The definition of a multi-objective online problem is now given analogously to
the definition of a single-objective online optimization problem in [2, p. 2]. Ac-
cordingly, multi-objective online problems are multi-objective optimization prob-
lems in which the input is revealed bit by bit and an output must be produced
in an online manner, i.e., after each new bit of input a decision affecting the
output must be made.

Competitive Analysis for Multi-objective Online Optimization 213

2.2 The Competitive Ratio and Competitiveness

The study of online problems is concerned with assessing the quality of cor-
responding online algorithms and, ultimately, the question of which is the best
algorithm. We carry this leading question forward to multi-objective online prob-
lems. In the following, we list conditions that are supposed to be met by an
appropriate measure for the quality of multi-objective online algorithms:

Condition 1: Worst Case Model. Just as in the case of competitive analysis
for single-objective algorithms (cf. [6, p.4]), we aim for a worst case model
for multi-objective competitive analysis that holds for any distribution in
order to avoid the problems of probabilistic models.

Condition 2: Worst Case Ratio. Furthermore, a standard worst case anal-
ysis of multi-objective online algorithms leads to the same pitfall as in the
single-objective case (cf. [6, p.3]): Due to the incomplete knowledge of the
online algorithm, it is often possible to ensure that each decision made by
an online algorithm is the worst possible decision with respect to all compo-
nents. For example, consider the multi-objective time series search problem
(see Sect. 3): If a sequence consisting only of the minimal price vector is
revealed, the online player always ends up with the minimal price vector
regardless of his strategy.
Therefore, following the underlying idea of competitive analysis, it is desir-
able to consider the ratio of the algorithm’s performance and the optimal
performance in every component on the same problem instance.

Condition 3: Independence from Efficient Solutions. Usually, the solution
to a multi-objective optimization problem is given by a set of efficient solutions,
compare, e.g., Ehrgott [3]. However, due to the online nature of our approach
and the corresponding urge to obtain an autonomous algorithm, we assume a
multi-objective online algorithmto compute a single solution instead of a set of
solutions. The competitive ratio should nevertheless be independent of a par-
ticular solution chosen from the set of efficient solutions of the offline problem.

Condition 4: Total Order. So as to compare different multi-objective online
algorithms, a total order on the competitive ratio of multi-objective online
algorithms is necessary.

These requirements lead us to the following definition of c-competitiveness for
multi-objective online algorithms:

Definition 1. A multi-objective online algorithm alg is c-competitive if for all
finite input sequences I there exists an efficient solution x ∈ opt[I] such that

alg(I)i ≤ ci · opt(x)i + αi, for i = 1, . . . , n ,

where c =
(
c1, . . . , cn

)ᵀ and α ∈ Rn is a constant vector independent of I.

Note that c is a vector instead of a scalar as in the classic definition of
competitiveness for single-objective online algorithms. A multi-objective online

214 M. Tiedemann, J. Ide, and A. Schöbel

algorithm which accomplishes this postulation even for all efficient solutions is
called strongly c-competitive:

Definition 2. A multi-objective online algorithm alg is strongly c-competitive
if for all finite input sequences I and all efficient solutions x ∈ opt[I],

alg(I)i ≤ ci · opt(x)i + αi, for i = 1, . . . , n ,

where c =
(
c1, . . . , cn

)ᵀ and α ∈ Rn is a constant vector independent of I.

Applying these definitions to single-objective problems results in the clas-
sical single-objective competitive ratio for both Definition 1 and Definition 2.
Obviously, every strongly c-competitive multi-objective online algorithm is also
c-competitive. For maximization problems, the inequalities in Definitions 1 and 2
are replaced by alg(I)i ≥ 1/ci · opt(x)i + αi.

The definition of competitiveness for multi-objective online algorithms is a
worst case ratio due to the consideration of all finite input sequences, as required
by Conditions 1 and 2. Furthermore, the definition takes the set of all efficient
offline solutions into account and hence does not rely on a particular efficient
solution, as demanded by Condition 3.

In order to achieve a comparable competitive ratio of multi-objective online
algorithms as demanded by Condition 4, a total order on the competitiveness of
an online algorithm is necessary. This gives rise to the following definition of the
competitive ratio for multi-objective online algorithms:

Definition 3. Let f : Rn '→ R. The infimum over the set of all values f(c) such
that alg is (strongly) c-competitive is called the (strong) competitive ratio with
respect to f of alg and is denoted by (Rf

s (alg)) Rf (alg)

The choice of the function f grants a certain degree of freedom that is left
to the analyst of the online algorithm (in the style of the decision maker in the
field of multi-objective optimization). However, f has to be chosen such that
f(c) ≤ f(ĉ) if ci ≤ ĉi for i = 1, . . . , n in order to guarantee a reasonable setting.

In this work, we consider three intuitive choices for the function f . First of all,
consider f1 given as f1(c) := maxi=1,...,n ci. By this choice, the competitive ratio
is guaranteed for each component of the objective function. We label this choice
as worst-component competitiveness. Further possible choices for the function
f are given by f2(c) := 1

n

∑n
i=1 ci and f3(c) := n

√∏n
i=1 ci. In these cases, the

arithmetic and geometric mean value of the components’ competitive ratios is
taken, which is why these choices are labeled as arithmetic- and geometric-mean-
component competitiveness.

The definitions of a (strongly) c-competitive algorithm and the (strong)
competitive ratio with respect to f are given in the same way for randomized
multi-objective online algorithms.

Competitive Analysis for Multi-objective Online Optimization 215

3 The Multi-objective Time Series Search Problem

In this section, the concept of competitive analysis for multi-objective online
problems is applied to the classic time series search problem, where an online
player is searching for the maximum (or minimum) price in a sequence of prices.
At the beginning of each time period t = 1, . . . , T , a price pt is revealed to
the online player and the player must decide whether to accept or reject the
price pt. When the player accepts a price pt, the game ends and the return for
the player is pt.

Within the framework of competitive analysis, the time series search problem
is initially investigated in [4] and competitive search algorithms are provided.
Here, it is assumed that prices are chosen from the real interval [m,M], where
0 < m ≤ M and the online player can always end the game by accepting the
minimum price m; otherwise the adversary is too powerful and there exist no
competitive algorithms for the problem. The ratio ϕ = M/m is defined as the
fluctuation ratio of possible prices. The authors prove that, if only the fluctuation
ratio ϕ is known to the online player, no better ratio than the trivial one of ϕ
is achievable. Therefore, suppose that both m and M are known to the online
player. Then, the best possible deterministic online algorithm is the reservation
price policy rpp, where the algorithm accepts the first price greater than or
equal to p� =

√
Mm, achieving a competitive ratio of √ϕ, as shown in [4].

The competitive ratio can be improved by means of randomized algorithms.
Assume that ϕ = 2k. The randomized algorithm expo presented in [4], which
chooses the reservation price policy with reservation price m2l, l = 0, . . . , k − 1
with probability 1/k before the start of the game, is O (log(ϕ))-competitive,
which is within a constant factor of the best possible competitive ratio. This
result also holds when ϕ is not a power of 2. The best possible competitive ratio
is achieved by algorithms that obey threat-based policies, cf. [4].

In order to investigate the time series search problem in a multi-objective
setting, a price vector is introduced, i.e., at each time period t = 1, . . . , T , a
request rt ∈ Rn

+ is revealed to the online player, where rt =
(
p1t , . . . , p

n
t

)ᵀ,
and the player must decide whether to accept or reject rt. When the player
accepts a price vector rt, the game ends and the return for the player is rt. It
is assumed that, for i = 1, . . . , n, pit is chosen from the real interval [mi,Mi],
where 0 < mi ≤ Mi. For i = 1, . . . , n, the ratios ϕi = Mi/mi are defined as the
fluctuation ratios of possible prices for the price component i. The online player
can always end the game by accepting the minimum price vector

(
m1, . . . , mn

)
.

Without loss of generality, we assume for the fluctuation ratios that M1/m1 ≥
M2/m2 ≥ · · · ≥ Mn/mn.

3.1 Worst-Component Competitive Analysis

In this section, a competitive analysis with respect to f1(c) = maxi=1,...,n ci
for the multi-objective time series search problem is presented, i.e., a worst-
component competitive analysis. Consider the algorithm rpp-high, which

216 M. Tiedemann, J. Ide, and A. Schöbel

concentrates only on the component with the highest fluctuation ratio and
achieves the best possible competitive ratio (see also Fig. 1):

for t = 1, . . . , T do
Accept rt =

(
p1t , . . . , p

n
t

)ᵀ if p1t ≥
√
m1M1.

end

Algorithm 1. Multi-objective reservation price policy rpp-high

p1
t

p2
t

m1 M1

m2

M2

√
m2M2

√
m1M1

Fig. 1. Acceptance region of rpp-high

p1
t

p2
t

m1 M1

m2

M2

z
�

M2

z
�

m1

√
m2M2

√
m1M1

p1
t
· p2

t
= z�

Fig. 2. Acceptance region of rpp-mult

Theorem 1. The strong competitive ratio with respect to f1(c) = maxi=1,...,n ci
of rpp-high is given by

Rf1
s (rpp-high) = max

{√
M1

m1
,
M2

m2

}
.

Proof. We distinguish two cases with respect to the sequence σ = (r1, . . . , rT)
revealed by the adversary:

Case 1: there exists a request rt′ with p1t′ ≥
√
m1M1.

In this case, the online player accepts the first request rt with p1t ≥
√
m1M1.

However, the adversary is able to reveal a further request rj with pij = Mi for
i = 1, . . . , n, which is then the only efficient offline solution and, therefore,
the optimal solution for the adversary, i.e., opt =

(
M1, . . . , Mn

)ᵀ.
In the worst case with respect to all sequences, the request rt accepted by
the online player is such that p1t =

√
m1M1 and pit = mi for i = 2, . . . , n.

According to Definition 3, the competitive ratio is in this case given by

max

{
M1√
m1M1

,
M2

m2
, . . . ,

Mn

mn

}
= max

{√
M1

m1
,
M2

m2

}
, (1)

since M1/m1 ≥ M2/m2 ≥ · · · ≥ Mn/mn.

Competitive Analysis for Multi-objective Online Optimization 217

Case 2: for all rt, t = 1, . . . , T , we have p1t <
√
m1M1.

In this instance, the online player does not accept any request and has to
settle in the worst case for the lower bounds in each component, i.e. alg =(
m1, . . . ,mn

)ᵀ. The adversary is able to offer (and accept) any request rj
for which the first price component is smaller than but arbitrarily close to√
m1M1, i.e., p1j =

√
m1M1 − ε, ε > 0. For the other components the upper

bound is chosen, i.e., pij = Mi for i = 2, . . . , n. Ignoring the ε, the competitive
ratio is in this case given by

max

{√
m1M1

m1
,
M2

m2
, . . . ,

Mn

mn

}
= max

{√
M1

m1
,
M2

m2

}
, (2)

since M1/m1 ≥ M2/m2 ≥ · · · ≥ Mn/mn.

The analysis above holds for all efficient solutions. Thus, the strong competitive
ratio Rf1

s (rpp-high) results in

Rf1
s (rpp-high) = max

{√
M1

m1
,
M2

m2

}
. (3)

��

With respect to a worst-component competitive analysis, rpp-high is the
best possible deterministic algorithm for the multi-objective time series search
problem which is proven by the following theorem:

Theorem 2. No deterministic online algorithm for the multi-objective time se-
ries search problem can achieve a smaller worst-component competitive ratio
than max

{√
M1/m1, M2/m2

}
.

Proof. If
√

M1/m1 ≤ M2/m2, the adversary offers a request

r1 =
(
m1, M2, m3, . . . ,mn

)ᵀ
.

If the online player rejects r1, no further requests are revealed, the online player
has to settle for the lower bounds

(
m1, . . . ,mn

)ᵀ, and the adversary accepts r1.
In this case, the competitive ratio is given by the trivial competitive ratio M1/m1.
Otherwise, if the online player accepts r1, the adversary reveals another request
r2 =

(
M1, . . . ,Mn

)ᵀ and accepts this request. Thus, the competitive ratio is in
this case given by

max

{
m1

m1
,
M2

m2
,
m3

m3
, . . . ,

mn

mn

}
=

M2

m2
=: θ1 . (4)

If
√

M1/m1 > M2/m2, the adversary offers a request

r1 =
(√

m1M1, m2, . . . ,mn

)ᵀ
.

218 M. Tiedemann, J. Ide, and A. Schöbel

If the online player rejects r1, no further requests are revealed, the online player
has to settle for the lower bounds

(
m1, . . . ,mn

)ᵀ, and the adversary accepts r1.
In this case, the competitive ratio is given by

max

{√
m1M1

m1
,
m2

m2
, . . . ,

mn

mn

}
=

√
M1

m1
=: θ2 . (5)

Otherwise, if the online player accepts r1, the adversary reveals another re-
quest r2 =

(
M1, . . . ,Mn

)ᵀ and accepts this request. Thus, the competitive ratio
is in this case given by

max

{
M1√
m1M1

,
M2

m2
, . . . ,

Mn

mn

}
=

√
M1

m1
=: θ3 . (6)

By means of θ1, θ2, and θ3, no deterministic algorithm for the time series search
problem can achieve a smaller worst-component competitive ratio ratio than

max {θ1, θ2, θ3} = max

{√
M1

m1
,
M2

m2

}
= Rf1(rpp-high) . (7)

��

With respect to a worst-component competitive analysis, only the component
with the highest fluctuation ratio is decisive, and, therefore, the best possible
deterministic single-objective policy applied to this component achieves the best
competitive ratio.

3.2 Mean-Component Competitive Analysis

In this section, we first present a competitive analysis with respect to f2(c) =
1
n

∑n
i=1 ci for the multi-objective time series search problem. For the sake of

simplicity, we consider the case n = 2, i.e., the bi-objective time series search
problem. The algorithm rpp-mult achieves the best possible arithmetic-mean-
component competitive ratio (see also Fig. 2):

for t = 1, . . . , T do
Accept rt =

(
p1t , p

2
t

)ᵀ if p1t · p2t ≥ z�, where z� =
√
m1M1m2M2.

end

Algorithm 2. Multi-objective reservation price policy rpp-mult

Theorem 3. The strong competitive ratio with respect to f2(c) =
1
n

∑n
i=1 ci of

rpp-mult for the bi-objective time series search problem is given by

Rf2
s (rpp-mult) = 4

√
M1M2

m1m2
.

Proof. We distinguish two cases with respect to the sequence σ = (r1, . . . , rT)
revealed by the adversary:

Competitive Analysis for Multi-objective Online Optimization 219

Case 1: there exists a request rt′ with p1t · p2t ≥ z�.
In this case, the online player accepts the first request rt with p1t ·p2t ≥ z�, i.e.,
alg =

(
p1t , p

2
t

)ᵀ. However, the adversary is able to reveal a further request rj
with pij = Mi for i = 1, 2, which is then the only efficient offline solution and,
therefore, the optimal solution for the adversary, i.e., opt =

(
M1, M2

)ᵀ.
In the worst case with respect to all sequences, the request rt accepted by
the online player is such that p1t · p2t = z�. The set of all points in [m1,M1]×
[m2,M2] satisfying p1t · p2t = z� is given by

I1 =

{(
x, z�

x

)ᵀ | x ∈ [m1,M1] and
z�

M2
≤ x ≤ z�

m2

}
. (8)

According to Definition 3, the competitive ratio is defined as the infimum
over the set of all values f2(c) such that

algi ≥
1

ci
opti, for i = 1, . . . , n ,

where alg =
(
x, z�/x

)ᵀ, x ∈ I1, and opt =
(
M1, M2

)ᵀ. Since f2(c) =
1
n

∑
i=1,...,n ci, the competitive ratio is in this case given by

1

2
max
x∈I1

{
M1

x
+

M2x

z�

}
=

1

2

(
M1√

(M1z
�)/M2

+
M2

√
(M1z

�)/M2

z�

)
= 4

√
M1M2

m1m2
.

(9)

Case 2: for all rt, t = 1, . . . , T , we have p1t · p2t < z�.
In this instance, the online player does not accept any request and has to
settle in the worst case for the lower bounds in each component, i.e. alg =(
m1, m2

)ᵀ.
The adversary is able to offer (and accept) any request rj for which the
product p1t ·p2t is smaller than but arbitrarily close to z�, i.e., p1t ·p2t = z�− ε,
ε > 0. The set of efficient solutions for opt is given by

I2 =

{(
x, z�−ε

x

)ᵀ | x ∈ [m1,M1] and
z� − ε

M2
≤ x ≤ z� − ε

m2

}
. (10)

Now, ignoring the ε, the competitive ratio is given by

1

2
max
x∈I2

{
x

m1
+

z�

m2x

}
=

1

2

(√
(m1z

�)/m2

m1
+

z�

m2

√
(m1z

�)/m2

)
= 4

√
M1M2

m1m2
.

(11)

By the analysis above, the arithemtic-mean-component competitive ratio re-
sults in

Rf2(rpp-mult) = 4

√
M1M2

m1m2
. (12)

220 M. Tiedemann, J. Ide, and A. Schöbel

This result holds for all efficient solutions since, in the first case, there is
exactly one efficient solution for the adversary and, in the second case, we con-
sidered the maximum over all x ∈ I2. Consequently, we have Rf2

s (rpp-mult) =
Rf2(rpp-mult). ��

Note that the arithmetic-mean-component competitive ratio of rpp-mult is
closely related to the competitive ratio of the corresponding single-objective
algorithm rpp as given in [4]. In the following, we prove that rpp-mult achieves
the best possible arithmetic-mean-component competitive ratio.

Theorem 4. No deterministic algorithm for the bi-objective time series search
problem can achieve a smaller competitive ratio with respect to f2(c) =

1
n

∑n
i=1 ci

than 4
√

M1M2/m1m2.

Proof. The adversary offers a request r with

r =
(
x̃, z�

x̃

)ᵀ
, where x̃ =

√
M1z�

M2
.

If the online player accepts this request, another request
(
M1, M2

)ᵀ is revealed
and the competitive ratio is given by

Rf2(rpp-mult) =
1

2

(
M1√

(M1z
�)/M2

+
M2

√
(M1z

�)/M2

z�

)
= 4

√
M1M2

m1m2
. (13)

Otherwise, the adversary only reveals r until the online player has to settle for
the lower bounds m1 and m2. The competitive ratio is then given by

Rf2 (rpp-mult) =
1

2

(√
(m1z

�)/m2

m1
+

z�√
(m1z

�)/m2m2

)
= 4

√
M1M2

m1m2
. (14)

Thus, no deterministic algorithm for the bi-objective time series search prob-
lem can achieve a smaller competitive ratio with respect to f than 4

√
M1M2/m1m2.

Obviously, the same lower bound holds for the strong competitive ratio. ��

The competitive analysis with respect to f3(c) =
n
√∏n

i=1 ci, i.e., a geometric-
mean-component competitive analysis, yields the same results: For f3, (9) and
(11) are given by

max
x∈I1

{√
M1

x

M2x

z�

}
= 4

√
M1M2

m1m2
and max

x∈I2

{√
x

m1

z�

m2x

}
= 4

√
M1M2

m1m2
. (15)

For the lower bound, a request r =
(
x̃, z�

x̃

)ᵀ
, where x̃ is an arbitrary feasible

value, leads to the same result as given in Theorem 4.

Competitive Analysis for Multi-objective Online Optimization 221

4 Conclusion and Future Research

In this paper, we introduced a general framework for the competitive analysis of
multi-objective online problems which expands the known theory of competitive
analysis for online problems in a straightforward manner. As an example, we
demonstrated that the analysis of the multi-objective time series search prob-
lem by means of the introduced notions of competitiveness for multi-objective
online problems yields results which are closely related to the single-objective
algorithms and their competitive ratios as given in [4]. The analysis of mean-
component competitive algorithms for the multi-objective time series search
problem for dimensions n ≥ 3 is subject to further research.

The concept of competitive analysis for multi-objective online problems seems
highly promising and provides further insight into the nature of online problems.
Questions for future research include the analysis of multi-objective counterparts
of other well-known online problems such as the k-server problem or schedul-
ing problems. Another direction for future research could be to study general
relations between single-objective online problems and the corresponding multi-
objective online problem or general propositions about the competitiveness of
multi-objective online problems such as a multi-objective counterpart for Yao’s
principle.

Furthermore, the definition of the competitive ratio given in this work serves
as a basis for further extensions such as a vector of competitive ratios with
respect to different functions: For example, if the analyst of the online problem
wants the worst component and the average of the components to be reasonably
small at the same time, the vector of both competitive ratios could be analyzed
in the sense of multi-objective optimization.

References

1. Bazgan, C., Gourvès, L., Monnot, J.: Approximation with a Fixed Number of
Solutions of Some Biobjective Maximization Problems. In: Solis-Oba, R., Persiano,
G. (eds.) WAOA 2011. LNCS, vol. 7164, pp. 233–246. Springer, Heidelberg (2012)

2. Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis.
Cambridge University Press (1998)

3. Ehrgott, M.: Multicriteria Optimization. Springer (2005)
4. El-Yaniv, R., Fiat, A., Karp, R.M., Turpin, G.: Optimal search and one-way trading

online algorithms. Algorithmica 30(1), 101–139 (2001)
5. Erlebach, T., Kellerer, H., Pferschy, U.: Approximating Multiobjective Knapsack

Problems. Management Sciences 48(12), 1603–1612 (2002)
6. Fiat, A. (ed.): Online Algorithms 1996. LNCS, vol. 1442. Springer, Heidelberg

(1998)
7. Kalyanasundaram, B., Pruhs, K.: Speed is as powerful as clairvoyance. Journal of

the ACM 47(4), 617–643 (2000)
8. Motwani, R., Phillips, S., Torng, E.: Non-clairvoyant scheduling. Theoretical Com-

puter Science 130, 17–47 (1994)
9. Phillips, C.A., Stein, C., Torng, E., Wein, J.: Optimal time-critical scheduling

via resource augmentation. In: Proceedings of the 29th ACM Symposium on the
Theory of Computing (STOC), pp. 140–149 (1997)

Simultaneous Drawing of Planar Graphs
with Right-Angle Crossings and Few Bends�

Michael A. Bekos1, Thomas C. van Dijk2, Philipp Kindermann2,
and Alexander Wolff2

1 Wilhelm-Schickard-Institut für Informatik, Universität Tübingen, Germany
bekos@informatik.uni-tuebingen.de

2 Lehrstuhl für Informatik I, Universität Würzburg, Germany
http://www1.informatik.uni-wuerzburg.de/en/staff

Abstract. Given two planar graphs that are defined on the same set of vertices,
a RAC simultaneous drawing is a drawing of the two graphs where each graph
is drawn planar, no two edges overlap, and edges of one graph can cross edges
of the other graph only at right angles. In the geometric version of the problem,
vertices are drawn as points and edges as straight-line segments. It is known,
however, that even pairs of very simple classes of planar graphs (such as wheels
and matchings) do not always admit a geometric RAC simultaneous drawing.

In order to enlarge the class of graphs that admit RAC simultaneous drawings,
we allow edges to have bends. We prove that any pair of planar graphs admits a
RAC simultaneous drawing with at most six bends per edge. For more restricted
classes of planar graphs (e.g., matchings, paths, cycles, outerplanar graphs, and
subhamiltonian graphs), we significantly reduce the required number of bends
per edge. All our drawings use quadratic area.

1 Introduction

A simultaneous embedding of two planar graphs embeds each graph in a planar way—
using the same vertex positions for both embeddings. Edges of one graph are allowed
to intersect edges of the other graph. There are two versions of the problem: In the first
version, called Simultaneous Embedding with Fixed Edges (SEFE), edges that occur
in both graphs must be embedded in the same way in both graphs (and hence, cannot
be crossed by any other edge). In the second version, called Simultaneous Embedding,
these edges can be drawn differently for each of the graphs. Both versions of the prob-
lem have a geometric variant where edges must be drawn using straight-line segments.

Simultaneous embedding problems have been extensively investigated over the last
few years, starting with the work of Brass et al. [6] on simultaneous straight-line draw-
ing problems. Bläsius et al. [5] recently surveyed the area. For example, it is possible
to decide in linear time whether a pair of graphs admits a SEFE or not, if the common

� This research was supported by the ESF EuroGIGA project GraDR (DFG grant Wo 758/5-1).
The work of M.A. Bekos is implemented within the framework of the Action “Supporting
Postdoctoral Researchers” of the Operational Program “Education and Lifelong Learning”
(Action’s Beneficiary: General Secretariat for Research and Technology), and is co-financed
by the European Social Fund (ESF) and the Greek State.

M.S. Rahman and E. Tomita (Eds.): WALCOM 2015, LNCS 8973, pp. 222–233, 2015.
c© Springer International Publishing Switzerland 2015

Simultaneous Drawing of Planar Graphs with Right-Angle Crossings and Few Bends 223

graph is biconnected [1]. When actually drawing these simultaneous embeddings, a nat-
ural choice is to use straight-line segments. Only very few graphs can be drawn in this
way, however, and some existing results require exponential area. For instance, there
exist a tree and a path which cannot be drawn simultaneously with straight-line seg-
ments [2], and the algorithm for simultaneously drawing a tree and a matching [8] does
not provide a polynomial area bound. For the case of edges with bends, that is, polyg-
onal edges, Erten and Kobourov [10] showed that three bends per edge and quadratic
area suffice for any pair of planar graphs (without fixed edges), and that one bend per
edge suffices for pairs of trees. Kammer [11] reduced the number of bends to two for
the general planar case. In these results, however, the crossing angles can be very small.

We suggest a new approach that overcomes the aforementioned problems. We insist
that crossings occur at right angles, thereby “taming” them. We do this while drawing
all vertices and all bends on a grid of size O(n)×O(n) for any n-vertex graph, and we
can still draw any pair of planar graphs simultaneously. We do not consider the problem
of fixed edges. In a way, our results give a measure for the geometric complexity of
simultaneous embeddability for various pairs of graph classes, some of which can be
combined more easily (that is, with fewer bends) than others.

Brightwell and Scheinermann [7] proved that the problem of simultaneously drawing
a (primal) embedded graph and its dual always admits a solution if the input graph is a
triconnected planar graph. Erten and Kobourov [9] presented an O(n)-time algorithm
that computes simultaneous drawings of a triconnected planar graph and its dual on an
integer grid of size O(n2), where n is the total number of vertices in the graph and its
dual. However, these drawings can have non-right angle crossings.

In this paper, we study the RAC simultaneous (RACSIM) drawing problem. Let G1 =
(V,E1) and G2 = (V,E2) be two planar graphs on the same vertex set. We say that G1

and G2 admit a RACSIM drawing if we can place the vertices on the plane such that
(i) each edge is drawn as a polyline, (ii) each graph is drawn planar, (iii) there are no
edge overlaps, and (iv) crossings between edges in E1 and E2 occur at right angles.

Argyriou et al. [3] introduced and studied the geometric version of RACSIM drawing.
In particular, they proved that any pair of a cycle and a matching admits a geometric
RACSIM drawing on a grid of quadratic size, while there exists a pair of a wheel and
a cycle that does not admit a geometric RACSIM drawing. The problem that we study
was left as an open problem.

Our Contribution. Our main result is that any pair of planar graphs admits a RAC
simultaneous drawing with at most six bends per edge. We can compute such drawings
in linear time. For pairs of subhamiltonian graphs and pairs of outerplanar graphs, we
need four bends and three bends per edge, respectively; see Section 2. Then, we turn our
attention to pairs of more restricted graph classes where we can guarantee one bend per
edge or two bends per edge; see Sections 3 and 4, respectively. Table 1 lists our results.
The main approach of all our algorithms is to find linear orders on the vertices of the
two graphs and then to compute coordinates for the vertices based on these orders.
All crossings in our drawings appear between horizontal and vertical edge segments.
We call the non-rectilinear edge segments slanted segments. All our drawings fit on
a grid of quadratic size. Due to lack of space, some proofs are only sketched. The
corresponding detailed proofs are given in the full version [4].

224 M.A. Bekos et al.

Table 1. A short summary of our results

Graph classes Number of bends Ref.
planar + planar 6 + 6 Thm. 1
subhamiltonian + subhamiltonian 4 + 4 Cor. 1
outerplanar + outerplanar 3 + 3 Thm. 2
cycle + cycle 1 + 1 Thm. 3
caterpillar + cycle 1 + 1 Thm. 4
four matchings 1 + 1 + 1 + 1 Thm. 5
tree + matching 1 + 0 Thm. 6
wheel + matching 2 + 0 Thm. 7
outerpath + matching 2 + 1 Thm. 8

2 RACSIM Drawings of General Graphs

In this section, we study general planar graphs and show how to efficiently construct
RACSIM drawings with few bends per edge in O(n) × O(n) area. We prove that two
planar graphs on a common set of n vertices admit a RACSIM drawing with six bends
per edge (Theorem 1). For pairs of subhamiltonian graphs, we lower the number of
bends per edge to 4 (Corollary 1) and for pairs of outerplanar graphs to 3 (Theorem 2).
Recall that the class of subhamiltonian graphs is equivalent to the class of 2-page book-
embeddable graphs, and the class of outerplanar graphs is equivalent to the class of
1-page book-embeddable graphs.

Central to our approach is an algorithm by Kaufmann and Wiese [12] that embeds
any planar graph such that vertices are mapped to points on a horizontal line (called
spine) and each edge crosses the spine at most once; see Fig. 1(a). We introduce a
dummy vertex at each spine crossing. This yields a linear order of the (original and
dummy) vertices with the property that every edge is either above or below the spine.
For our problem, in order to determine the locations of the (original and dummy) ver-
tices of the two given graphs, we basically use the linear order induced by one graph
for the x-coordinates and the order induced by the other graph for the y-coordinates.
(We reserve additional rows and columns for routing the edges of the first and sec-
ond graph, respectively.) Let R be the bounding box of the vertex positions. Then,
for the first graph, we route, in a planar fashion, the above/below-edges using short
slanted segments and long vertical segments inside R as well as horizontal segments
above/belowR; see Fig. 1(c). We treat the second graph analogously, but turn the draw-
ing by 90◦. As the following theorem assures, the resulting simultaneous drawing has
only right-angle crossings; see Fig. 1(d). Note that the algorithm of Kaufmann and
Wiese has been used for simultaneous drawing problems before [10].

Theorem 1. Two planar graphs on a common set of n vertices admit a RACSIM draw-
ing on an integer grid of size (14n − 26) × (14n − 26) with six bends per edge. The
drawing can be computed in O(n) time.

Proof. Let G1 = (V,E1) and G2 = (V,E2) be the given planar graphs. For m = 1, 2,
let ξm be an embedding of Gm according to the algorithm of Kaufmann and Wiese,

Simultaneous Drawing of Planar Graphs with Right-Angle Crossings and Few Bends 225

(a)

vi
vi+1

(b)

25

29

1

5

9

21

13

17

211713951 25 29

R R

(c) (d)

Fig. 1. (a) A drawing of a planar graph by Kaufmann and Wiese [12], (b) reserving additional
columns between two vertices, (c) the graph in (a) drawn by our algorithm with at most six bends
per edge, and (d) the RACSIM drawing of two planar graphs by our algorithm. The edges that
cross the spine are drawn dashed; the dummy vertices on these edges are drawn as squares.

and denote by Am and Bm the edges that are drawn completely above and below the
spine in ξm, respectively. Further, let G′

m = (V ′
m, E′

m) = (V ∪ Vm, Am ∪ Bm) be the
resulting graph, where Vm is the set of dummy vertices of Gm.

We now show how to determine thex-coordinates of the vertices in V ′
1 ; the y-coordin-

ates of the vertrices in V ′
2 are determined analogously. The missing y-coordinates of the

dummy vertices in V1 and the missing x-coordinates of the dummy vertices in V2 are
arbitrary (as long as they are inside R).

Let n′
1 be the number of vertices in V ′

1 and let v1, . . . , vn′
1

be the linear order of the
vertices in V ′

1 along the spine in ξ1. We place v1 in the first column. Between any two
consecutive vertices vi and vi+1, we reserve several columns for the bends of the edges
incident to vi and vi+1, in the following order; see Fig. 1(b):

(i) a column for the first bend on all edges leaving vi in A2;
(ii) a column for each edge (vi, vj) ∈ E′

1 with j > i;
(iii) a column for each edge (vk, vi+1) ∈ E′

1 with k ≤ i;
(iv) a column for the last bend on all edges entering vi+1 in B2.

Note that, for (ii) and (iii), we can save some columns because an edge in A1 and an
edge in B1 can use the same column for their bend. Further, we may save the additional
column of (i) and (iv) if no such edges exist. Now, we draw G′

1 and G′
2 with at most

four bends per edge such that all edge segments of G′
1 in R are either vertical or of

y-length exactly 1, and all edge segments of G′
2 in R are either horizontal or of x-length

exactly 1; see Fig. 1(d).
First, we draw the edges (vi, vj) ∈ A1 with i < j in a nested order: When we place

the edge (vi, vj), then there is no edge (vk, vl) ∈ A1 with k ≤ i and l ≥ j that has
not already been drawn. Recall that the first column to the right and the first column
to the left of every vertex is reserved for the edges in E1; hence, we assume that they
are already used. We draw (vi, vj) with at most four bends as follows. We start with a
slanted segment that has its endpoint in the row above vi and in the first unused column

226 M.A. Bekos et al.

that does not lie to the left of vi. We follow with a vertical segment to the top that
leaves R. We add a horizontal segment above R. In the last unused column that does
not lie to the right of vj , we add a vertical segment that ends one row above vj . We
close the edge with a slanted segment that has its endpoint in vj . We draw the edges
in B1 symmetrically with the horizontal segment below R.

Note that this algorithm always uses the top and the bottom port of a vertex v, if there
is at least one edge incident to v in A1 and B1, respectively. There is exactly one edge
incident to each dummy vertex t in A1 and B1, respectively. Thus, the edges incident
to t only use the top and the bottom port. We create a drawing of G1 and G2 with at
most 6 bends per edge by removing the dummy vertices from the drawing.

We now show that combining the drawings of G1 and G2 yields a RACSIM drawing.
By construction, all segments of E1 inside R are either vertical segments or slanted
segments of y-length 1, and all segments of E2 inside R are either horizontal segments
or slanted segments of x-length 1. Thus, the slanted segments cannot overlap. Further-
more, all crossings inside R occur between a horizontal and a vertical segment, and thus
form right angles. Also, there are no segments in E1 that lie to the left or to the right
of R, and there are no segments in E2 that lie above or below R. Hence, there are no
crossings outside R, and the drawing is a RACSIM drawing.

We now count the columns used by the drawing. For the leftmost and the rightmost
vertex, we reserve one additional column for its incident edges in E2; for the remain-
ing vertices, we reserve two such columns. For each edge in E1, we need up to three
columns: one for each endpoint of the slanted segment at each vertex and one for the
vertical segment that crosses the spine, if it exists. Note that at least one edge per vertex
does not need a slanted segment. For each edge in E2, we need at most one column for
the vertical segment to the side of R. Since there are at most 3n− 6 edges, we need at
most 3n− 2+ 3 · (3n− 6)−n+3n− 6 = 14n− 26 columns. By symmetry, we need
the same number of rows.

Since the algorithm of Kaufmann and Wiese runs in O(n) time, our algorithm also
runs in O(n) total time. ��

We can improve the results of Theorem 1 for subhamiltonian graphs. Recall that a
subhamiltonian graph has a 2-page book embedding, in which no edges cross the spine.
Since such edges are the only ones that need six bends, we can reduce the number of
bends per edge to four. Further, the number of columns and rows are reduced by one
per edge. This yields the following corollary.

Corollary 1. Two subhamiltonian graphs on a common set of n vertices admit a RAC-
SIM drawing on an integer grid of size (11n − 32)× (11n − 32) with four bends per
edge.

Theorem 2. Two outerplanar graphs on a common set of n vertices admit a RACSIM

drawing on an integer grid of size (7n− 10)× (7n− 10) with three bends per edge.

Proof. Let O1 = (V,E1) and O2 = (V,E2) be the given outerplanar graphs. First,
we create a 1-page book embedding for O1 and O2. This gives us the order of the x-
coordinates and y-coordinates, respectively. It follows by Corollary 1 that, by using the
algorithm described in the proof of Theorem 1, we obtain a RACSIM drawing with at

Simultaneous Drawing of Planar Graphs with Right-Angle Crossings and Few Bends 227

most four bends per edge. We will now show how to adjust the algorithm to reduce the
number of bends by one.

It follows by Nash-Williams’ formula [13] that every outerplanar graph has arboric-
ity 2, that is, it can be decomposed into two forests. We embed both graphs on two
pages with one forest per page. Let A1 and B1 be the two forests O1 is decomposed
into. We will draw the edges of A1 above the spine and the edges B1 below the spine.
By rooting the trees in A1 in arbitrary vertices, we can direct each edge such that every
vertex has exactly one incoming edge. Recall that, in the drawing produced in Theo-
rem 1, one edge per vertex can use the top port. We adjust the algorithm such that every
directed edge (v, w) enters the vertex w from the top port. To do so, we draw the edge
as follows. We start with a slanted segment of y-length exactly 1. We follow with a
vertical segment to the top. We proceed with a horizontal segment that ends directly
above w and finish the edge with a vertical segment that enters w from the top port. We
use the same approach for the edges in B1, using the bottom port. We treat the second
outerplanar graphO2 analogously, but turn the drawing by 90◦.

Since every port of a vertex is only used once, the drawing has no overlaps. We
now analyze the number of columns used. For every vertex except for the leftmost
and rightmost, we again reserve two additional columns for the edges in E2; for the
remaining two vertices, we reserve one additional column. However, the edges in E1

now only need one column for the bend of the single slanted segment. For every edge
in E2, we need up to one column for the vertical segment to the side of R. Since there
are at most 2n − 4 edges, our drawing needs 3n − 2 + 2n − 4 + 2n − 4 = 7n − 10
columns. Analogously, we can show that the algorithm needs 7n− 10 rows. ��

3 RACSIM Drawings with One Bend Per Edge

In this section, we study simple classes of planar graphs and show how to efficiently
construct RACSIM drawings with one bend per edge in quadratic area. In particular, we
prove that two cycles or four matchings on a common set of n vertices admit a RACSIM

drawing on an integer grid of size 2n × 2n; see Theorems 3 and 5, respectively. If
the input to our problem is a caterpillar and a cycle, then we can compute a RACSIM

drawing with one bend per edge on an integer grid of size (2n−1)×2n; see Theorem 4.
For a tree and a cycle, we can construct a RACSIM drawing with one bend per tree edge
and no bends in the matching edges on an integer grid of size n×(n−1); see Theorem 6.

Lemma 1. Two paths on a common set of n vertices admit a RACSIM drawing on an
integer grid of size 2n× 2n with one bend per edge. The drawing can be computed in
O(n) time.

Proof. Let P1 = (V,E1) and P2 = (V,E2) be the two input paths. Following standard
practices from the literature (see, e.g., Brass et al. [6]), we draw P1 x-monotone and P2

y-monotone. This ensures that the drawing of both paths will be planar. We will now
describe how to compute the exact coordinates of the vertices and how to draw the
edges of P1 and P2, such that all crossings are at right angles and, more importantly,
no edge segments overlap.

228 M.A. Bekos et al.

1

3

5

7

9

11

1197531

v1

v2

v4

v6

v5

v3

(a) two paths: P1 (solid) and P2 (dashed)

1

3

5

7

9

11

1197531

v1

v2

v4

v6

v5

v3

(b) two cycles: C1 (solid) and C2(dashed)

Fig. 2. RACSIM drawings with one bend per edge

For m = 1, 2 and any vertex v ∈ V , let πm(v) be the position of v in Pm. Then, v
is drawn at the point (2π1(v)− 1, 2π2(v)− 1); see Fig. 2a. It remains to determine, for
each edge e = (v, v′), where it bends. First, assume that e ∈ E1 and e is directed from
its left to its right endpoint. Then, we place the bend at v′ − (2, sgn(y(v′) − y(v))).
Second, assume that e ∈ E2 and e is directed from its bottom to its top endpoint. Then,
we place the bend at v′ − (sgn(x(v′)− x(v)), 2).

Clearly, the area required by the drawing is (2n − 1) × (2n − 1). The edges of
P1 leave the left endpoint vertically and enter the right endpoint with a slanted seg-
ment of x-length 1 and y-length 2. Similarly, the edges of P2 leave the the bottom
endpoint horizontally and enter the top endpoint with a slanted segment of x-length 2
and y-length 1. Hence, the slanted segments cannot be involved in crossings or over-
laps. Since P1 and P2 are x- and y-monotone, respectively, it follows that all crossings
must involve a vertical edge segment of P1 and a horizontal edge segment of P2, which
clearly yields right angles at the crossing points. ��

We say that an edge uses the bottom/left/right/top port of a vertex if it enters the
vertex from the bottom/left/right/top.

Theorem 3. Two cycles on a common set of n vertices admit a RACSIM drawing on
an integer grid of size 2n × 2n with at most one bend per edge. The drawing can be
computed in O(n) time.

Proof. Let C1 = (V,E1) and C2 = (V,E2) be the two input cycles, and let v ∈ V be an
arbitrary vertex. We temporarily delete one edge (v, w1) ∈ E1 from C1 and (v, w2) ∈
E2 from C2 (refer to the bold-drawn edges of Figure 2b). This way, we obtain two
paths P1 = 〈v, . . . , w1〉 and P2 = 〈v, . . . , w2〉. We employ the algorithm desribed
in Lemma 1 to construct a RACSIM drawing of P1 and P2 on an integer grid of size
(2n− 1)× (2n− 1). Since v is the first vertex in both paths, it is placed at the bottom-
left corner of the bounding box containing the drawing. Since w1 and w2 are the last
vertices in P1 and P2, respectively, w1 is placed on the right side, and w2 on the top
side of the bounding box. By construction, the bottom port of w1 and the left port of w2

are both unoccupied. Hence, the edges (v, w1) and (v, w2) that form C1 and C2 can
be drawn with a single bend at points (2n − 1, 0) and (0, 2n − 1), respectively; see
Figure 2b. Clearly, none of them is involved in crossings, while the total area of the
drawing gets larger by a single unit in each dimension. ��

Simultaneous Drawing of Planar Graphs with Right-Angle Crossings and Few Bends 229

1

3

5

7

9

21

19

11

13

15

17

23

1197531 13 15 17 19 21 23

v2

v3

v4

v6

v7

v8

v9
v10

v12

v11

v5

v1

(a)

1197531 13 15 17 19 21 23

1

3

5

7

9

21

19

11

13

15

17

23

v2

v3

v4

v6

v7

v8

v9

v10

v12

v11

v5

v1

(b)

Fig. 3. RACSIM drawings with one bend per edge of: (a) a caterpillar A (solid; its spine is
drawn bold) and a cycle C (dashed); (b) four matchings M1 (solid-plain), M2 (solid-bold), M3

(dashed-plain) and M4 (dashed-bold)

Theorem 4. A caterpillar and a cycle on a common set of n vertices admit a RACSIM

drawing on an integer grid of size (2n− 1)× 2n with one bend per edge. The drawing
can be computed in O(n) time.

Proof. We denote by A = (V,EA) and C = (V,EC) the caterpillar and the cycle,
respectively. Let v1, v2, . . . , vn be the vertex set of A ordered as follows (see Fig. 3a).
Starting from an endpoint of the spine ofA, we traverse the spine such that we first visit
all legs incident to a spine vertex before moving on to the next spine vertex. This order
defines the x-order of the vertices in the output drawing.

As in the proof of Theorem 3, we temporarily delete an edge of C incident to v1
(see the bold dashed edge in Fig. 3a) and obtain a path P = (V,EP). For any vertex
v ∈ V , let π(v) be the position of v in P . The map π determines the y-order of the
vertices in our drawing. For i = 1, 2, . . . , n, we draw vi at point (2i − 1, 2π(vi) − 1).
It remains to determine, for each edge e = (v, v′), where it bends. First, assume that
e ∈ EP and e is directed from its bottom to its top endpoint. Then, we place the bend
at v + (sgn(x(v′) − x(v)), 2). Second, assume that e ∈ EA and e is directed from its
left to its right endpoint. Then, we place the bend at (x(v′), y(v) + sgn(y(v′)− y(v)).

The approach described above ensures that P is drawn y-monotone, hence planar.
The spine of A is drawn x-monotone. The legs of a spine vertex of A are drawn to
the right of their parent spine vertex and to the left of the next vertex along the spine.
Hence, A is drawn planar as well. The slanted segments of A are of y-length 1, while
the slanted segments of P are of x-length 1. Thus, they cannot be involved in crossings,
which implies that all crossings form right angles.

It remains to draw the edge e in EC \ EP . Recall that e is incident to v1, which lies
at the bottom-left corner of the bounding box containing our drawing. Let vj be the
other endpoint of e. Since π(vj) = n, vertex vj lies at the top side of the bounding
box. The top port of v1 is not used, so we draw the first segment of e vertically, bending
at (1, 2n); see the bold dashed edge in Fig. 3a.

Clearly, the total area required by the drawing is (2n− 1)× 2n. ��

230 M.A. Bekos et al.

Theorem 5. Four matchings on a common set of n vertices admit a RACSIM drawing
on an integer grid of size 2n× 2n with at most one bend per edge. The drawing can be
computed in O(n) time.

Proof. Let M1 = (V,E1), M2 = (V,E2), M3 = (V,E3) and M4 = (V,E4) be the
input matchings. W.l.o.g, we assume that all matchings are perfect; otherwise, we aug-
ment them to perfect matchings. LetM1,2 = (V,E1 ∪E2) andM3,4 = (V,E3 ∪E4).
SinceM1 andM2 are defined on the same vertex set,M1,2 is a 2-regular graph. Thus,
each connected component ofM1,2 corresponds to a cycle of even length which alter-
nates between edges ofM1 andM2; see Fig. 3b. The same holds forM3,4. We will de-
termine the x-coordinates of the vertices fromM1,2, and the y-coordinates fromM3,4.

We start with choosing an arbitrary vertex v ∈ V . Let C be the cycle of M1,2 con-
taining vertex v. We determine the x-coordinates of the vertices of C by traversing C in
some direction, starting from vertex v. For each vertex u in C, let π1(u) be the discovery
time of u according to this traversal, with π1(v) = 0. Then, we set x(u) = 2π1(u) + 1.
Next, we determine the y-coordinates of the vertices of all cycles C1, . . . , Ck of M3,4

that have at least one vertex with a determined x-coordinate, ordered as follows. For
i = 1, . . . , k, let ai be the anchor of Ci, that is, the vertex with the smallest determined
x-coordinate of all vertices in Ci. Then, x(a1) < . . . < x(ak). In what follows, we
start with the first cycle C1 of the computed order and determine the y-coordinates of its
vertices. To do so, we traverse C1 in some direction, starting from its anchor vertex a1.
For each vertex u in C1, let π2(u) be the discovery time of u according to this traversal,
with π2(a1) = 0. Then, we set y(u) = 2π2(u) + 1. We proceed analogously with the
remaining cycles Ci, i = 2, . . . , k, setting π2(ai) = maxu∈Ci−1 π2(u) + 1.

Now, there are no vertices with only one determined x-coordinate. However, there
might exist vertices with only one determined y-coordinate. If this is the case, we re-
peat the aforementioned procedure to determine the x-coordinates of the vertices of all
cycles of M1,2 \ C that have at least one vertex with a determined y-coordinate, but
without determined x-coordinates. If there are no vertices with only one determined
coordinate left, either all coordinates are determined, or we restart this procedure with
another arbitrary vertex that has no determined coordinates. Thus, our algorithm guar-
antees that the x- and y-coordinate of all vertices are eventually determined.

Note that, for each cycle inM1,2, there is exactly one edge e = (v, v′), called closing
edge, with π1(v

′) > π1(v) + 1. Analogously, for each cycle in M3,4, there is exactly
one closing edge e = (u, u′) with π2(u

′) > π2(u) + 1.
It remains to determine, for each edge e = (v, v′), where it bends. First, assume

that e ∈ E1 ∪E2 and e is directed from its left to its right endpoint. If e is not a closing
edge, we place the bend at v′ − (2, sgn(y(v′) − y(v)). Otherwise, we place the bend
at (x(v′), y(v)− 1). Second, assume that e ∈ E3 ∪E4 and e is directed from its bottom
to its top endpoint. If e is not a closing edge, we place the bend at v′ − (sgn(x(v′) −
x(v)), 2). Otherwise, we place the bend at (x(v) − 1, y(v′)); see Fig. 3b.

Our choice of coordinates guarantees that the x-coordinates of the cycles of M1,2

and the y-coordinates of the cycles ofM3,4 form disjoint intervals. Thus, the area below
a cycle ofM1,2 and the area to the left of a cycle ofM3,4 are free from vertices. Hence,
the slanted segments of the closing edges cannot have a crossing that violates the RAC
restriction. Clearly, the total area required by the drawings is 2n× 2n. ��

Simultaneous Drawing of Planar Graphs with Right-Angle Crossings and Few Bends 231

1197531 13 15 17 19 21 23

1

3

5

7

9

21

19

11

13

15

17

23

1

3

5

7

9

11

13

1197531 13 15 17

v1

v2

vn

Fig. 4. A RACSIM drawing of a tree (solid)
and a matching (dashed)

Fig. 5. A RACSIM drawing of a wheel (solid;
its rim is drawn bold) and a matching (dashed)

Theorem 6. A tree and a matching on a common set of n vertices admit a RACSIM

drawing on an integer grid of size n × (n − 1) with one bend per tree-edge, and no
bends in the edges of the matching. The drawing can be computed in O(n) time.

Sketch of Proof. We inductively place each matching edge in one row. In every step, we
decide whether to add the next matching edge to the stack at the top or at the bottom.
We determine the x-coordinates of the matching with the help of a specific post-order
visit; see Fig. 4. A detailed proof is given in the full version [4]. ��

4 RACSIM Drawings with Two Bends Per Edge

In this section, we study more complex classes of planar graphs, and show how to
efficiently construct RACSIM drawings with two bends per edge in quadratic area. In
particular, we prove that a wheel and a matching on a common set of n vertices admit
a RACSIM drawing on an integer grid of size (1.5n − 1) × (n + 2) with two bends
per edge and no bends, respectively; see Theorem 7. If the input to our problem is an
outerpath—that is, an outerplanar graph whose weak dual is a path—and a matching,
then a RACSIM drawing with two bends per edge and no bends, respectively, is also
possible on an integer grid of size (3n− 2)× (3n− 2); see Theorem 8.

Theorem 7. A wheel and a matching on a common set of n vertices admit a RACSIM

drawing on an integer grid of size (1.5n− 1) × (n + 2) with two bends per edge and
no bends, respectively. The drawing can be computed in O(n) time.

Proof. We denote the wheel byW = (V,EW) and the matching byM = (V,EM). A
wheel can be decomposed into a cycle, called rim, a center vertex, and a set of edges that
connect the center to the rim, called spikes. Let V = {v1, v2, . . . , vn}, such that v1 is
the center ofW and C = 〈v2, v3, . . . , vn, v2〉 is the rim ofW . Thus, EW = {(vi, vi+1) |
i = 1, . . . , n− 1} ∪ {(vn, v2)} ∪ {(v1, vi) | i = 2, . . . , n}. LetM′ = (V,EM′) be the
matchingM without the edge incident to v1.

We first compute the x-coordinates of the vertices, such that C − {(vn, v2)} is x-
monotone (if drawn with straight-line edges). More precisely, for i = 2, . . . , n we set

232 M.A. Bekos et al.

x(vi) = 2i− 3. The y-coordinates of the vertices are computed based on the matching
M′, as follows. Let EM′ = {e1, . . . , ek} be the matching edges with v2 incident to e1.
For i = 1, . . . , k, we assign the y-coordinate 2i − 1 to the endpoints of ei. Next, we
assign the y-coordinate 2k + 1 to the vertices incident to the rim without a matching
edge in M′. Finally, the center v1 ofW is located at point (1, 2k + 3).

It remains to determine, for each edge e ∈ EW , where it bends, as M′ is drawn
bendless. First, let e = (v1, vi), i = 3, . . . , n be a spike. Then, we place the bend
at (x(vj), 2k + 2). Since both v1 and v2 are located in column 1, we can save the bend
of the spike (v1, v2). Second, let e = (vi, vi+1), i = 2, . . . , n−1 be an edge of the rim C.
If y(vi+1) > y(vi), we place the bend at (x(vi+1), y(vi) + 1). If y(vi−1) > y(vi) >
y(vi+1), we place the bend at (x(vi+1), y(vi) − 1). If y(vi) > y(vi−1), y(vi+1), the
bottom port at vi is already used. Thus, we draw the edge with two bends at (x(vi+1),
y(vi)− 1) and (x(vi+1), y(vi+1) + 1). Finally, let e = (vn, v2) be the remaining edge
of the rim. Then, we place the bend at (2n− 2, 0). See Fig. 5 for an illustration.

Our approach ensures that C − {(vn, v2)} is drawn x-monotone, hence planar. The
last edge (vn, v2) of C outside of the bounding box containing the vertices; thus, it is
crossing-free. Further, the spikes are not involved in crossings with the rim, as they are
outside of the bounding box containing the rim edges. Hence, W is drawn planar. On
the other hand, all edges ofM′ are drawn as horizontal, non-overlapping line segments.
Thus, M′ is drawn planar as well. The slanted segments of W − (vn, v2) are of y-
length 1. So, they cannot be crossed by the edges of M′. As the edge (vn, v2) is not
involved in crossings, it follows that all crossings betweenW andM′ form right angles.

Finally, we have to insert the matching edge (v1, vi) in EM \E′
M. Since vi is not in-

cident to a matching edge inM′, it is placed above all matching edges. Then, (v1, vi) ∈
W does not cross a matching edge, so we can use this edge as a double edge.

We will now prove the area bound of the drawing algorithm. To that end, we remove
all columns that contain neither a vertex, nor a bend. First, we count the rows used.
Since we remove the matching edge incident to v1, the matchingM′ has k ≤ n/2− 1
matching edges. We place the bottommost vertex in row 1 and the topmost vertex, that
is, vertex v1, in row 2k+3. We add one extra bend in row 0 for the edge (vn, v2). Thus,
our drawing uses 2k + 3 + 1 ≤ n + 2 rows. Next, we count the columns used. The
vertices v2, . . . , vn are each placed in their own column. Every spike has exactly one
bend in the column of a vertex. An edge (vi, vi+1) of rim W has exactly one bend in a
vertex column, except for the case that y(vi) > y(vi−1), y(vi+1), in which it needs an
extra bend between vi and vi+1, i = 1, . . . , n− 1. Clearly, there can be at most n/2− 1
vertices satisfying this condition. Since the edge (vn, v2) uses an extra column to the
right of vn, our drawing uses (n− 1) + (n/2− 1) + 1 = 1.5n− 1 columns. ��

Theorem 8. An outerpath and a matching on a common set of n vertices admit a RAC-
SIM drawing on an integer grid of size (3n − 2) × (3n − 2) with two bends per edge
and one bend, respectively. The drawing can be computed in O(n) time.

Sketch of Proof. We augment the outerpath to a maximal outerpath. Removing its outer
cycle, the result is a caterpillar, which determines the x-coordinates of the vertices as
outlined in Thm. 4. Then, the y-coordinates are computed similar to Thm. 7 such that
the matching is planar. A detailed proof is given in the full version [4]. ��

Simultaneous Drawing of Planar Graphs with Right-Angle Crossings and Few Bends 233

5 Conclusions and Open Problems

The results presented in this paper raise several questions that remain open.
1. Is it possible to reduce the number of bends per edge for the classes of graphs that

we presented in this paper? What additional non-trivial classes of graphs admit a
RACSIM drawing with better-than-general number of bends?

2. As a variant of the problem, it may be possible to reduce the required number of
bends per edge by relaxing the strict constraint that intersections must be right-
angled and instead ask for drawings that have close-to-optimal crossing resolution.

3. What is the computational complexity of the general problem: Given two or more
planar graphs on the same set of vertices and an integer k, is there a RACSIM

drawing in which each graph is drawn with at most k bends per edge, and the
crossings are at right angles?

References

1. Angelini, P., Battista, G.D., Frati, F., Patrignani, M., Rutter, I.: Testing the simultaneous em-
beddability of two graphs whose intersection is a biconnected or a connected graph. J. Dis-
crete Algorithms 14, 150–172 (2012)

2. Angelini, P., Geyer, M., Kaufmann, M., Neuwirth, D.: On a tree and a path with no geometric
simultaneous embedding. J. Graph Algorithms Appl. 16(1), 37–83 (2012)

3. Argyriou, E.N., Bekos, M.A., Kaufmann, M., Symvonis, A.: Geometric RAC simultaneous
drawings of graphs. J. Graph Algorithms Appl. 17(1), 11–34 (2013)

4. Bekos, M.A., van Dijk, T.C., Kindermann, P., Wolff, A.: Simultaneous drawing of planar
graphs with right-angle crossings and few bends. Arxiv report (2014),
http://arxiv.org/abs/1408.3325

5. Bläsius, T., Kobourov, S.G., Rutter, I.: Simultaneous embedding of planar graphs. In:
Tamassia, R. (ed.) Handbook of Graph Drawing and Visualization, ch. 11, pp. 349–381.
CRC Press (2013)

6. Brass, P., Cenek, E., Duncan, C.A., Efrat, A., Erten, C., Ismailescu, D.P., Kobourov, S.G.,
Lubiw, A., Mitchell, J.S.: On simultaneous planar graph embeddings. Comput. Geom. The-
ory Appl. 36(2), 117–130 (2007)

7. Brightwell, G., Scheinerman, E.R.: Representations of planar graphs. SIAM J. Discrete
Math. 6(2), 214–229 (1993)

8. Cabello, S., van Kreveld, M., Liotta, G., Meijer, H., Speckmann, B., Verbeek, K.: Geomet-
ric simultaneous embeddings of a graph and a matching. J. Graph Algorithms Appl. 15(1),
79–96 (2011)

9. Erten, C., Kobourov, S.G.: Simultaneous embedding of a planar graph and its dual on the
grid. Theory Comput. Syst. 38(3), 313–327 (2005)

10. Erten, C., Kobourov, S.G.: Simultaneous embedding of planar graphs with few bends.
J. Graph Algorithms Appl. 9(3), 347–364 (2005)

11. Kammer, F.: Simultaneous embedding with two bends per edge in polynomial area. In: Arge,
L., Freivalds, R. (eds.) SWAT 2006. LNCS, vol. 4059, pp. 255–267. Springer, Heidelberg
(2006)

12. Kaufmann, M., Wiese, R.: Embedding vertices at points: Few bends suffice for planar graphs.
J. Graph Algorithms Appl. 6(1), 115–129 (2002)

13. Nash-Williams, C.: Decomposition of finite graphs into forests. J. London Math. Soc. 39, 12
(1964)

http://arxiv.org/abs/1408.3325

An Improved Algorithm for Parameterized Edge
Dominating Set Problem

Ken Iwaide and Hiroshi Nagamochi

Department of Applied Mathematics and Physics,
Graduate School of Informatics,

Kyoto University, Japan
{iwaide,nag}@amp.i.kyoto-u.ac.jp

Abstract. An edge dominating set of a graph G = (V, E) is a subset M ⊆ E of
edges such that each edge in E \M is incident to at least one edge in M . In this
paper, we consider the parameterized edge dominating set problem which asks
us to test whether a given graph has an edge dominating set with size bounded
from above by an integer k or not, and we design an O∗(2.2351k)-time and
polynomial-space algorithm. This is an improvement over the previous best time
bound of O∗(2.3147k). We also show that a related problem: the parameterized
weighted edge dominating set problem can be solved in O∗(2.2351k) time and
polynomial space.

1 Introduction

An edge dominating set of a graph G = (V,E) is a subset M ⊆ E of edges in the
graph such that each edge in E \M is incident with at least one edge in M . The edge
dominating set problem (EDS) is to find a minimum edge dominating set of a given
graph. The problem is one of the basic problems highlighted by Garey and Johnson
[4] in their work on NP-completeness. Yanakakis and Gavril [14] showed that EDS
is NP-hard even in planar or bipartite graphs of maximum degree 3. Randerath and
Schiermeyer [7] designed an O∗(1.4423m)-time and polynomial-space algorithm for
EDS, where m = |E| and O∗ notation suppresses all polynomially bounded factors.
The result was improved to O∗(1.4423n) by Raman et al. [6], where n = |V |. Con-
sidering the treewidth of the graph, Fomin et al. [3] obtained an O∗(1.4082n)-time and
exponential-space algorithm. With the measure and conquer method, van Rooij and
Bodlaender [8] designed an O∗(1.3226n)-time and polynomial-space algorithm and an
improved O∗(1.3160n)-time and polynomial-space algorithm was presented by Xiao
and Nagamochi [12]. For EDS in graphs of maximum degree 3, the best algorithm is an
O∗(1.2721n)-time and polynomial-space algorithm due to Xiao and Nagamochi [13].

The parameterized edge dominating set problem (PEDS) is, given a graph G =
(V,E) with an integer k, to decide whether there is an edge dominating set of size up to
k. It is known that there is an FPT algorithm for PEDS; we can design an algorithm with
the running time f(k)poly(n) to solve the problem, where f(k) is a function of k and
poly(n) is a polynomial of the number of vertices in G. For PEDS, an O∗(2.6181k)-
time and polynomial-space algorithm was given by Fernau [2]. Fomin et al. [3] obtained

M.S. Rahman and E. Tomita (Eds.): WALCOM 2015, LNCS 8973, pp. 234–245, 2015.
c© Springer International Publishing Switzerland 2015

An Improved Algorithm for Parameterized Edge Dominating Set Problem 235

an O∗(2.4181k)-time and exponential-space algorithm based on dynamic program-
ming on treewidth-bounded graphs. With the measure and conquer method, Binkele-
Raible and Fernau [1] designed an O∗(2.3819k)-time and polynomial-space algorithm.
Xiao et al. [10] give an O∗(2.3147k)-time and polynomial-space branching algorithm.
For PEDS in graphs of maximum degree 3, the best parameterized algorithm is an
O∗(2.1479k)-time and polynomial-space algorithm due to Xiao and Nagamochi [11].

EDS and PEDS are related to the vertex cover problem. A vertex cover of a graph is
a set of vertices such that each edge of the graph is incident to at least one vertex in the
set. The set of endpoints of all edges in any edge dominating set is a vertex cover. To
find an edge dominating set of a graph, we may enumerate vertex covers of the graph
and construct edge dominating sets from the vertex covers. Many previous algorithms
are based on enumeration of vertex covers. We enumerate candidates of such edge dom-
inating sets by branching on a vertex: fixing it as a vertex incident on at least one edge in
an edge dominating set with a bounded size or not. In the O∗(2.3147k)-time algorithm
to PEDS, Xiao et al. [10] observed that branching on vertices in a local structure called
“2-path component” is the most inefficient among branchings on other local structures,
and that reducing the number of branchings on 2-path components leads to an improve-
ment over the time complexity. For this, they retained branching on 2-path components
until no other structure remains, and effectively skipped subinstances that will not de-
liver edge dominating sets with a bounded size by systematically treating the set of
2-path components. In this paper, identifying new local structures, called “bi-claw,”
“leg-triangle” and “tri-claw components” and establishing a refined lower bound on the
size of edge dominating sets, we design an O∗(2.2351k)-time and polynomial-space
algorithm.

Section 2 gives some terminologies and notations and introduces our branching
operations of our algorithm. After Section 3 describes our algorithm that consists of
three major stages, Section 4 analyzes the time complexity by deriving an upper bound
on the number of all subinstances. Section 5 discusses a weighted variant of PEDS.
Section 6 makes some concluding remarks. For space limitation, the proofs of lemmata
are available in the full version of the paper [5].

2 Preliminaries

2.1 Terminology and Notation

For non-negative integers k1, k2, . . . , km, a multinomial coefficient (
∑m

i=1 ki)!

k1!···km! is de-

noted by
(∑m

i=1 ki

k1,...,km

)
.

Lemma 1. Let k1, k2, . . . , km be non-negative integers, where m ≥ 1. Then for any
positive reals γ1, γ2, . . ., γm such that

∑m
i=1 1/γi ≤ 1, it holds that(∑m

i=1ki
k1, k2, . . . , km

)
≤

m∏
i=1

γki

i .

The set of vertices and edges in a graph H is denoted by V (H) and E(H), respec-
tively. For a vertex v in a graph, let N(v) denote a set of neighbors of v and let N [v]

236 K. Iwaide and H. Nagamochi

denote a set of v and its neighbors (i.e., N [v] = {v} ∪ N(v)). A vertex of degree d is
called a degree-d vertex. The degree of a vertex v in a graph H is denoted by d(v;H).
For a set F of edges, we use V (F) to denote a set of vertices incident on at least one
edge in F , and we say that F covers a vertex set S ⊆ V if V (F) ⊇ S. For a subset
S ⊆ V of vertices, G[S] denote the subgraph of G induced by S. A cycle of length 	 is
called an 	-cycle, and is denoted by the sequence v1v2 . . . v� of vertices in it, where the
cycle contains edges v1v2, . . . , v�−2v�−1 and v�v1. A connected component containing
only one vertex is called trivial. We define five types of connected components as fol-
lows:
a clique component, a connected component that is a complete subgraph;
- a 2-path component, a connected component consisting of a degree-2 vertex u1 and its
two degree-1 neighbors u0, u2 ∈ N(u1), denoted by u0u1u2, as illustrated in Fig. 1(a);
- a bi-claw component, a connected component consisting of two adjacent degree-3 ver-
tices u1 and v1 and their four degree-1 neighbors u0, u2 ∈ N(u1) and v0, v2 ∈ N(v1),
denoted by (u0u1u2)(v0v1v2), as illustrated in Fig. 1(b);
- a legged triangle component (or leg-triangle component), a connected component
consisting of two adjacent degree-3 vertices u1 and v1, their two degree-1 neighbors
u0 ∈ N(u1) and v0 ∈ N(v1) and one common degree-2 neighborw ∈ N(u1)∩N(v1),
denoted by u0(u1wv1)v0, as illustrated in Fig. 1(c); and
- a tri-claw component, a connected component consisting of three degree-3 vertices
u1, v1 and w1, their six degree-1 neighbors u0, u2 ∈ N(u1), v0, v2 ∈ N(v1) and
w0, w2 ∈ N(w1) and their common degree-3 neighbor t ∈ N(u1) ∩N(v1) ∩N(w1),
denoted by t(u0u1u2)(v0v1v2)(w0w1w2), as illustrated in Fig. 1(d).
The last four types of components, 2-path, bi-claw, leg-triangle and tri-claw components
are called bad components collectively.

2.2 Instances with Covered and Discarded Vertices

Throughout our algorithm, we do not modify a given graph G = (V,E) or a parameter
k, but fix vertices to covered vertices or discarded vertices so that a pair of the sets C
and D of covered and discarded vertices gives an instance (C,D) that asks to find an
edge dominating set M of G such that C ⊆ V (M) ⊆ V \ D. We call such an edge
dominating set a (C,D)-eds for short. An instance (C,D) is called feasible if it admits
a (C,D)-eds, and is called k-feasible if it admits a (C,D)-eds M of size |M | ≤ k. We
call vertices in V \ (C ∪D) undecided and denote by U the set of undecided vertices.

We use two kinds of fundamental branching operations. One is to branch on an
undecided vertex v ∈ U in (C,D): fix v as a new covered vertex in the first branch
or as a new discarded vertex in the second branch. This is based on the fact that there
is a (C,D)-eds M with v ∈ V (M) or there is no such (C,D)-eds. Then we also fix all
the vertices in N(v) as covered vertices in the second branch, since any edge e = vw
incident to v needs to be incident to an edge dominating set at the vertex w. The other
is to branch on a 4-cycle v0v1v2v3 over undecided vertices: fix vertices v0 and v2 as
new covered vertices or fix vertices v1 and v3 as new covered vertices. This is based on
the fact that for any edge dominating set M , the set V (M) is a vertex cover and one of
{v0, v2} and {v1, v3} is contained in any vertex cover [9]. Van Rooij and Bodlaender
[8] found the following solvable case.

An Improved Algorithm for Parameterized Edge Dominating Set Problem 237

(a) A 2-path component u0u1u2 (b) A bi-claw component (u0u1u2)(v0v1v2)

(c) A leg-triangle component u0(u1wv1)v0

(d) A tri-claw component
t(u0u1u2)(v0v1v2)(w0w1w2)

Fig. 1. The four types of bad components

Lemma 2. [8] A minimum (C,D)-eds of an instance (C,D) such that G[U] contains
only clique components can be found in polynomial time.

We denote by U1 the set of vertices of all clique components in G[U], and let U2 =
U \ U1. An instance (C,D) is called a leaf instance if U2 = ∅. By Lemma 2, we only
need to select vertices from U2 to apply branching operations until all instances become
leaf instances.

The next lower bound on the size of (C,D)-edses is immediate since for each clique
component Q in G[U], it holds that |V (Q) ∩ V (M)| ≥ |V (Q)| − 1.

Lemma 3. For any (C,D)-eds M in a graph G, it holds that

|V (M)| ≥ |C|+
∑
{|V (Q)| − 1 | clique components Q in G[U]}.

Based on this, we define the measure μ of an instance (C,D) to be

μ(C,D) = 2k − |C| −
∑
{|V (Q)| − 1 | clique components Q in G[U]}.

We do not need to generate any instances (C,D) with μ(C,D) < 0 since they are not
k-feasible. In this paper, we introduce the following new lower bound.

Lemma 4. Let M be a (C,D)-eds in a graph G. Then for any subset S ⊆ C it holds
that

|M | ≥
∑
{�|V (H)|/2� | components H in G[S]} ≥ �|S|/2�.

238 K. Iwaide and H. Nagamochi

Branching on a bad component H in G[U2] means to keep branching on vertices in
U2 ∩ V (H) until all vertices in V (H) are contained in C ∪ D ∪ U1. We treat a series
of such branchings as an operation of branching on H that generates r new instances
defined as follows. For each type of a bad component H , we define the number r and
C(j)(H) (resp., D(j)(H)), j = 1, 2, . . . , r to be a set of vertices of H fixed as covered
(resp., discarded) vertices in the j-th branch:
For a 2-path component H1 = u0u1u2, by branching on u1, we can branch on H1 into
r = 2 branches:
1. C(1)(H1) = {u1} and D(1)(H1) = ∅; and
2. C(2)(H1) = {u0, u2} and D(2)(H1) = {u1}.

For a bi-claw component H2 = (u0u1u2)(v0v1v2), where at least one of adjacent ver-
tices u1 and v1 must be in V (M) of any (C,D)-eds M , we can branch on this compo-
nent into r = 3 branches:
1. C(1)(H2) = {u1, v1} and D(1)(H2) = ∅;
2. C(2)(H2) = {u0, u2, v1} and D(2)(H2) = {u1}; and
3. C(3)(H2) = {u1, v0, v2} and D(3)(H2) = {v1}.

For a leg-triangle component H3 = u0(u1wv1)v0, where at least one of adjacent ver-
tices u1 and v1 must be in V (M) of any (C,D)-eds M , we can branch on this compo-
nent into r = 3 branches:
1. C(1)(H3) = {u1, v1} and D(1)(H3) = ∅;
2. C(2)(H3) = {u0, v1, w} and D(2)(H3) = {u1}; and
3. C(3)(H3) = {u1, v0, w} and D(3)(H3) = {v1}.

For a tri-claw componentH4 = t(u0u1u2)(v0v1v2)(w0w1w2), we can branch on u1, v1
and w1 sequentially to generate the following r = 8 branches:
1. C(1)(H4) = {u1, v1, w1} and D(1)(H4) = ∅;
2. C(2)(H4) = {t, u0, u2, v1, w1} and D(2)(H4) = {u1};
3. C(3)(H4) = {t, u1, v0, v2, w1} and D(3)(H4) = {v1};
4. C(4)(H4) = {t, u1, v1, w0, w2} and D(4)(H4) = {w1};
5. C(5)(H4) = {t, u0, u2, v0, v2, w1} and D(5)(H4) = {u1, v1};
6. C(6)(H4) = {t, u1, v0, v2, w0, w2} and D(6)(H4) = {v1, w1};
7. C(7)(H4) = {t, u0, u2, v1, w0, w2} and D(7)(H4) = {u1, w1}; and
8. C(8)(H4) = {t, u0, u2, v0, v2, w0, w2} and D(8)(H4) = {u1, v1, w1}.

For each of the above branch, we define two kinds of values α and β which will
be summed up to give lower bounds on the size of a (C′, D′)-eds of a leaf instance
(C′, D′). For each (i, j), let

αi,j = |C(j)(Hi)| and βi,j =
∑
{�|V (T)|/2� | components T in G[C(j)(Hi)]}.

Observe that βi,j is a lower bound on the size of a (C(j)(Hi), ∅)-eds by Lemma 4.
For (i, j) ∈ {(1, 1), (1, 2), (2, 2), (2, 3), (3, 2), (4, 8)}, the graph G[C(j)(Hi)] con-
tains only isolated vertices, and βi,j = |C(j)(Hi)| = αi,j . For other (i, j), the graph
G[C(j)(Hi)] consists of exactly one nontrivial component of size p ∈ {2, 3} and
|C(j)(Hi)|−p isolated vertices, and βi,j = �p/2�+(|C(j)(Hi)|−p) = |C(j)(Hi)|−1 =
αi,j − 1.

In this paragraph, we introduce criteria in choosing 4-cycle/vertices to branch on
used in our algorithm. For a subset S ⊆ U2 of vertices, we let qS and bS denote the

An Improved Algorithm for Parameterized Edge Dominating Set Problem 239

sum of |V (Q)| − 1 over all clique components Q and the number of bad components
newly generated by removingS from G[U2], respectively. A 4-cycle v0v1v2v3 in G[U2]
is called admissible if b{v0,v2}+b{v1,v3} ≤ 1. A vertex v in G[U2] such that bv = x and
bN [v] = y is called an (x, y)-vertex. A vertex v in G[U2] is called optimal if it satisfies
a condition (c-i) below with the minimum i over all vertices in G[U2]:
(c-1) v is a degree-3 (0, 0)-vertex;
(c-2) v is a degree-2 (x, y)-vertex with x+ y ≤ 1 and qv ≥ 1;
(c-3) (i) v is in an admissible 4-cycle;

(ii) v is a degree-d (x, y)-vertex such that 2 ≤ d ≤ 3, x+y ≤ 1 and qv+ qN [v] ≥
4− d;
(iii) v is a degree-d (x, y)-vertex such that 2 ≤ d ≤ 3, x + y ≤ 1, qN [v] = 3− d
and removing each of v and N [v] produces no new 2-path component; or
(iv) v is a degree-3 (0, 1)-vertex such thatG[U2\{v}] contains at least one degree-
3 (0, 0)-vertex and removing N [v] produces exactly one new 2-path component;

(c-4) v is a degree-2 vertex with qv = 1;
(c-5) v is a degree-3 vertex; and
(c-6) v is a degree-2 vertex.

3 The Algorithm

Given a graph G and an integer k, our algorithm returns TRUE if it admits an edge
dominationg set of size ≤ k or FALSE otherwise. The algorithm is designed to be a
procedure that returns TRUE if a given instance (C,D) is k-feasible or FALSE oth-
erwise, by branching on a vertex/4-cycle/bad component in (C,D) to generate new
smaller instances (C(1), D(1)), . . . , (C(r), D(r)), to each of which the procedure is re-
cursively applied. The procedure is initially given an instance (∅, ∅), and always returns
FALSE whenever μ(C,D) < 0 holds.

Our algorithm takes three stages. The first stage keeps branching on vertices of de-
gree ≥ 4, and retains the set B of all the produced bad components without branching
on them. The second stage keeps branching on optimal vertices of degree ≤ 3, imme-
diately branching on any newly produced bad component before it chooses the next
optimal vertex to branch on. The third stage generates leaf instances by fixing all un-
decided vertices in the bad components in B, where we try to decrease the number of
leaf instances to be generated based on some lower bound on the size of solutions of
leaf instances. To derive the lower bounds in the third stage, we let Ci store all ver-
tices fixed to covered vertices during branching operations in the i-th stage. Formally
EDSSTAGE1 is described as follows.

Algorithm. EDSSTAGE1(C,D)

Input: A graph G = (V, E) with an integer k, and subsets C and D of V (initially, C = D =
∅).

Output: TRUE if (C,D) is k-feasible or FALSE otherwise.
1: if μ(C,D) < 0 then
2: return FALSE
3: else if there is a vertex v of degree ≥ 4 in G[U2] then

240 K. Iwaide and H. Nagamochi

4: return EDSSTAGE1(C ∪ {v}, D) ∨ EDSSTAGE1(C ∪N(v), D ∪ {v})
5: else
6: C1 := C; C2 := ∅;
7: Let B store all bad components in G[U2];
8: return EDSSTAGE2(C1, C2,B, D)
9: end if

For a given instance (G, k) of PEDS, let I1 denote the set of all instances constructed
immediately after the first stage. Let V (B) denote the set of vertices in the bad compo-
nents in B. Given an instance (C1, C2,B, D) ∈ I1, the second stage EDSSTAGE2 fixes
all vertices in U2 \V (B) to covered/discarded vertices by repeatedly branching on opti-
mal vertices or any newly produced bad component in G[U2 \V (B)] if it exists. During
the second stage, the sets C1 and B obtained in the first stage never change. When
no vertex is left in U2 \ V (B), we switch to the third stage. Formally EDSSTAGE2 is
described as follows.

Algorithm. EDSSTAGE2(C1, C2,B, D)

Input: A graph G = (V,E) with an integer k, disjoint subsets C1, C2, D ⊆ V and a set of
bad components B in G[U2].

Output: TRUE if (C1 ∪ C2, D) is k-feasible or FALSE otherwise.
1: if μ(C1 ∪ C2, D) < 0 then
2: return FALSE
3: else if there is a 2-path component H1 in G[U2 \ V (B)] then
4: return

∨
j=1,2 EDSSTAGE2(C1, C2 ∪ C(j)(H1),B, D ∪D(j)(H1))

5: else if there is a bi-claw component H2 in G[U2 \ V (B)] then
6: return

∨
1≤j≤3 EDSSTAGE2(C1, C2 ∪ C(j)(H2),B, D ∪D(j)(H2))

7: else if there is a leg-triangle component H3 in G[U2 \ V (B)] then
8: return

∨
1≤j≤3 EDSSTAGE2(C1, C2 ∪ C(j)(H3),B, D ∪D(j)(H3))

9: else if there is a tri-claw component H4 in G[U2 \ V (B)] then
10: return

∨
1≤j≤8 EDSSTAGE2(C1, C2 ∪ C(j)(H4),B, D ∪D(j)(H4))

11: else if U2 \ V (B) �= ∅ then
12: Choose an optimal vertex v in G[U2 \ V (B)];
13: if v is in an admissible 4-cycle v0v1v2v3 of condition (c-4) then
14: return EDSSTAGE2(C2 ∪ {v0, v2}, D,B, C1) ∨ EDSSTAGE2(C1, C2 ∪

{v1, v3},B, D)
15: else
16: return EDSSTAGE2(C1,C2∪{v},B, D)∨ EDSSTAGE2(C1, C2∪N(v),B, D∪{v})
17: end if
18: else /* Now U2 = V (B) */
19: return EDSSTAGE3(C1, C2,B, D)
20: end if

Let I2 denote the set of all instances constructed immediately after the second stage.
Consider an instance I = (C1, C2,B, D) ∈ I2, where the graph G[U2] consists of the
bad components in B retained at the first stage. Let B1 (resp., B2,B3 and B4) be the
sets of 2-path (resp., bi-claw, leg-triangle and tri-claw) components in B, and yi = |Bi|,
i = 1, 2, 3, 4 in I ∈ I2. To obtain a leaf instance from the instance I , we need to fix

An Improved Algorithm for Parameterized Edge Dominating Set Problem 241

all vertices in V (B). The number of all leaf instances that can be constructed from the
instance I ∈ I2 is

∏4
i=1 r

yi

i = 2y1 ·3y2 ·3y3 ·8y4 , where ri is the number of subinstances
generated by branching on a bad component H ∈ Bi.

In the third stage, we avoid constructing of some “k-infeasible” leaf instances among
all leaf instances. For a leaf instance I ′ = (C′ = C1 ∪ C2 ∪ C3, D

′) obtained from the
instance I ∈ I2, where C3 denotes the set of undecided vertices in V (B) that are
fixed to covered vertices in I ′, we let wi,j be the number of bad components in Bi to
which the j-th branch is applied to generate I ′, and call the vector w with these 16
entries wi,j the occurrence vector of I ′. Note that

∑
i,j αi,jwi,j = |C3| holds, and that∑

i,j βi,jwi,j is a lower bound on the size of (C3, D
′)-eds by Lemma 4, since no edge

in G joins two components in B. We derive two necessary conditions for a vector w
to be the occurrence vector of a k-feasible leaf instance I ′ = (C′, D′). One is that
2k ≥ 2|M | ≥ |V (M)| ≥ |C1|+ |C2|+ |C3|, i.e.,

2k ≥ |C1|+ |C2|+
∑
i,j

αi,jwi,j . (1)

Observe that there is no edge between C3 and C2 in I ′, since any vertex in C2 is
contained in some component in G[U2 \ V (B)] during an execution of EDSSTAGE2.
Hence

∑
i,j βi,jwi,j + �|C2|/2� is a lower bound on the size of a (C3 ∪C2, D

′)-eds by
Lemma 4, and another necessary condition is given by

k ≥ |C2|/2 +
∑
i,j

βi,jwi,j . (2)

Note that the number 	(w) of leaf instances I ′ whose occurrence vectors are given
by w is

	(w) =

(
y1

w1,1, w1,2

)(
y2

w2,1, w2,2, w2,3

)(
y3

w3,1, w3,2, w3,3

)(
y4

w4,1, w4,2, . . . , w4,8

)
.

(3)
For each instance I = (C1, C2,B, D) ∈ I2, the third stage EDSSTAGE3 generates an

occurrence vector w satisfying the conditions (1) and (2) and
∑

j wi,j = yi, 1 ≤ i ≤ 4,
and constructs all leaf instances I ′ = (C1∪C2∪C3, D

′) from I ∈ I2 with the vector w,
before it returns TRUE if one of the leaf instances is k-feasible or FALSE otherwise.
Formally EDSSTAGE3 is described as follows.

Algorithm. EDSSTAGE3(C1, C2,B, D)

Input: A graph G = (V,E) with an integer k, disjoint subsets C1, C2, D ⊆ V and a set of
bad components B in G[U2].

Output: TRUE if (C1 ∪ C2, D) is k-feasible or FALSE otherwise.
1: Let B1 (resp., B2,B3 and B4) be a set of 2-path (resp., bi-claw, leg-triangle and tri-claw)

components in B, and yi := |Bi|, i = 1, 2, 3, 4;
2: for each occorrence vector w that satisfies the conditions (1) and (2) and

∑
j wi,j = yi,

1 ≤ i ≤ 4 do
3: for each combination of partitions of B1,B2,B3 and B4 into

B(1)
1 ∪ B(2)

1 = B1, B(1)
2 ∪ B(2)

2 ∪ B(3)
2 = B2, B(1)

3 ∪ B(2)
3 ∪ B(3)

3 = B3, and

242 K. Iwaide and H. Nagamochi

B(1)
4 ∪ B(2)

4 ∪ · · · ∪ B(8)
4 = B4 such that |B(j)

j | = wi,j for all i and j; do

4: for each j = 1, 2 and each 2-path component H1 ∈ B(j)
1 do

5: C3 := C(j)(H1); D := D ∪D(j)(H1)
6: end for;
7: for each j = 1, 2, 3 and each bi-claw component H2 ∈ B(j)

2 do
8: C3 := C(j)(H2); D := D ∪D(j)(H2)
9: end for;

10: for each j = 1, 2, 3 and each leg-triangle component H3 ∈ B(j)
3 do

11: C3 := C(j)(H3); D := D ∪D(j)(H3)
12: end for;
13: for each j = 1, 2, . . . , 8 and each tri-claw component H4 ∈ B(j)

4 do
14: C3 := C(j)(H4); D := D ∪D(j)(H4)
15: end for; /* Now U2 = ∅ and (C1 ∪ C2 ∪ C3, D) is a leaf instance */
16: Test whether (C = C1 ∪C2 ∪C3, D) is k-feasible or not by computing a minimum

(C,D)-eds by Lemma 2
17: end for
18: end for;
19: if there is a k-feasible leaf instance (C1 ∪ C2 ∪ C3, D) in the for loop then
20: return TRUE
21: else
22: return FALSE
23: end if

4 The Analysis

For a given instance (G, k) of PEDS, let Ii, i = 1, 2, 3 be the set of all instances
constructed immediately after the i-th stage during the execution of EDSSTAGE1(∅, ∅),
where I3 is the set of all leaf instances, which correspond to the leaf nodes of the search
tree of the execution. To analyze the time complexity of our algorithm, it suffices to
derive an upper bound on |I3|.

Lemma 5. For any non-negative integer x1, the number of instances I =
(C1, ∅,B, D) ∈ I1 with |C1| = x1 is O(1.380278x1).

Lemma 6. For any non-negative integer x2 and an instance I = (C1, ∅,B, D) ∈ I1,
the number of instances I ′ = (C1, C2,B, D′) ∈ I2 with |C2| = x2 that can be gener-
ated from I is O(1.494541x2).

From these, we obtain the next.

Lemma 7. For any non-negative integers x1 and x2, the number of instances
(C1, C2,B, D) ∈ I2 such that |C1| = x1 and |C2| = x2 is O(1.380278x1·1.494541x2).

Note that the number of combinations (x1, x2) for (|C1|, |C2|) is O(n2). For a given
instance (C1, C2,B, D) ∈ I2, the number of possible occurrence vectors w satisfying
the conditions (1) and (2) and

∑
j wi,j = yi, 1 ≤ i ≤ 4 is also bounded by a polynomial

of n. To show that our algorithm runs in O∗(2.2351k) time, it suffices to prove that
the number of leaf instances generated from an instance I = (C1, C2,B, D) ∈ I2

An Improved Algorithm for Parameterized Edge Dominating Set Problem 243

with specified size |C1| = x1 and |C2| = x2 and a specified occurrence vector w is
O∗(2.2351k). Let I3(x1, x2,w) denote the set of all such leaf instances. By Lemma 7
and (3), we see that |I3(x1, x2,w)| = O(1.380278x1 · 1.494541x2 · 	(w)).

In what follows, we derive an upper bound on O(1.380278x1 · 1.494541x2 · 	(w))
under the constraints (1) and (2). For this, we merge some entries in w into ten numbers
by z1,1 = w1,1, z1,2 = w1,2, z2,1 = w2,1, z2,2 = w2,2 + w2,3, z3,1 = w3,1, z3,2 =
w3,2 + w3,3, z4,1 = w4,1, z4,2 = w4,2 + w4,3 + w4,4, z4,3 = w4,5 + w4,6 + w4,7 and
z4,4 = w4,8. Then 	(w) is restated as(
z1,1+z1,2
z1,1, z1,2

)
·
(
z2,1+z2,2
z2,1, z2,2

)
·2z2,2 ·

(
z3,1+z3,2
z3,1, z3,2

)
·2z3,2 ·

(
z4,1+z4,2+z4,3+z4,4
z4,1, z4,2, z4,3, z4,4

)
·3z4,2+z4,3 ,

which is bounded from above by an exponential function in Lemma 1

γ
z1,1
1,1 γ

z1,2
1,2 · γ

z2,1
2,1 γ

z2,2
2,2 · γ

z3,1
3,1 γ

z3,2
3,2 · γ

z4,1
4,1 γ

z4,2
4,2 γ

z4,3
4,3 γ

z4,4
4,4

for any positive reals γ1,1, γ1,2, γ2,1, γ2,2, γ3,1, γ3,2, γ4,1, γ4,2, γ4,3 and γ4,4 such that
1/γ1,1 +1/γ1,2 ≤ 1, 1/γ2,1 +2/γ2,2 ≤ 1, 1/γ3,1 +2/γ3,2 ≤ 1 and 1/γ4,1 +3/γ4,2 +
3/γ4,3 + 1/γ4,4 ≤ 1. Then we have

|I3(x1, x2,w)| = O(1.380278x1 ·1.494541x2γ
z2,1
2,1 γ

z2,2
2,2 γ

z3,1
3,1 γ

z3,2
3,2 γ

z4,1
4,1 γ

z4,2
4,2 γ

z4,3
4,3 γ

z4,4
4,4),

which is bounded by

O(max{1.3802781/c1, 1.4945411/c2, γ1/c1,1
11 , γ

1/c1,2
12 , γ

1/c2,1
21 , γ

1/c2,2
22 ,

γ
1/c3,1
31 , γ

1/c3,2
32 , γ

1/c4,1
41 , γ

1/c4,2
42 , γ

1/c4,3
43 , γ

1/c4,4
44 }k) (4)

for any constants c1, c2 and {ci,j} such that

k ≥ c1x1 + c2x2 + c1,1z1,1 + c1,2z1,2 + c2,1z2,1 + c2,2z2,2

+ c3,1z3,1 + c3,2z3,2 + c4,1z4,1 + c4,2z4,2 + c4,3z4,3 + c4,4z4,4. (5)

Conditions (1) and (2) are restated as

k ≥ x1/2 + x2/2 + (z1,1 + 2z1,2)/2 + (2z2,1 + 3z2,2)/2

+ (2z3,1 + 3z3,2)/2 + (3z4,1 + 5z4,2 + 6z4,3 + 7z4,4)/2; (6)

k ≥ x2/2 + (z1,1 + 2z1,2) + (z2,1 + 3z2,2)

+ (z3,1 + 2z3,2) + (3z4,1 + 4z4,2 + 5z4,3 + 7z4,4). (7)

As a linear combination of (6) and (7) with λ and (1 − λ), we get (5) for constants
c1 = λ/2, c2 = 1/2, c1,1 = 1−λ/2, c1,2 = 2−λ, c2,1 = 1, c2,2 = 3−3λ/2, c3,1 = 1,
c3,2 = 2−λ/2, c4,1 = 3− 3λ/2, c4,2 = 4− 3λ/2, c4,3 = 3− 2λ and c4,4 = 7− 7λ/2.

From (4), we obtain |I3(x1, x2,w)| = O
(
2.2351k

)
by setting λ = 0.80142, γ1,1 =

1.61804, γ1,2 = 2.61804, γ2,1 = 2.10457, γ2,2 = 3.81068, γ3,1 = 2.23510, γ3,2 =
3.61931, γ4,1 = 3.60818, γ4,2 = 7.36647, γ4,3 = 11.29854 and γ4,4 = 19.96819. This
establishes the next theorem.

Theorem 1. Algorithm EDSSTAGE1, accompanied by Algorithm EDSSTAGE2 and
EDSSTAGE3, can solve the parameterized edge dominating set problem in
O∗(2.2351k) time and polynomial space.

244 K. Iwaide and H. Nagamochi

5 A Related Problem: The Parameterized Weighted Edge
Dominating Set Problem

We also consider a weighted variant of PEDS. The weighted edge dominating set prob-
lem (WEDS) is, given a graph G = (V,E) with an edge weight function ω : E → R≥0,
to find an edge dominating set M of minimum total weight ω(M) =

∑
e∈M ω(e).

The parameterized weighted edge dominating set problem (PWEDS) is, given a graph
G = (V,E) with an edge weight function ω : E → R≥1 and a positive real k, to
test whether there is an edge dominating set M such that ω(M) ≤ k. We show that a
modification of our algorithm for PEDS can solve PWEDS in the same time and space
complexities as our algorithm does PEDS.

For PWEDS we use the same terminologies and notations as for PEDS; for example,
an instance of PWEDS is also denoted by (C,D). Van Rooij and Bodlaender [8] found
the following solvable case for a weighted variant of EDS.

Lemma 8. [8] A minimum (C,D)-eds of an instance (C,D) of WEDS such that G[U]
contains only clique components of size ≤ 3 can be found in polynomial time.

Based on this lemma, for PWEDS we modify U1 to be the set of vertices of clique
components of size ≤ 3 in G[U]. We call our algorithm to which this modification is
applied a modified algorithm. This modification brings the following corollary.

Corollary 1. The modified algorithm can solve the parameterized weighted edge dom-
inating set problem in O∗(2.2351k) time and polynomial space.

Proof. We first show the correctness. If an edge dominating set M of G is k-feasible,
i.e., ω(M) ≤ k, then it holds that |V (M)| ≤ 2k and |M | ≤ k since ω(e) ≥ 1 for any
edge e ∈ E. This ensures the correctness of the measure μ(C,D) and the conditions (1)
and (2) for an instance (C,D) of the weighted variant. Therefore we can solve PWEDS
by the same branching method as PEDS.

Second we show the time complexity is the same as PEDS. Only difference between
our algorithm for PEDS and one for PWEDS is treatment of clique components of
size ≥ 4. In what follows, we describe the treatment by the modified algorithm and
it guarantees that the time complexity is O∗(2.2351k). For a clique component H of
size ≥ 5 of an instance (C,D), the degree of a vertex of H in G[U2] is |V (H)| − 1 ≥
4, on which therefore the modified algorithm branches in the first stage. For a clique
component H of size 4 of an instance (C,D), a vertex of H satisfies condition (c-2),
on which therefore the algorithm branches in the second stage. ��

6 Conclusion

In this paper, we have presented an O∗(2.2351k)-time and polynomial-space algorithm
to PEDS. The algorithm retains bad components produced at the first stage for branch-
ing on vertices of degree ≥ 4, and branching on the remaining undecided vertices not
in clique components by choosing 4-cycles/vertices to branch on carefully. Based on
our new lower bound on the size of (C,D)-edses, we derived an upper bound on the

An Improved Algorithm for Parameterized Edge Dominating Set Problem 245

number of leaf instances generated in the third stage. We have also shown that a modi-
fication of our algorithm can solve PWEDS in the same time and space complexities as
PEDS.

For a possible achievement of further improved algorithms, it is still left to modify
the first stage of our algorithm to branch on vertices of degree ≤ 4 in the second stage
and to identify several new components as bad components.

References

1. Binkele-Raible, D., Fernau, H.: Enumerate and Measure: Improving Parameter Budget Man-
agement. In: Raman, V., Saurabh, S. (eds.) IPEC 2010. LNCS, vol. 6478, pp. 38–49. Springer,
Heidelberg (2010)

2. Fernau, H.: EDGE DOMINATING SET: Efficient Enumeration-Based Exact Algorithms. In:
Bodlaender, H.L., Langston, M.A. (eds.) IWPEC 2006. LNCS, vol. 4169, pp. 142–153.
Springer, Heidelberg (2006)

3. Fomin, F., Gaspers, S., Saurabh, S., Stepanov, A.: On Two Techniques of Combining Branch-
ing and Treewidth. Algorithmica 54(2), 181–207 (2009)

4. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to The Theory of NP-
Completeness. Freeman, San Francisco (1979)

5. Iwaide, K., Nagamochi, H.: An Improved Algorithm for Parameterized Edge
Dominating Set Problem. Technical Report 2014-004 Kyoto University (2014),
http://www.amp.i.kyoto-u.ac.jp/tecrep/

6. Raman, V., Saurabh, S., Sikdar, S.: Efficient Exact Algorithms through Enumerating Maxi-
mal Independent Sets and Other Techniques. Theory of Computing Systems 42(3), 563–587
(2007)

7. Randerath, B., Schiermeyer, I.: Exact Algorithms for Minimum Dominating Set. Technical
Report zaik 2005-501, Universität zu Köln, Cologne, Germany (2005)

8. van Rooij, J.M.M., Bodlaender, H.L.: Exact Algorithms for Edge Domination. Algorith-
mica 64(4), 535–563 (2012)

9. Xiao, M.: A Simple and Fast Algorithm for Maximum Independent Set in 3-Degree Graphs.
In: Rahman, M. S., Fujita, S. (eds.) WALCOM 2010. LNCS, vol. 5942, pp. 281–292.
Springer, Heidelberg (2010)

10. Xiao, M., Kloks, T., Poon, S.-H.: New Parameterized Algorithms for the Edge Dominating
Set Problem. TCS 511, 147–158 (2013)

11. Xiao, M., Nagamochi, H.: Parameterized Edge Dominating Set in Cubic Graphs. In: Atallah,
M., Li, X.-Y., Zhu, B. (eds.) FAW-AAIM 2011. LNCS, vol. 6681, pp. 100–112. Springer,
Heidelberg (2011)

12. Xiao, M., Nagamochi, H.: A Refined Exact Algorithm for Edge Dominating Set. In: Agrawal,
M., Cooper, S.B., Li, A. (eds.) TAMC 2012. LNCS, vol. 7287, pp. 360–372. Springer,
Heidelberg (2012)

13. Xiao, M., Nagamochi, H.: Exact Algorithms for Annotated Edge Dominating Set in Graphs
with Degree Bounded by 3. IEICE Transactions on Information and Systems E96-D(3),
408–418 (2013)

14. Yanakakis, M., Gavril, F.: Edge Dominating Set in Graphs. SIAM J. Appl. Math. 38(3),
364–372 (1980)

http://www.amp.i.kyoto-u.ac.jp/tecrep/

On Bar (1, j)-Visibility Graphs

(Extended Abstract)

Franz J. Brandenburg1, Niklas Heinsohn2,
Michael Kaufmann2, and Daniel Neuwirth1

1 Fakultät für Informatik und Mathematik, Universität Passau, Germany
{brandenb,neuwirth}@informatik.uni-passau.de

2 Wilhelm-Schickard-Institut für Informatik, Universität Tübingen, Germany
{heinsohn,mk}@informatik.uni-tuebingen.de

Abstract. A graph is called a bar (1, j)-visibility graph if its vertices can
be represented as horizontal vertex-segments (bars) and each edge as a ver-
tical edge-segment connecting the bars of the end vertices such that each
edge-segment intersects at most one other bar and each bar is intersected
by at most j edge-segments. Bar (1, j)-visibility refines bar 1-visibility in
which there is no bound on the number of intersections of bars.

We construct gadgets which show structural properties of bar (1, j)-
visibility graphs, study bounds on the maximal number of edges and
show that there is an infinite hierarchy of bar (1, j)-visibility graphs.
Finally, we prove that it is NP-complete to test whether a graph is bar
(1,∞)-visible.

1 Introduction

Planar graphs are an important topic in graph theory, combinatorics, and in
particular in graph drawing. Planar graphs with n vertices have at most 3n− 6
edges, and triangulated planar graphs meet this upper bound. Planar graphs
admit straight-line drawings in the plane. A (weak) visibility representation is
another way to draw a planar graph. Here the vertices are displayed as horizontal
vertex-segments, called bars, and there is a vertical line of sight between the bars
of the end vertices for each edge [15,18].

Developing a theory of graph drawing beyond planarity has received increasing
interest in recent years. This is partly motivated by applications of network
visualization, where it is important to compute readable drawings of non-planar
graphs, and from cognitive experiments of Huang et al. [11], which indicate
that large angle crossings have no negative impact on the human understanding
of graph drawings. Recent approaches are k-planarity [14], bar k-visibility [6],
rectangle visibility [12], k-quasi planarity [2] and right angle crossings (RAC)
[7]. Studies of such classes of graphs address the maximal number of edges of
graphs of size n, complete and complete bipartite graphs, the complexity of the
recognition problem, and containment relations.

Recently, bar k-visibility, and especially bar 1-visibility representation gained
newprogress by theworks ofBrandenburg [4], Evans et al. [8] andSultana et al. [16].

M.S. Rahman and E. Tomita (Eds.): WALCOM 2015, LNCS 8973, pp. 246–257, 2015.
c© Springer International Publishing Switzerland 2015

On Bar (1, j)-Visibility Graphs 247

We refine the model and introduce bar (k, j)-visibility representations of graphs,
where k is the maximal number of intersections per edge-segment and j is the
maximal number of intersections per vertex-segment. Using the new definition,
(weak) bar visibility is bar (0, 0)-visibility, bar k-visibility used in Dean et al.
[6] is bar (k,∞)-visibility and 1-visibility used in Brandenburg [4] is bar (1, 1)-
visibility. The respective graphs are called bar (k, j)-visibility graphs, where we
will focus only on k = 1.

First, we investigate the density of bar (1, j)-visibility graphs for j ≤ 4, where
the density is the number of edges as a function of the number of vertices of
edge-maximal graphs. A graph G is edge-maximal for a class of graphs G if the
addition of any edge e violates the defining properties of G such that the graph
G + e �∈ G. The density of planar graphs is 3n − 6, while 4n − 8 is the upper
bound of the density of 1-planar graphs [3,14,9]. However, there are sparse edge-
maximal 1-planar graphs with only 2.64n edges [5]. The upper bound on the
number of edges is 6.5n for quasi-planar graphs [1], 4n− 10 for RAC graphs [7],
and 6n− 20 for bar 1-visibility graphs [6] and these bounds can be reached for
1-planar, RAC and bar 1-visibility graphs.

We study the density of bar (1, j)-visibility graphs and show that the known
upper bounds for bar (1, 2)- and bar (1, 3)-visibility representations can almost
be reached, while the general upper bound of 6n− 20 can be realized already by
bar (1, 4)-visibility graphs. Our results are surveyed in Table 1. We also show
that there are edge-maximal bar (1,∞)-visibility graphs with only 5n + O(1)
edges, such there is a range between 5n+O(1) to 6n−20 for the density of edge-
maximal bar (1,∞)-visibility graphs, which parallels the situation of 1-planar
graphs.

The paper is organized as follows: First, we present existential upper bounds
for the number of edges of bar (1, 2)- and (1, 3)-visibility graphs. In Section 3,
structural properties of bar (1, j)-visibility graphs are revealed by our core gadget
called ship. We show that it has a very limited bar-visibility representation. For
all our following results, the basic gadget is heavily being used. In Section 4,
we consider maximal bar (1, j)-visible graphs and derive bounds on the number
of edges. We give an infinite hierarchy of bar (1, j)-visibility graphs, i.e. for
j = 1, 2, . . ., graphs that are bar (1, j)-visible, but not bar (1, j − 1)-visible,
as well as a class of edge-maximal bar (1,∞)-visible graphs with only 5n − 12
edges. Finally, we sketch the NP-completeness of the recognition problem of bar
(1,∞)-visibility. We conclude with a summary and open problems.

Table 1. Overview of density bounds of bar (1, j)-visibility graphs

upper bounds example

(0, 0) 3n− 6 3n− 6
(1, 1) 4n− 8 4n− 8
(1, 2) 5n− 10 5n− 12 (this paper)
(1, 3) 6n− 20 6n− 21 (this paper)
(1, j), j ≥ 4 6n− 20 6n− 20 (this paper)

248 F.J. Brandenburg et al.

S1

S2

S3

S4

S5

S6

S7

S8

S9

1

2

3 4

5
6

7

8

9

10

11

12

13

14
15

16

17

18

19

20

21

22

23

25

24

26

27

28

Fig. 1. The basic graph structure G′
9 with 9 vertex-segments, 20 planar edges (num-

bered 1 to 20 from left to right) and 8 crossing edge-segments (21 to 28). The bar
(1,2)-visibility representation of G′

9 has 28 = 5n− 17 edges.

2 Upper Edge Bounds for Bar (1, j)-Visibility Graphs

Upper bounds on the number of edges of bar (1, j)-visibility graphs can easily be
obtained from the observation that the two outermost bars cannot be crossed at
all, and that there are at most 3n− 6 edges that are not involved in a crossing.
Hence, bar (1, 1)-visible graphs have at most 4n− 8 edges, while bar (1, 2)- and
bar (1, 3)-visible graphs have at most 5n − 10 and 6n − 12 edges, respectively.
The bound for (1, 1)-visible graphs is tight, since the complete graph on seven
vertices without one edge i.e. K7 − e is (1, 1)-visible and can be augmented by
n− 7 vertices of degree four [4], and the 6n− 12 bound for bar (1, 3)-visibility is
close to the 6n− 20 bound for bar (1,∞)-visible graphs from [6], but clearly an
overestimation. We improve these bounds and make them (nearly) tight.

Lemma 1. For every odd n ≥ 9 there is a graph Gn with 5n− 12 edges, which
has a bar (1, 2)-visibility representation.

Proof. We construct our graph Gn with n = 2k+1 vertices and n ≥ 9, by placing
first the vertex-segments and then adding edge-segments. For each vertex vi in
Gn let si = (li, ri, yi) be the corresponding vertex-segment where li and ri denote
the x-coordinates of the left and right endpoints, and yi is its y-coordinate. We
use indexing in increasing order s.t. for all vi, we have yi = i.

At first we present the basic structure G′
9 with n = 9 vertex-segments and

28 = 5n− 17 edge segments. Then we introduce the inductive way to add two
vertex-segments that induce 10 new edge-segments and as a last step we extend
the two outermost vertex-segments to reach the upper bound of 5n− 12.

The basic structure of 9 vertex-segments has 8 crossing edge-segments and
20 planar edges are placed close to the right or left end points of the vertex-
segments going up and downwards. Thus, G′

9 in Figure 1 has 28 = 5 · 9 − 17
edge-segments.

In each inductive step, we will add two vertex segments to the basic structure
G′

n to end up with n + 2 vertex-segments. Let s1, . . . , sn be segments of G′
n

increasingly ordered by their y-coordinates with 5n− 17 edge-segments.
If s2 and sn−1 are located on the left side, we will move all right endpoints

> r2 by two units to the right, while the left endpoints stay fixed such that all

On Bar (1, j)-Visibility Graphs 249

1

2

3

4

5

6

7

8

9

10

11

12

13

Fig. 2. G′
13 is shown after the first two

inductive steps. Note that 13 vertex-
segments drawn, but for visual reasons
only the 20 new induced edge-segments.

1

2

3

4

5

6

7

8

9

10

11

12

13

Fig. 3. The final bar (1, 2)-visibility rep-
resentation with n=13 vertex-segments
and 5n−12 edge-segments. The segments
s1 and s13 are enlarged.

edge segments are stretched by two units. Thus, r2+1 and r2+2 are coordinates
without existing endpoints and the stretched vertex-segments are extended by
two units. The new vertex-segment s0 = (ln−1 − 1, r2 + 2, 0) will be placed
below s2 and sn+1 = (ln−1 − 2, r2 + 1, n + 1) above sn−1. Note that ln−1 − 1
and ln−1 − 2 were unused coordinates too. Now we add the following planar
edge-segments (s0, s1), (s0, s2), (s0, sn−1), (s0, sn+1) and (sn+1, sn), (sn+1, sn−1).
Additionally we add two edge-segments crossing s2, namely (s0, s4), (s0, sn−3),
as well as two edge-segments crossing sn−1, namely (sn+1, sn−3), (sn+1, s2).

Vice versa, if s2 and sn−1 are located on the right side, we will stretch all left
endpoints < ln−1 by 2 units to the left. The new vertex-segment s0 = (ln−1 −
1, r2+2, 0) will be placed again below s2 and the segment sn+1 = (ln−1−2, r2+
1, n + 1) above sn−1. The planar edge-segments are (s0, s1), (s0, s2), (s0, sn+1)
and (sn+1, sn), (sn+1, sn−1), (sn+1, s1). The two edge-segments crossing s2 are
(s0, s4), (s0, sn−1), while the two edge-segments crossing sn−1 are (sn+1, sn−3),
(sn+1, s4). In both cases, we add ten new edge-segments when inserting two
vertex-segments and the resulting representation has 5(n+2)−17 edge-segments,
cf. Figure 2. At the very end, we extend the basic structure G′

n to obtain Gn.
Let again be s1, ..., sn the vertex-segments of the drawing numbered from

bottom to top. Extending s1 and sn to the left and right to the minimal and
maximal x-coordinates of the drawing, we have to consider two cases again: If
s1 and sn are located on the left, we can add the edges (s1, s4), (s1, sn−1) cross-
ing s2 as well as (sn, sn−3), (sn, s4) crossing sn−1 and the planar edge (sn, s2).
Otherwise we can add the following edges: (s1, s4), (s1, sn−3) crossing s2 as well
as (sn, sn−3), (sn, s2) crossing sn−1 and the planar edge (s1, sn−1).

Thus, we can add 5 more edge-segments and end up with a bar (1, 2)-visibility
representation with n vertex-segments and 5n−12 edge-segments. The extension
of the outermost vertex-segments is illustrated in Figure 3 for the case, where
s1 and sn are located on the right. �

Next, we extend this to a bar (1, 3)-visibility representation.

Lemma 2. For every odd n ≥ 9 there is a graph Gn with n vertices and 6n−21
edges, which has a bar (1, 3)-visibility representation.

250 F.J. Brandenburg et al.

Sk+5

Sk-3

Sk-2

Sk-1

Sk

Sk+1

Sk+2

Sk+3

Sk+4

Sk-4

Fig. 4. We show the crossings in the center of the bar (1, 3)-visibility representation.
We have drawn only edge-segments with visible start- and end-segments. The changes
in the length is shown in rectangles, while dashed rectangles indicate the new edges.
The number of planar edges stays the same.

Proof. We will start with the same basic structure of n = 9 vertex-segments
(Figure 1) with two additional edge-segments, namely (1, 4) and (6, 9). Thus
the visibility representation of the basic structure with n = 9 vertex-segments
has 30 = 6n − 24 edge-segments. The inductive step remains exactly the same
when locating the two new segments s0 and sn+1. The only difference are two
additional edge-segments, namely (s0, s3) and (sn+1, sn−2), which can be drawn
by crossing s1 and sn. Note, that these edges would have otherwise occurred
in the last expanding-step ((s1, s4) and (sn, sn−3)). Hence the expanding step,
which also stays exactly the same does add three edges, instead of five. Thus we
end up with an bar (1, 3)-visibility representation with 6n− 21 edge-segments. �

Lemma 3. For every odd n ≥ 9 there is a graph with 6n− 20 edges, which has
a bar (1, 4)-visibility representation.

Proof. Using the bar (1, 3)-visibility graph with 6n − 21 edges from the previ-
ous lemma, we reconfigure the vertex-segments to achieve a bar (1, 4)-visibility
representation with 6n− 20 edges. This requires three steps given below. Figure
4 presents resulting bar (1, 4)-visibility representation.

1. extend lk+1 to lk+2 + 0.5. This interrupts the edge-segment (sk, sk+4) and
enables the edge-segment (sk+1, sk−4) which has not been drawn already.
Note that sk−2 is now crossed by four edge-segments.

2. extend rk+2 to rk+1+0.5. This interrupts the edge-segment (sk+1, sk+5) and
enables the edge-segment (sk+2, sk−1) crossing sk.

3. extend rk+4 to rk + 0.5. This interrupts the edge-segment (sk, sk+5) and
enables the edge-segment (sk+4, sk−1) crossing sk+3. Additionally we can
add the edge-segment (sk, sk+4) crossing sk+3 again.

Thus, we have added one edge ending up with a bar (1, 4)-visibility representa-
tion with n vertex-segments and 6n − 20 edge-segments. Note that in the case
n = 9, the segment sk−4 is replaced and sk−3 is enlarged, the additional edge is
also possible. �

On Bar (1, j)-Visibility Graphs 251

3 Construction of the Main Tool: The Ship-Gadget

It is well-known that a 3-connected planar graph has an unique embedding on
the sphere, which is unique in the plane if the outer face is determined. Beyond
planarity such a stabilizing property may not hold. There are maximal 1-planar
graphs with 4n − 8 edges with two embeddings where some crossing and non-
crossing edges are exchanged [17]. To circumvent such problems Korzhik and
Mohar [13] constructed so-called U -graphs which are 1-planar graphs with an
almost unique drawing. In the same spirit we construct the ship gadget S(r)
which is parameterized by the length of the chain and has a distinct bar (1,∞)-
visibility representation. A ship S(6) is shown in Fig. 5 in a straight line drawing
and in Fig. 6 in a bar visibility representation.

basis

chain with lights

anchors

{
Fig. 5. A straight-line drawing of a ship S(6) with the basis b1, b2, b3 (in blue) and
h1, h2 (in grey), the lights (l1, l2 in yellow), the chain (c1, ..., c6 in black) and the two
anchors (a1, a2 in red)

A ship S(r) consists of r + 9 vertices and 5r + 24 edges. It has three
basis vertices {b1, b2, b3} (blue), two hull vertices {h1, h2} (grey), two light
vertices {l1, l2} (yellow), two anchor vertices {a1, a2} (red), and r chain ver-
tices {c1, . . . , cr} (black). The chain vertices connect l1 and l2 by a chain, and
we call them odd and even chain vertices according to the index. The basis,
hull vertices and light vertices form a K7 − e, where edge e = (l1, l2) is miss-
ing. Each chain vertex is connected to each of {b1, b3, b3} and alternating to
one of h1 and h2, which each time form a K5. Finally, the anchor vertices
are connected to chain vertices in the middle. For m = � r2� there are edges
(a1, h1), (a2, h2) and (a1, cm−1), (a2, cm), (a1, cm+1), (a2, cm+2). In addition, the
edges (a1, b1), (a1, b3), (a2, b3), (a2, b2) may be added.

It shall be shown that in any bar (1,∞)-visibility representation of a ship S(r)
the following property holds, if r is chosen to be large enough:

Theorem 1. In any bar (1,∞)-visibility representation of a ship S(r) with
r ≥ 640, the bars are vertically ordered by (h1, a1, b1, b2, b3, a2, h2). There is a
subsequence including the four chain vertices adjacent to the two anchors whose

252 F.J. Brandenburg et al.

bars are alternating just above and below the bar of b2. The bars of h1, b1, b2, b3, h2

completely cover the bars of the chain vertices from the above subsequence and
bars of a1 and a2, and they do not cover the bars of the lights l1 and l2.

We can only provide the main steps of the proof.
The projection of the vertex-segment s representing v forms an interval, which

will be denoted by I(s) or less accurately by I(v). A necessary condition for an
edge between vertices vi and vj is that the intervals I(vi) and I(vj) have a
non-empty intersection. By Helly’s Theorem each set of convex structures in an
Euclidean space with pairwise intersections has a common intersection. Hence,
the vertex-segments of Kk have a non-empty common interval.

The stated properties of any bar (1,∞)-visibility representation of a ship S(r)
are based on the following observations.

Lemma 4. The intervals of the basis and hull vertices share an interval Ic of
common x-coordinates.

Lemma 5. The intervals of the lights I(l1) and I(l2) intersect the common in-
terval Ic, but are not contained in Ic.

Proof. Each light together with the basis and the hull formsK6, which by Helly’s
Theorem implies a common interval. If I(l1) ⊆ Ic then the intervals of at least
three basis and hull vertices are all above (or below) I(l1) and the edge-segment to
the interval with the largest distance from I(l1) must intersect at least two other
intervals, which contradicts bar (1,∞)-visibility. The case of l2 is similar. �

For the existence of such odd and even chain segments we employ topological
arguments and consider a visibility representation as a polyline drawing, where
edges might intersect vertices.

We assume that we have r chain vertices, where r is a large enough constant.

Lemma 6. There are at least r − 26 chain vertices ci , 1 ≤ i ≤ r with an edge
(ci, b) to some basis vertex b, whose edge-segment must intersect the interval of
another basis vertex b′.

Proof. Consider the three basis vertices {b1, b2, b3} and maximize the number s
of chain vertices that can be added without intersecting the interval of a basis
vertex. By case checking, we can bound s ≤ 26. �

Lemma 7. There exists a subset CS of odd (even) chain vertices of size at least
r−26
24 and there are two basis vertices b and b′ such that for each ci ∈ CS the

edge (ci, h) to the corresponding hull vertex h has to intersect the interval of b
and the edge (b′′, ci) to the third vertex b′′ has to intersect the interval of b′.

Proof. From Lemma 6, we have at least r − 26 chain vertices with edges that
intersect the interval of at least one basis vertex. We can subdivide them into
12 classes, intersecting only one of the vertices b1, b2, b3 and ending at another
one, and 6 intersecting two basis vertices b1 and b2, b2 and b3, and b1 and b3
and ending at some other vertices. The largest of these classes has at least r−26

12
vertices. For this class, we prove the claimed property by case checking. �

On Bar (1, j)-Visibility Graphs 253

h2

b3

b2

b1

h1

l1

c1

c2

c3

c4

c5

c6

a2

a1

l2

Fig. 6. A bar (1,∞)-visibility representation of the ship-gadget with 6 chain-nodes
(c1, ..., c6)

By geometric arguments, we can prove the following two lemmas

Lemma 8. The subsequence CS of the chain implies that in any bar (1,∞)-
visibility representation of shipe S(r), h1, b1, b2, b3 and h2 are placed in this order
such that the even chain segments are between b1 and b2 and the odd chain
segments are between b2 and b3.

Lemma 9. The subset CS is in the common interval Ic.

For the 11 other classes of chain segments, we can argue that they contain
at most 13 vertices each. Furthermore, we observe that those vertices have to
be consecutive and include the light vertices. Hence we conclude that almost all
but a constant number c of chain elements are within the subset CS .

We estimate this constant c from above roughly by 312, observing that we
have to distinguish odd and even chain segments. So we have at most 2 · 11 · 13
segments plus the additional 26 segments from Lemma 6 = 312 elements, which
might be not in the subset CS . Since we do not know exactly where those 312
elements are located (either at the beginning or at the end of the bar (1,∞)-
visibility representation), we ensure that the middle part of the sequence of chain
elements must be in the subset CS by choosing r = 2 · 312 + 16. We conclude

Lemma 10. Choosing r = 640 for ship S(r) ensures that at least 16 subsequent
chain segments in the middle of the chain are in interval IC .

Proof. (of Theorem 1) Since there is a subsequence of at least 16 chain vertices
cp, . . . , cq , whose intervals are completely contained in the common interval Ic,
the intervals of the basis vertices must be ordered (h1, b1, b2, b3, h2), and the
intervals of cp, . . . , cq alternate directly above and below the interval of b2.

Now, the intervals of the anchors must be placed between the intervals of the
hull and the next basis vertex. Otherwise, one of the edges (a1, cm) or (cm+1, b2)
would intersect two intervals, and similarly for a2.

The intervals of the anchors are contained in Ic, since I(a1) ⊆ I(cm) ∪
I(cm+2) ⊆ Ic, and similarly for I(a2). �

254 F.J. Brandenburg et al.

c3 c5

h2

b3

2 4pCp Cp+2

Fig. 7. The region of the anchor-segment a2 of a ship S(r). Each anchor αi has two
edge-segments intersecting b3 ((αi, cp), (αi, cp+2))and induces 5 edge -segments. The
two topmost anchor-segments can be connected to h2.

4 Hierarchy and Sparsity of Bar (1, j)-Visibility Graphs

Using the ship we establish an infinite hierarchy of bar (1, j)-visibility graphs and
show that such graphs can be sparser than the previously given upper bounds.

Theorem 2. For every j ≥ 2 there is a bar (1, j)-visibility graph which has no
bar (1, j − 1)-visibility representation.

Proof. We apply the argument from Lemma 6 to the graph K3,n. After placing
at most 26 vertices, we have to intersect one basis vertex. Hence after placing
at most 30 vertices, we have to intersect one basis vertex at least twice, and for
n = 26 + 3 · j + 1, we have to intersect at least one basis vertex j times. Hence,
for every j there is an n such that K3,n has a bar (1, j)-visibility representation,
and there is no bar (1, j − 1)-visibility representation for K3,n. �
Corollary 1. There is an infinite hierarchy of classes of bar (1, j)-visibility
graphs.

Theorem 3. There are edge-maximal bar (1,∞)-visibility graphs with n vertices
and 5n+O(1) edges.

Proof. We extend the ship-gadget S(r) and add edges to make it edge-maximal.
Then we replace anchor a2 by a set of anchors α1, . . . αt for t > 0. In any visibility
representation, α1, . . . αt are in the same place of a2 between h2 and b3 and in
the common interval Ic and maintain the same connections.

Let a2 be connected to the chain vertices cp and cp+2. We add the edges
(αi, b3), (αi, cp), (αi, cp+2) for 1 ≤ i ≤ t. For 1 < i < t add the edges (αi−1, αi)
and (αi−1, αi+1), and finally add (αt, h2), (αt−1, h2). The edge (α1, b2) may be
added as well. See Fig. 7 for an illustration.

Due to the edges (αi, cp) and (αi, cp+2), which intersect the bar of b3, in any
bar (1,∞)-visibility representation the interval I(αi) is properly included in the
interval of I(αi+1) and the anchors properly nest. Hence, the edges (αi−1, αi+1)
intersect the bar of αi for 1 < i < t. Thereby the position of the anchors is fixed
and they are in place of the anchor a2 in any bar (1,∞)-visibility representation.

The obtained graph is edge-maximal, since no further edges can be added
the bars of vertices from S(r) and from the new anchors and between the new
anchors. The ship S(r) without the anchors has a fixed number of edges, and
each new anchor αi increases the number of edges by 5. �

On Bar (1, j)-Visibility Graphs 255

Fig. 8. A chain-ship (left), where the lights l1 and l2 are secured by four help-ships
S2...S5. A ring (right) consisting of two chain-ships CS1 and CS2, whose lights are
connected via ships S1, S2 with each other.

5 NP-Completeness of Bar (1,∞)-Visibility

We only sketch the ideas here. The recognition problem asks if a graph G has a
bar (1,∞)-visibility representation. The problem is in NP since we can guess a bar
(1,∞)-visibility representation consisting of polynomial many segments on a grid
of polynomial size and check its correctness in polynomial time. To prove the NP-
completeness we use a reduction from the NAE-3-SAT problem [10] and heavily
use the ship gadget and the fact that in any bar (1,∞)-visibility representation
the anchors are placed between the intervals of the hull and outer basis vertices
and are completely covered by the intervals of the hull vertices. Hence, an edge
from an anchor to the outside must intersect the interval from the hull.

We combine five ships to a so-called chain ship, which prevents a nesting of
ships. A ring is built from two chain chips and two ships such that two rings
must be disjoint in any bar (1,∞)-visibility representation. Both constructs are
presented in Figure 8. Further two consecutive rings are connected by edges,
which forces the rings to nest in each other. For an instance α of NAE-3-SAT
of n variables and m clauses we construct graph Gα consisting of a sequence of
n + 4m + 3 nested rings, with a ring for each variable and four rings for each
clause and three protection rings. As gadgets of the variable and the literals in
each clause we use chain ships in the corresponding rings. For each variable x
and a literal x or x̄ in a clause C, where x occurs there is a path of a fixed length
between the light vertices l1 of their gadgets, which consists of edge segments
which are all intersected in any bar (1,∞)-visibility representation.

A clause gadget consists of four rings (R1, R2, R3, R4) and three additional
segments s1, s2, s3. For i = 1, 2, 3 si is connected to the l1 segments of Ri by a
path of length 4− i and the anchors of the chain ships of R3 and R4. The con-
structions of the paths forces that at most two l1s of different rings in one clause
gadget are on the same side. This corresponds that two literals of a clause have
the same value and ensures the condition for the clauses of NAE-3-SAT. Addi-
tionally the connection between the variables and the literals gadgets guarantees
the consistent value. A comprehensive example is given in Fig. 9.

Theorem 4. A graph Gα has a bar 1-visibility representation if and only if the
CNF 3-SAT formula α has a valid NAE-3-SAT assignment.

256 F.J. Brandenburg et al.

Fig. 9. An reduction for a CNF of NAE-3-SAT with c1 = (x∨y∨x) and c2 = (x̄∨ ȳ∨z)
with x, z = 1 and y = 0. The different colored paths connect the variable chain ships
from the variable group in the middle with the chain ships of their corresponding
clauses.

6 Conclusion and Open Problems

We refined bar 1-visibility graphs by a new parameter on the maximal number
of intersections of vertex-segments and started a detailed study of such graphs.
We established upper bounds on the number of edges of such graphs and showed
an infinite hierarchy, and proved NP-completeness for bar (1,∞)-visibility rep-
resentations using our powerful ship-gadget. More open problems remain:

1. Are there sparser edge-maximal bar (1, j)-visibility graphs?
2. Are there any bar (1, 3)-visibility graphs with 6n− 20 edges?
3. Is bar (1, j)-visibility NP-complete if j is fixed?
4. Does a k-planar graph G have a bar (k, k)-visibility representation?
5. Are there 2-planar graphs without a bar (1,∞)-visibility representation?

On Bar (1, j)-Visibility Graphs 257

Acknowledgement. We wish to thank an anonymous referee for her/his useful
suggestions. This work was supported in part by DFG grant Br 835/18.

References

1. Ackerman, E., Tardos, G.: On the maximum number of edges in quasi-planar
graphs. Journal of Combinatorial Theory, Series A 114(3), 563–571 (2007)

2. Agarwal, P.K., Aronov, B., Pach, J., Pollack, R., Sharir, M.: Quasi-planar graphs
have a linear number of edges. Combinatorica 17(1), 1–9 (1997)

3. Bodendiek, R., Schumacher, H., Wagner, K.: Über 1-optimale graphen. Mathema-
tische Nachrichten 117(1), 323–339 (1984)

4. Brandenburg, F.-J.: 1-visibility representations of 1-planar graphs. J. Graph Algo-
rithms Appl. 18(3), 421–438 (2014)

5. Brandenburg, F.-J., Eppstein, D., Gleißner, A., Goodrich, M.T., Hanauer, K.,
Reislhuber, J.: On the density of maximal 1-planar graphs. In: Didimo, W.,
Patrignani, M. (eds.) GD 2012. LNCS, vol. 7704, pp. 327–338. Springer, Heidelberg
(2013)

6. Dean, A.M., Evans, W., Gethner, E., Laison, J.D., Safari, M.A., Trotter, W.T.:
Bar k-visibility graphs. J. Graph Algorithms Appl. 11(1), 45–59 (2007)

7. Didimo, W., Eades, P., Liotta, G.: Drawing graphs with right angle crossings.
Theor. Comput. Sci. 412(39), 5156–5166 (2011)

8. Evans, W.S., Kaufmann, M., Lenhart, W., Liotta, G., Mchedlidze, T.,
Wismath, S.K.: Bar 1-visibility graphs and their relation to other nearly planar
graphs. CoRR, abs/1312.5520 (2013)

9. Fabrici, I., Madaras, T.: The structure of 1-planar graphs. Discrete Mathemat-
ics 307(7-8), 854–865 (2007)

10. Garey, M.R., Johnson, D.S.: Computers and Intractability; A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., New York (1990)

11. Huang, W., Hong, S.-H., Eades, P.: Effects of crossing angles. In: PacificVis,
pp. 41–46 (2008)

12. Hutchinson, J.P., Shermer, T.C., Vince, A.: On representations of some thickness-
two graphs. Comput. Geom. 13(3), 161–171 (1999)

13. Korzhik, V.P., Mohar, B.: Minimal obstructions for 1-immersions and hardness of
1-planarity testing. In: Tollis, I.G., Patrignani, M. (eds.) GD 2008. LNCS, vol. 5417,
pp. 302–312. Springer, Heidelberg (2009)

14. Pach, J., Tóth, G.: Graphs drawn with few crossings per edge. Combinatorica 17(3),
427–439 (1997)

15. Rosenstiehl, P., Tarjan, R.E.: Rectilinear planar layouts and bipolar orientations
of planar graphs. Discrete & Computational Geometry 1, 343–353 (1986)

16. Sultana, S., Rahman, M. S., Roy, A., Tairin, S.: Bar 1-visibility drawings of 1-
planar graphs. In: Gupta, P., Zaroliagis, C. (eds.) ICAA 2014. LNCS, vol. 8321,
pp. 62–76. Springer, Heidelberg (2014)

17. Suzuki, Y.: Re-embeddings of maximum 1-planar graphs. SIAM Journal on Dis-
crete Mathematics 24(4), 1527–1540 (2010)

18. Tamassia, R., Tollis, I.G.: A unified approach a visibility representation of planar
graphs. Discrete & Computational Geometry 1, 321–341 (1986)

Simultaneous Time-Space Upper Bounds

for Red-Blue Path Problem in Planar DAGs�

Diptarka Chakraborty and Raghunath Tewari

Department of Computer Science & Engineering,
Indian Institute of Technology, Kanpur, India

{diptarka,rtewari}@cse.iitk.ac.in

Abstract. In this paper, we consider the RedBluePath problem, which
states that given a graph G whose edges are colored either red or blue
and two fixed vertices s and t in G, is there a path from s to t in G
that alternates between red and blue edges. The RedBluePath problem in

planar DAGs is NL-complete. We exhibit a polynomial time and O(n
1
2
+ε)

space algorithm (for any ε > 0) for the RedBluePath problem in planar
DAG. We also consider a natural relaxation of RedBluePath problem,
denoted as EvenPath problem. The EvenPath problem in DAGs is known

to be NL-complete. We provide a polynomial time and O(n
1
2
+ε) space

(for any ε > 0) bound for EvenPath problem in planar DAGs.

1 Introduction

A fundamental problem in computer science is the problem of deciding reach-
ability between two vertices in a directed graph. This problem characterizes
the complexity class non-deterministic logspace (NL) and hence is an important
problem in computational complexity theory. Polynomial time algorithms such
as Breadth First Search (BFS) algorithm and Depth First Search (DFS) give a
solution to this problem, however they require linear space as well. On the other
hand, Savitch showed that reachability can be solved by an O(log2 n) space algo-
rithm, however that takes Θ(nlog n) time [1]. The readers may refer to a survey
by Wigderson [2] to know more about the reachability problem.

It is an important open question whether these two bounds can be achieved
by a single algorithm. In other words can we exhibit a polynomial time and
O(logk n) space algorithm for the reachability problem in directed graphs.
Barnes, Buss, Ruzzo and Schieber made some progress in this direction by giv-
ing the first polynomial time and sub-linear space algorithm. They showed that
directed reachability can be solved by an O(n/2k

√
logn) space and polynomial

time algorithm [3], by cleverly combining BFS and Savitch’s algorithm. Till now
this is the best known simultaneous time-space bound known for the directed
reachability problem in this direction. Recently, Imai et. al. [4] have improved
the BBRS bound for the class of directed planar graph. They gave a polynomial

� Research supported by Research-I Foundation.

M.S. Rahman and E. Tomita (Eds.): WALCOM 2015, LNCS 8973, pp. 258–269, 2015.
c© Springer International Publishing Switzerland 2015

Red-Blue Path Problem in Planar DAGs 259

time and O(n
1
2+ε) space algorithm by efficiently constructing a planar separator

and applying a divide and conquer strategy. In a recent work, their result has
been extended to the class of high-genus and H-minor-free graphs [5].

An interesting generalization of the reachability problem, is the RedBluePath
problem. Given a directed graph where each edge is colored either Red or Blue,
the problem is to decide if there is a (simple) directed path between two specified
vertices that alternates between red and blue edges. Kulkarni showed that the
RedBluePath problem is NL-complete even when restricted to planar DAGs [6].
Unfortunately, no sublinear (O(n1−ε), for any ε > 0) space and polynomial time
algorithm is known for RedBluePath problem in planar DAGs.

A natural relaxation is the EvenPath problem, which asks if there is a (simple)
directed path of even length between two specified vertices in a given directed
graph. In general, EvenPath problem is NP-complete [7], but for planar graphs,
it is known to be in P [8]. It is also known that for DAGs, this problem is NL-
complete. Datta et. al. showed that for planar DAGs, EvenPath problem is in
UL. However, no sublinear (O(n1−ε), for any ε > 0) space and polynomial time
algorithm is known for this problem also.

In this paper, we provide a sublinear space and polynomial time bound for
both the RedBluePath and EvenPath problem. Our main idea is the use of a
space efficient construction of separators for planar graphs [4]. We then devise a
modified DFS approach on a smaller graph to solve the RedBluePath problem. As
a consequence, we show that a similar bound exists for the directed reachability
problem for a class of graphs that is a superset of planar graphs. Using similar
approach, we design an algorithm to detect the presence of an odd length cycle
in a directed planar graph, which serves as a building block to solve the EvenPath
problem.

Our Contributions

The first contribution of this paper is to give an improved simultaneous time-
space bound for the RedBluePath problem in planar DAGs.

Theorem 1. For any constant 0 < ε < 1
2 , there is an algorithm that solves

RedBluePath problem in planar DAGs in polynomial time and O(n
1
2+ε) space.

We first construct a separator for the underlying undirected graph and perform
a DFS-like search on the separator vertices.

Using the reduction given in [6] and the algorithm stated in the above theorem,
we get an algorithm to solve the directed reachability problem for a fairly large
class of graphs as described in Section 3, that takes polynomial time andO(n

1
2+ε)

space. Thus we are able to beat the BBRS bound for such a class of graphs. One
such class is all k-planar graphs, where k = O(logc n), for some constant c and
this is a strict superset of the set of planar graphs.

In this paper, we also establish a relation between EvenPath problem in a planar
DAG and the problem of finding odd length cycle in a directed planar graph and
thus we argue that both of these problems have the same simultaneous time-space
complexity.We use two colors Red and Blue to color the vertices of the given graph

260 D. Chakraborty and R. Tewari

and then use the color assigned to the vertices of the separator to detect the odd
length cycle. The conflicting assignment of color to the same vertex in the separa-
tor will lead to the presence of an odd length cycle. Here also we use the recursive
approach to color the vertices and as a base case we use BFS to solve the problem
of detecting odd length cycle in each small component. Thus we have the following
result regarding the EvenPath problem.

Theorem 2. For any constant 0 < ε < 1
2 , there is an algorithm that solves

EvenPath problem in planar DAGs in polynomial time and O(n
1
2+ε) space.

The rest of the paper is organized as follows. In Section 2, we give some basic
definitions and notations that we use in the rest of the paper. In Section 3, we
prove our main results regarding the RedBluePath and EvenPath problem.

2 Preliminaries

A graph G = (V,E) consists of a set of vertices V and a set of edges E where
each edge can be represented as an ordered pair (u, v) in case of directed graph
and as an unordered pair {u, v} in case of undirected graph, such that u, v ∈ V .
Unless otherwise specified, G will denote a directed graph, where |V | = n. Given
a graph G and a subset of vertices X , G[X] denotes the subgraph of G induced
by X and V (G) denotes the set of vertices present in the graph G. Given a
directed graph G, we denote the underlying undirected graph by Ĝ. We follow
the standard model of computation to discuss the complexity measures of the
stated algorithms. In particular, we consider the computational model in which
an input appears on a read-only tape and the output is produced on a write-only
tape and we only consider the internal read-write tape in the measure of space
complexity. Throughout this paper, by Õ(s(n)), we mean O(s(n)(log n)O(1)).

The notions of separator and separator family defined below are crucial in
this paper.

Definition 1. A subset of vertices S of an undirected graph G is said to be a
ρ-separator (for any constant ρ, 0 < ρ < 1) if removal of S disconnects G into
two sub-graphs A and B such that |A|, |B| ≤ ρn and the size of the separator is
the number of vertices in S.

A subset of vertices S of an undirected graph G with n vertices is said to
be a r(n)-separator family if the removal of S disconnects G into sub-graphs
containing at most r(n) vertices.

Now we restate the results and the main tools used in [4] to solve directed
planar reachability problem and these results are extensively used in this paper.
In [4], the authors construct a 8

9 -separator for a given undirected planar graph.

Theorem 3 ([4]). (a) Given an undirected planar graph G with n vertices, there
is an algorithm PlanarSeparator that outputs a 8

9 -separator of G in polynomial

time and Õ(
√
n) space.

(b) For any 0 < ε < 1/2, there is an algorithm PlanarSeparatorFamily that
takes an undirected planar graph as input and outputs a n1−ε-separator family
of size O(n

1
2+ε) in polynomial time and Õ(n

1
2+ε) space.

Red-Blue Path Problem in Planar DAGs 261

In [4], the above theorem was used to obtain a new algorithm for reachability in
directed planar graph.

Theorem 4 ([4]). For any constant 0 < ε < 1/2, there is an algorithm
DirectedPlanarReach that, given a directed planar graph G and two vertices
s and t, decides whether there is a path from s to t. This algorithm runs in time
nO(1/ε) and uses O(n1/2+ε) space, where n is the number of vertices of G.

3 Red-Blue Path Problem

3.1 Deciding Red-Blue Path in Planar DAGs

Given a directed graph G with each edge colored either Red or Blue and two
vertices s and t, a red-blue path denotes a path that alternate between Red and
Blue edges and the RedBluePath problem decides whether there exists a directed
red-blue path from s to t such that the first edge is Red and last edge is Blue. The
RedBluePath problem is a generalization of the reachability problem in graphs,
however this problem is NL-complete even when restricted to planar DAGs [6].
This makes it an interesting problem in the area of space bounded complexity
as to the best of our knowledge, this is the only “reachabililty-like” problem in
planar graphs that is hard for NL. We will now give a proof of Theorem 1.

Proof (of Theorem 1). Consider a planar DAG G. Let S be the n(1−ε)-separator
family computed by PlanarSeparatorFamily on Ĝ and let S = S ∪ {s, t}. For
the sake of convenience, we associate two numerical values to the edge colors –
0 to Red and 1 to Blue. We run the subroutine RedBluePathDetect (Algorithm
3) with the input (G, s, t, n, 0, 1) and if the returned value is true, then there
is a directed red-blue path from s to t such that the first edge is Red and last
one is Blue. In Algorithm 2, we use the notation (u, v) ∈(init,temp) E′ to decide
whether there is a red-blue path from u to v that starts with an edge of color
value init and ends with an edge of color value temp.

In Algorithm 1, we use general DFS type search to check the presence of a
red-blue path between any two given vertices s′ and t′. The only difference with
DFS search is that here we explore edges such that color of the edges alternates
between red and blue. If we start from a vertex s′, then the for loop (Lines
3 – 8) explore the path starting from s′ such that first edge of the path is of
specified color. In the main algorithm (Algorithm 3), we use Algorithm 1 as a
base case, i.e., when the input graph is small in size (is of size n1/2). Otherwise,
we first compute S and then run Algorithm 2 on the auxiliary graph G = (S,E).
Algorithm 3 does not store the graph G. Whenever it is queried with a pair of
vertices to check if it forms an edge, it recursively runs Algorithm 3 on all the
connected components of G[V \S] separately (Lines 10 – 14 of Algorithm 2) and
produces an answer. Finally, we perform same DFS like search as in Algorithm
1 on G (Lines 1 – 9 of Algorithm 2).

In the base case, we use Algorithm 1 which takes linear space and polynomial
time. Thus due to the restriction of the size of the graph in the base case, we

262 D. Chakraborty and R. Tewari

Input : G′ = (V ′, E′), s′, t′, init, final
Output : “Yes” if there is a red-blue path from s′ and t′ starts with init and

ends with final
/* Use two sets- Ni, for i = 0, 1, to store all the vertices that have

been explored with the color value i */

1 if s′ �∈ Ninit then
2 Add s′ in Ninit;
3 for each edge (s′, v) ∈ E′ of color value init do
4 if v = t′ and init = final then
5 Return true;
6 end
7 Run ColoredDFS(G′, v, t′, init+ 1(mod 2), final)

8 end

9 end

Algorithm 1. Algorithm ColoredDFS: One of the Building Blocks of
RedBluePath Detect

Input : G′ = (V
′
, E′), G′, s′, t′, init, final

Output : “Yes” if there is a red-blue path from s′ and t′ starts with init and
ends with final

/* Use two sets- Ri, for i = 0, 1, to store all the vertices that have

been explored with the color value i */

1 if s′ �∈ Rinit then
2 Add s′ in Rinit;

3 for each (s′, v) ∈(init,temp) E′ for each temp ∈ {0, 1} do
4 if v = t′ and temp = final then
5 Return true;
6 end

7 Run ModifiedColoredDFS(G
′
, G′, v, t′, temp+ 1 (mod 2), final)

8 end

9 end

/* ‘‘(u, v) ∈(init,temp) E′?’’ query will be solved using the following

procedure */

10 for every a ∈ V do
/* V be the set of vertices of G′ */

/* Va = the set of vertices of Ĥ’s connected component

containing a, where H = G[V \ V ′
] */

11 if RedBluePathDetect(G[Va ∪ V
′
], u, v, n, init, temp) is true then

12 Return true for the query;
13 end

14 end
15 Return false for the query;

/* End of the query procedure */

Algorithm 2. Algorithm ModifiedColoredDFS: One of the Building Blocks of
RedBluePathDetect

Red-Blue Path Problem in Planar DAGs 263

Input : G′, s′, t′, n, init, final
Output : “Yes” if there is a red-blue path from s′ and t′ starts with init and

ends with final

1 if n′ ≤ n
1
2 then

2 Run ColoredDFS(G′, s′, t′, init, final);
3 else

/* let r′ = n′(1−ε) */

4 Run PlanarSeparatorFamily on Ĝ′ to compute r′-separator family S′;
5 Run ModifiedColoredDFS(G′ = (S′ ∪ {s′, t′}, E′), G′, s′, t′, init, final);
6 end

Algorithm 3. Algorithm RedBluePathDetect: Algorithm for Red-Blue Path in
planar DAG

have Õ(n1/2) space and polynomial time complexity. The sets N0 and N1 of
algorithm ColoredDFS only store all the vertices of the input graph and we run
ColoredDFS on a graph with n1/2 vertices and it visits all the edges of the input
graph at most once which results in the polynomial time requirement.

Let S and T denote its space and time complexity functions. Since (1−ε)k ≤ 1
2

for k = O(1ε), the depth of the recursion is O(1ε). Also, |Va ∪S′| ≤ 2n′(1−ε). This
gives us the following recurrence relation:

S(n′) =

⎧⎨⎩Õ(n′(1
2+ε)) + S(2n′(1−ε)) if n′ > n

1
2

Õ(n
1
2) otherwise

Thus, S(n) = O(1ε)Õ(n
1
2+ε) = Õ(n

1
2+ε).

For time analysis, we get the following recurrence relation:

T (n′) =

⎧⎨⎩q(n)(p1(n
′)T (2n′(1−ε)) + p2(n

′)) if n′ > n
1
2

q(n)Õ(n
1
2) otherwise

As the recursion depth is bounded by O(1ε) (a constant), we have T (n) =

p(n)O(1
ε) for some polynomial p(n).

Proof of correctness: We now give a brief idea about the correctness of this
algorithm. In the base case, we use similar technique as DFS just by alternatively
exploring Red and Blue edges and thus this process gives us a path where two
consecutive edges are of different colors. Otherwise, we also do a DFS like search
by alternatively viewing Red and Blue edges and we do this search on the graph
H = (S′∪{s, t}, E′). By this process, we decide on presence of a path in H from
s to t such that two consecutive edges are of different colors in G and the edge
coming out from s is Red and the edge going in at t is Blue. This is enough as
each path P in G must be broken down into the parts P1, P2, · · · , Pk and each Pi

must be a sequence of edges that starts and ends at some vertices of S′ ∪ {s, t}

264 D. Chakraborty and R. Tewari

and also alternates in color. We find each such Pi, just by considering each
connected component of G(V ′ \S′) and repeating the same steps recursively. ��

Due to [6], we know that the reachability problem in directed graphs reduces
to RedBluePath in planar DAGs. For the class of graphs in which this reduction
results the sub-quadratic increase in the number of vertices, we have an algorithm
for reachability problem that takes sublinear space and polynomial time. As a
special case of this we can state the following theorem.

Theorem 5. Given a directed acyclic graph G = (V,E), where |E| = Õ(n),

with a drawing in a plane such that the number of edge crossings is Õ(n) and
two vertices s and t, then for any constant 0 < ε < 1

2 , there is an algorithm
that decides whether there is a path from s to t or not. This algorithm runs in
polynomial time and uses O(n

1
2+ε) space, where n is the number of vertices of

G.

Proof. We consider a reduction similar to the reduction from directed reacha-
bility problem to RedBluePath problem in planar DAG given in [6]. We do the
following: (i) insert new vertices in between edges of G so that in the resulting
graph each edge takes part in only one crossing and (ii) replace each crossing
of the resulting graph with a planarizing gadget as in Fig. 1 and also replace
each edge without any crossing with two edges as shown in Fig. 1. Denote the
resulting graph as Gplanar and the corresponding vertices of s and t as s′ and
t′. It is easy to see that there is a bijection between s− t paths in G and s′ − t′

red-blue paths in Gplanar that starting with a Red edge and ending with a Blue
edge.

a

a

b b

a

bc

d

v

x

c

b

a
y

d

Red Edge:

Blue Edge:

v

Fig. 1. Red-Blue Edge Gadget

If the drawing of the given graph G contains k edge crossings, then step
(i) will introduce at most 2k many new vertices and say after this step the
number of edges becomes m. Then step (ii) will introduce at most (2m + 3k)

many vertices. It is clear from the reduction itself that m = Õ(n) and thus

the graph Gplanar contains Õ(n) many vertices. Now by applying the algorithm
RedBluePathDetect on Gplanar, we get the desired result. ��

A large class of graphs will satisfy the conditions specified in Theorem 5. We
now explicitly give an example of one such class of graphs. Before that, we give

Red-Blue Path Problem in Planar DAGs 265

some definitions. Crossing number of a graph G, denoted as cr(G), is the lowest
number of edge crossings (or the crossing point of two edges) of a drawing of
the graph G in a plane. A graph is said to be k-planar if it can be drawn on the
plane in such a way that each edge has at most k crossing point (where it crosses
a single edge). It is known from [9] that a k-planar graph with n vertices has
at most O(n

√
k) many edges. Note that a k-planar graph has crossing number

at most mk, where m is the number of edges. Now we can state the following
corollary.

Corollary 1. Given a directed acyclic graph, which is k-planar, where k =
O(logc n), for some constant c, with a drawing in a plane having minimum num-
ber of edge crossings and two vertices s and t, then for any constant 0 < ε < 1

2 ,
there is an algorithm that decides whether there is a path from s to t or not.
This algorithm runs in polynomial time and uses O(n

1
2+ε) space, where n is the

number of vertices of the given graph.

3.2 Deciding Even Path in Planar DAGs

Given directed graph G and two vertices s and t, EvenPath is the problem of
deciding the presence of a (simple) directed path from s to t, that contains
even number of edges. We can view this problem as a relaxation of RedBluePath
problem as a path starting with Red edge and ending with Blue edge is always
of even length. In this section, we establish a relation between EvenPath problem
in planar DAG with detecting a odd length cycle in a directed planar graph with
weight one (can also be viewed as an unweighted graph).

Lemma 1. For directed planar graphs, for any constant 0 < ε < 1
2 , there is an

algorithm that solves the problem of deciding the presence of odd length cycle in
polynomial time and O(n

1
2+ε) space, where n is the number of vertices of the

given graph.

The above lemma is true due to the fact that we can do BFS efficiently for
undirected planar graph and it is enough to detect odd length cycle in each of the
strong components of the undirected version of the given directed planar graph.
For undirected graph, presence of odd length cycle can be detected using BFS
algorithm and then put red and blue colors on the vertices such that vertices in
the consecutive levels get the opposite colors. After coloring of vertices if there
exists an monochromatic edge (edge where both vertices get the same color),
then we can conclude that there is an odd length cycle in the graph otherwise
there is no odd length cycle. But this is not the case for general directed graph.
However, the following proposition will help us to detect odd length cycle in
directed graph.

In the following proposition, we use u → v to denote a directed edge (u, v)

and x
P−→ y to denote a directed path P from a vertex x to y.

266 D. Chakraborty and R. Tewari

Proposition 1. A strongly connected directed graph contains an odd length cy-
cle if and only if the underlying undirected graph contains an odd length cycle.

Proof. The forward direction follows trivially. Now to prove the reverse direc-
tion, we will use the induction arguments on the length of the odd cycle in the
undirected version of the graph. The base case is when the undirected version
of the graph contains a 3-length cycle. If the undirected edges present in the
undirected cycle also form directed cycle when we consider the corresponding
edges in the directed graph, then there is nothing to prove. But if this is not the
case, then the Fig. 2 will depict the possible scenarios. As the graph is strongly
connected, so there must be a path P from t to s and if this path does not pass

through the vertex x, then any one of the following two cycles s → t
P−→ s or

s → x → t
P−→ s must be of odd length. Now suppose P contains the vertex x

and thus P = P1P2, where P1 is the path from t to x and P2 is the path from

x to s. It is easy to see that all the three cycles s → t
P−→ s, x → t

P1−→ x and

s→ x
P2−→ s cannot be of even length.

s

t t

s

P

x
x

P1

P2

Fig. 2. For undirected cycle of length 3

u us tt

P P
P

Case 1 Case 2

C’ C’

s

Fig. 3. For undirected cycle of length (k+2)

Now by induction hypothesis, assume that if the undirected version has a
cycle of k-length (k odd), then there exists an odd length cycle in the original
directed graph.

Now lets prove this induction hypothesis for any undirected cycle of length
(k + 2). Consider the corresponding edges in the directed graph and without
loss of generality assume that this is not a directed cycle. As (k + 2) is odd,
so there must be one position at which two consecutive edges are in the same
direction. Now contract these two edges in both directed and undirected version
of the graph and consider the resulting k-length cycle in the undirected graph.
So according to the induction hypothesis, there must be one odd length cycle C
in the resulting directed graph. Now if C does not contain the vertex u (where
we contract the two edges), then expanding the contracted edges will not destroy
that cycle and we get our desired odd length cycle in the directed version of the
graph. But if this is not the case, then consider C after expanding those two
contracted edges(t → u → s), say the resulting portion is C′. If C′ is a cycle,
then there is nothing more to do. But if not, then consider the path P from s to
t (there must be such path as the graph is strongly connected). Now there will

Red-Blue Path Problem in Planar DAGs 267

be two possible cases: either P contains u or not. It is easy to see that for both
the possible cases (case 1 and case 2 of Fig. 3 and in that figure every crossing of
two paths denotes a vertex), all cycles generated by C′ and P cannot be of even

length. In case 1, if all the cycles generated by the paths s
P−→ u and t

C′
−→ s and

all the cycles generated by the paths u
P−→ t and t

C′
−→ s are of even length, then

as t
C′
−→ s is of odd length, so the path s

P−→ u
P−→ t must be of odd length. And

then one of the following two cycles s
P−→ u→ s and u

P−→ t→ u is of odd length.

Similarly in case 2, if all the cycles generated by s
P−→ t and t

C′
−→ s are of odd

length, then the path s
P−→ t is of odd length and so the cycle s

P−→ t→ u→ s is
of odd length.

Proof (of Lemma 1). In a directed planar graph, any cycle cannot be part of
two different strong component, so checking presence of odd cycle is same as
checking presence of odd cycle in each of its strong components. Construct-
ing strong components of a directed planar graph can be done by polynomial
many times execution of DirectedPlanarReach algorithm (See Theorem 4), as a
strong component will contain vertices x, y if and only if DirectedPlanarReach
(G, x, y, n) and DirectedPlanarReach (G, y, x, n) both return “yes”. And thus

strong component construction step will take Õ(n
1
2+ε) space and polynomial

time. After constructing strong components, it is enough to check presence of
odd cycle in the underlying undirected graph (according to Proposition 1). So
now on, without loss of generality, we can assume that the given graph G is
strongly connected. Now execute OddCycleUndirectedPlanar (Ĝ, s, n) (Algo-
rithm 4) after setting the color of s (any arbitrary vertex) to red. Here we adopt
the well known technique used to find the presence of odd length cycle in a graph
using BFS and coloring of vertices. In Algorithm 4, instead of storing color val-
ues for all the vertices, we only stores color values for the vertices present in
the separator (Line 11) and we do the coloring recursively by considering the
smaller connected components (Line 10). The algorithm is formally defined in
Algorithm 4.

By doing the similar type of analysis as that of RedBluePathDetect, it can
be shown that OddCycleUndirectedPlanar will take O(n

1
2+ε) space and poly-

nomial time and so over all space complexity of detecting odd length cycle in
directed planar graph is O(n

1
2+ε) and time complexity is polynomial in n.

Nowwe argue on the correctness of the algorithm OddCycleUndirectedPlanar.
This algorithmwill return “yes” in two cases. First case when there is a odd length
cycle completely inside a small region (n′ ≤ n

1
2) and so there is nothing to prove

for this case as it is an well known application of BFS algorithm.Now in the second
case, a vertex v in the separator family will get two conflicting colors means that
there exists at least one vertex u in the separator family such that there are two
vertex disjoint odd as well as even length path from u to v and as a result, both of
these paths together will form an odd length cycle. ��

Now we are ready to prove the main theorem of this subsection.

268 D. Chakraborty and R. Tewari

Input : G′ = (V ′, E′), s′, n, where G′ is an undirected graph
Output : “Yes” if there is an odd length cycle

1 if n′ ≤ n
1
2 then

2 Run BFS(G′ , s′) and color the vertices with red and blue such that vertices
in the alternate layer get the different color starting with a vertex that is
already colored;

3 if there is a conflict between stored color of a vertex and the new color of
that vertex or there is an edge between same colored vertices then

4 return “yes”;
5 end

6 else

/* let r′ = n′(1−ε) */

7 Run PlanarSeparatorFamily on Ĝ′ to compute r′-separator family S′;
8 Set S′ := S′ ∪ {s′};
9 for every x ∈ V ′ do

/* Vx = the set of vertices of Ĥ’s connected component

containing x, where H = G[V ′ \ S′] */

10 Run OddCycleUndirectedPlanar(G[Vx ∪ S′], s′, n);
11 Store color of the vertices of S′ in an array of size |S′|;
12 end

13 end

Algorithm 4. Algorithm OddCycleUndirectedPlanar: Checking Presence of
Odd Cycle in an Undirected Planar Graph

Proof (of Theorem 2). Given a planar DAG G and two vertices s and t, first
report a path from s to t, say P , which can easily be done by polynomially many
invocation of the algorithm DirectedPlanarReachmentioned in Theorem 4 and
thus requires polynomial time and O(n

1
2+ε) space. If the path P is not of even

length, then construct a directed graph G′ which has the same vertices and edges
as G except the edges in path P , instead we do the following: if there is an edge
(u, v) in P , then we add an edge (v, u) in G′. Now we can observe that the new
graph G′ is a directed planar graph.

Claim. G has an even length path if and only if G′ has an odd length cycle.

Proof. Suppose G′ has an odd length cycle, then that cycle must contains the
reverse edges of P in G. Denote the reverse of the path P by Prev. Now lets
assume that the odd cycle C′ contains a portion of Prev (See Fig. 4). Assume
that the cycle C′ enters into Prev at x (can be t) and leaves Prev at y (can be

s). Then in the original graph G, the path s
P−→ y

C′
−→ x

P−→ t is of even length.
Now for the converse, lets assume that there exists an even length path P1 from
s to t in G. Both the paths P and P1 may or may not share some edges and
without loss of generality we can assume that they share some edges (See Fig.
5). Now if we consider all the cycles formed by Prev and portions of P1 in G′,
then it is easy to see that all the cycles cannot be of even length until length of

Red-Blue Path Problem in Planar DAGs 269

s

y

x

t

C’

s

y

x

t

P

In graph G’ In graph G

Fig. 4. When G′ contains an odd length
cycle

s

t

a

b

c

d

e

f

P P1

s

t

f

e

d

c

b

a

In graph G In graph G’

Fig. 5. When G contains an even length
s− t path

P and P1 both are of same parity (either both odd or both even), but this is not
the case.

Now we can check the presence of odd length cycle in the graph G′ in poly-
nomial time and O(n

1
2+ε) space (by Lemma 1). ��

Acknowledgement. The first author would like to thank Surender Baswana for
some helpful discussions and comments. We also thank the anonymous reviewers
for their helpful comments and suggestions.

References

1. Savitch, W.J.: Relationships between nondeterministic and deterministic tape com-
plexities. J. Comput. Syst. Sci. 4, 177–192 (1970)

2. Wigderson, A.: The complexity of graph connectivity. In: Mathematical Founda-
tions of Computer Science, pp. 112–132 (1992)

3. Barnes, G., Buss, J.F., Ruzzo, W.L., Schieber, B.: A sublinear space, polynomial
time algorithm for directed s-t connectivity. In: Proceedings of the Seventh Annual
Structure in Complexity Theory Conference, pp. 27–33 (1992)

4. Imai, T., Nakagawa, K., Pavan, A., Vinodchandran, N.V., Watanabe, O.: An
O(n1/2+ε)-Space and Polynomial-Time Algorithm for Directed Planar Reachabil-
ity. In: 2013 IEEE Conference on Computational Complexity (CCC), pp. 277–286
(2013)

5. Chakraborty, D., Pavan, A., Tewari, R., Vinodchandran, N.V., Yang, L.: New
time-space upperbounds for directed reachability in high-genus and h-minor-
free graphs. Electronic Colloquium on Computational Complexity (ECCC) 21, 35
(2014)

6. Kulkarni, R.: On the power of isolation in planar graphs. TOCT 3(1), 2 (2011)
7. LaPaugh, A.S., Papadimitriou, C.H.: The even-path problem for graphs and di-

graphs. Networks 14(4), 507–513 (1984)
8. Nedev, Z.P.: Finding an Even Simple Path in a Directed Planar Graph. SIAM J.

Comput. 29, 685–695 (1999)
9. Pach, J., Tóth, G.: Graphs drawn with few crossings per edge. Combinatorica 17(3),

427–439 (1997)

Non-repetitive Strings over Alphabet Lists

Neerja Mhaskar1 and Michael Soltys2,�

1 McMaster University
Dept. of Computing & Software

1280 Main Street West
Hamilton, Ontario L8S 4K1, Canada

pophlin@mcmaster.ca
2 California State University Channel Islands

Dept. of Computer Science
One University Drive

Camarillo, CA 93012, USA
michael.soltys@csuci.edu

Abstract. A word is non-repetitive if it does not contain a subword of
the form vv. Given a list of alphabets L = L1, L2, . . . , Ln, we investigate
the question of generating non-repetitive words w = w1w2 . . . wn, such
that the symbol wi is a letter in the alphabet Li. This problem has been
studied by several authors (e.g., [GKM10], [Sha09]), and it is a natural
extension of the original problem posed and solved by A. Thue. While we
do not solve the problem in its full generality, we show that such strings
exist over many classes of lists. We also suggest techniques for tackling
the problem, ranging from online algorithms, to combinatorics over 0-1
matrices, and to proof complexity. Finally, we show some properties of
the extension of the problem to abelian squares.

Keywords: Thue words, non-repetitive, square-free, abelian square.

1 Introduction

A string over a (finite) alphabet Σ is an ordered sequence of symbols from the
alphabet: let w = w1w2 . . . wn, where for each i, wi ∈ Σ. In order to emphasize
the array structure of w, we sometimes represent it as w[1..n]. We say that v
is a subword of w if v = wiwi+1 . . . wj , where i ≤ j. If i = j, then v is a single
symbol in w; if i = 1 and j = n, then v = w; if i = 1, then v is a prefix of
w and if j = n, then v is a suffix of w. We can express that v is a subword
more succinctly as follows: v = w[i..j], and when the delimiters do not have to
be expressed explicitly, we use the notation v ≤ w. We say that v is a subsequence
of w if v = wi1wi2 . . . wik , for i1 < i2 < . . . < ik.

We now define the main concept in the paper, namely a string over an alphabet
list. Let:

L = L1, L2, . . . , Ln ,

� Research supported in part by an NSERC Discovery Grant.

M.S. Rahman and E. Tomita (Eds.): WALCOM 2015, LNCS 8973, pp. 270–281, 2015.
c© Springer International Publishing Switzerland 2015

Non-repetitive Strings over Alphabet Lists 271

be an ordered list of (finite) alphabets. We say that w is a string over the list L
if w = w1w2 . . . wn where for all i, wi ∈ Li. Note that we impose no conditions
on the Li’s: they may be equal, disjoint, or have elements in common. The only
condition on w is that the i-th symbol of w must be selected from the i-th
alphabet, i.e., wi ∈ Li. Let Σk denote a fixed generic alphabet of k symbols and
let ΣL = L1 ∪ L2 ∪ · · · ∪ Ln.

Given a list L of finite alphabets, we can define the set of strings w over L
with a regular expression RL: RL := L1 · L2 · . . . · Ln.

Let L+ := L(RL) be the language of all the strings over the list L. For
example, if L0 = {{a, b, c}, {c, d, e}, {a, 1, 2}}, then

RL0 := {a, b, c} · {c, d, e} · {a, 1, 2},

and ac1 ∈ L+
0 , but 2ca �∈ L+

0 . Also, in this case |L+
0 | = 33 = 27. We should point

out that {a, b, c} is often written as (a + b + c), but we use the curly brackets since
it is reminiscent of indeterminate strings, which is yet another way of looking at
strings over alphabet lists. See, for example, [Abr87] or [SW09] for a treatment
of indeterminates.

We say that w has a repetition (or a square) if there exists a v such that
vv ≤ w. We say that w is non-repetitive (or square-free) if no such subword
exists. An alphabet list L is admissible if L+ contains a non-repetitive string.
Let L represent a class of lists; the intention is for L to denote lists with a given
property. For example, we are going to use LΣk

to denote the class of all lists
L = L1, L2, . . . Ln, where for each i ∈ [n] = {1, 2, . . . , n}, Li = Σk, and Lk will
denote the class of all lists L = L1, L2, . . . , Ln, where for each i ∈ [n], |Li| = k,
that is, those lists consisting of alphabets of size k. Note that LΣk

⊆ Lk. We say
that a class of lists L is admissible if every list L ∈ L is admissible. For ease of
reference, we include a table summarizing the notation for classes with different
properties in a table at the end of the paper.

Since any string of length at least 4 over Σ2 = {0, 1} contains a square, it
follows that L2 is not admissible. On the other hand, [Thu06] showed using
substitutions that LΣ3 is admissible. Using a probabilistic algorithm, [GKM10]
showed that L4 is admissible; the algorithm works as follows: in its i-th iteration,
it selects randomly a symbol from Li, and continues if the string created thus
far is square-free, and otherwise deletes the suffix consisting of the right side of
the square it just created, and restarts from the appropriate position.

Our paper is motivated by the following question, already posed in [GKM10]:
is the class L3 admissible? That is, given any list L = L1, L2, . . . , Ln, where for
all i ∈ [n], |Li| = 3, can we always find a non-repetitive string over such a list?
We conjecture with [GKM10] that the answer to this question is affirmative, but
we only show that certain (large) subclasses of L3 are admissible (Theorem 8).
In Section 4 we propose different approaches for attacking this conjecture in its
full generality.

272 N. Mhaskar and M. Soltys

2 Combinatorial Results

Consider the alphabet Σ3 = {1, 2, 3}, and the following substitution scheme, i.e.,
morphism, due to A. Thue, as presented in [GKM10]:

S =

⎧⎪⎨⎪⎩
1 '→ 12312

2 '→ 131232

3 '→ 1323132

(1)

Given a string w ∈ Σ∗
3 , we let S(w) denote w with every symbol replaced by its

corresponding substitution: S(w) = S(w1w2 . . . wn) = S(w1)S(w2) . . . S(wn).

Lemma 1. If w ∈ Σ∗
3 is a square-free string, then so is S(w).

Thue’s substitution (1) is not the only one; for example, [Lee57] proposes a
different substitution1. [Ber95, Theorem 3.2], which is a translation of Thue’s
work on repetitions in words, gives a characterization of the properties of such
substitutions (called therein iterated morphism). It requires the morphism to
be square free for any w of length 3 over Σ3. Our proof does not require this
assumption.

Corollary 2 (A. Thue). LΣ3 is admissible.

We are interested in the question whether L3 is admissible, i.e., whether every
list L = L1, L2, . . . , Ln, with |Li| = 3, is admissible. Experimental data, with
lists of length 20, seems to confirm it. Since we are not able to answer this
question in its full generality, we examine different sub-classes of L3 for which
it is true. The goal of this approach is to eventually show that L3 is admissible.

Recall that a System of Distinct Representatives (SDR) of a collection of sets
{L1, L2, . . . , Ln} is a selection of n distinct elements {a1, a2, . . . , an}, ai ∈ Li.

Claim 3. If L has an SDR, then L is admissible.

Proof. Simply let w = a1a2 . . . an be the string consisting of the distinct repre-
sentatives; as all symbols are distinct, w is necessarily square-free. ��

It is a celebrated result of P. Hall ([Hal87]) that a necessary and sufficient
condition for a collection of sets to have an SDR is that they have the union
property: for any sub-collection {Li1 , . . . , Lik}, 1 ≤ k ≤ n, |Li1 ∪ · · · ∪ Lik | ≥ k.

Corollary 4. If L has the union property, then L is admissible.

Given a list L, we say that the mapping Φ : L −→ Σ3, Φ = 〈φi〉, is consistent
if for all i, φi : Li −→ Σ3 is a bijection, and for all i �= j, if a ∈ Li ∩ Lj, then
φi(a) = φj(a). In other words, Φ maps all the alphabets to the single alphabet
Σ3, in such a way that the same symbol is always mapped to the same unique
symbol in Σ3 = {1, 2, 3}.
1 Leech’s substitutions are longer than Thue’s, and they are defined as follows
(see [Tom10]): 1 �→ 1232132312321; 2 �→ 2313213123132; 3 �→ 3121321231213.

Non-repetitive Strings over Alphabet Lists 273

Lemma 5. If L has a consistent mapping, then L is admissible.

Proof. Suppose that L has a consistent mapping Φ = 〈φi〉. By Corollary 2 we
pick a non-repetitive w = w1w2 . . . wn of length n. Let

w′ = φ−1
1 (w1)φ

−1
2 (w2) . . . φ

−1
n (wn),

then w′ is a string over L, and it is also non-repetitive. If it were the case that
vv ≤ w′, then the subword vv of w′ under Φ would be a square in w, which is a
contradiction. ��

Let CMP = {〈L〉 : L has a consistent mapping} be the “Consistent Mapping
Problem,” i.e., the language of lists L = L1, L2, . . . , Ln which have a consistent
mapping. We show in Lemma 6 that this problem is NP-complete. It is clearly
in NP as a given mapping can be verified efficiently for consistency.

Lemma 6. CMP is NP-hard.

Proof. A graph G = (V,E) is 3-colorable if there exists an assignment of three
colors to its vertices such that no two vertices with the same color have an
edge between them. The problem 3-color is NP-hard, and by [GJS76] it remains
NP-hard even if the graph is restricted to be planar.

We show that CMP isNP-hard by reducing the 3-colorability of planar graphs
to CMP. Given a planar graph P = (V,E), we first find all its triangles, that
is, all cliques of size 3. There are at most

(
n
3

)
≈ O(n3) such triangles, and note

that two different triangles may have 0, 1, or 2 vertices in common. If the search
yields no triangles in P , then by [Grö59] such a P is 3-colorable, and so we map
P to a fixed list with a consistent mapping, say L = L1 = {a, b, c}. (In fact,
by [DKT11] it is known that triangle-free planar graphs can be colored in linear
time.)

Otherwise, denote each triangle by its vertices, and let T1, T2, . . . , Tk be the
list of all the triangles, each Ti = {vi1, vi2, vi3}; note that triangles may overlap.
We say that an edge e = (v1, v2) is inside a triangle if both v1, v2 are in some
Ti. For every edge e = (v1, v2) not inside a triangle, let E = {e, v1, v2}. Let
E1, E2, . . . , E� be all such triples, and the resulting list is:

LP = T1, T2, . . . , Tk, E1, E2, . . . , E�.

See example given in Figure 1.
We show that LP has a consistent mapping if and only if P is 3-colorable.
Suppose that P is 3-colorable. Let the colors be labeled with Σ3 = {1, 2, 3};

each vertex in P can be labeled with one of Σ3 so that no edge has end-points
labeled with the same color. This clearly induces a consistent mapping as each
triangle Ti = {vi1, vi2, vi3} gets 3 colors, and each E = {e, v1, v2} gets two colors
for v1, v2, and we give e the third remaining color.

Suppose, on the other hand, that LP has a consistent mapping. This induces
a 3-coloring in the obvious way: each vertex inside a triangle gets mapped to one
of the three colors in Σ3, and each vertex not in a triangle is either a singleton,
in which case it can be colored arbitrarily, or the end-point of an edge not inside
a triangle, in which case it gets labeled consistently with one of Σ3. ��

274 N. Mhaskar and M. Soltys

6

v v v

v

v

v1
2

3

4
5

Fig. 1. In this case the list LP is composed as follows: there are two triangles,
{v2, v3, v4}, {v2, v6, v4}, and there are two edges not inside a triangle giving rise to
{v1, v2, (v1, v2)}, {v4, v5, (v4, v5)}. Note that this planar graph is 3-colorable: v1 �→ 1,
v2 �→ 2, v3 �→ 3, v6 �→ 3, v4 �→ 1, and v5 �→ 2. And the same assignment can also be
interpreted as a consistent mapping of the list LP .

We say that a collection of sets {L1, L2, . . . , Ln} is a partition if for all i, j,
Li = Lj or Li ∩ Lj = ∅.

Corollary 7. If L is a partition, then L is admissible.

Proof. We show that when L is a partition, we can construct a consistent Φ,
and so, by Lemma 5, L is admissible. For each i in [n] in increasing order, if
Li is new i.e., there is no j < i, such that Li = Lj, then let φi : Li −→ Σ3 be
any bijection. If, on the other hand, Li is not new, there is a j < i, such that
Li = Lj, then let φi = φj . Clearly Φ = 〈φi〉 is a consistent mapping. ��

Note that by Lemma 5, the existence of a consistent mapping guarantees the
existence of a square-free string. The inverse relation does not hold: a list L may
not have a consistent mapping, and still be admissible. For example, consider
L = {{a, b, c}, {a, b, e}, {c, e, f}}. Then, in order to have consistency, we must
have φ1(a) = φ2(a) and φ1(b) = φ2(b). In turn, by bijectivity, this implies that
φ1(c) = φ2(e). Again, by consistency:

φ3(c) = φ1(c) = φ2(e) = φ3(e),

and so φ3(c) = φ3(e), which violates bijectivity. Hence L does not have a con-
sistent mapping, but w = abc ∈ L+, and w is square-free.

Let LSDR,LUnion,LConsist, and LPart, be classes consisting of lists with: an
SDR, the union property, a consistent mapping, and the partition property, re-
spectively. Summarizing the results in the above lemmas we obtain the following
theorem.

Theorem 8. LSDR,LUnion,LConsist, and LPart are all admissible.

A natural way to construct a non-repetitive string over L is as follows: pick
any w1 ∈ L1, and for i + 1, assuming that w = w1w2 . . . wi is non-repetitive,
pick an a ∈ Li+1, and if wa is non-repetitive, then let wi+1 = a. If, on the other
hand, wa has a square vv, then vv must be a suffix (as w is non-repetitive by
assumption). Delete the right copy of v from w, and restart.

Non-repetitive Strings over Alphabet Lists 275

The above paragraph describes the gist of the algorithm for computing a
non-repetitive string over L4, presented in [GKM10]. The correctness of the
algorithm relies on a beautiful probabilistic argument that we present partially
in the proof of Lemma 11. For the full version of this result the reader is directed
to the source [GKM10]. On the other hand, the correctness of the algorithm
in [GKM10] also relies on Lemma 9 shown below, which was assumed but not
shown [GKM10, line 7 of Algorithm 1, on page 2].

Incidentally, suppose that there is an L ∈ L4 with the following property:
there exists an Li = {a, b, c, d} such that if w is a non-repetitive string in L+,
then wi = a. That is, all non-repetitive strings in L+ must select a from Li. Then
L3 would be inadmissible, since we could construct an inadmissible L′ ∈ L3 as
follows: L′

i = {b, c, d}, and for j �= i, L′
j any 3-element subset of Lj .

Lemma 9. If w is non-repetitive, then for any symbol a, either w′ = wa is still
non-repetitive, or w′ has a unique square (consisting of a suffix of w′).

Proof. Suppose that w′ = wa has a square; denote this square v�vr, where
v� = vr, and v�vr is a suffix of w′. Suppose that there is another square v′�v

′
r. We

examine the following cases:

1. If |v′r| ≤ �
|vr |
2 �, then v′�v

′
r is a suffix of vr, and hence v′�v

′
r is also a suffix of

v�, and hence w has a square — contradiction.

2. If � |vr |2 � < |v′r| < |vr|, then let x be the (unique) suffix of v′� that corresponds
to a prefix of vr. Note that the case |v′r| = |vr| is superfluous, as it means
that v′r = vr, and since |v′r | < |vr|, |x| > 0. Since x is a suffix of v′�, it also
must be a suffix of v′r, and so x is also a suffix of vr, and hence a suffix of
v�. Thus, we must have xx straddling v�vr, and thus we have a square in w
— contradiction.

3. The case |vr| < |v′r| < |v�vr| is symmetric to the previous case, with the roles
of vr, v

′
r and v�, v

′
� reversed.

4. Finally, |v′r| ≥ |v�vr| means that v�vr is also a subword of v′�, giving us a
repetition v′� ≤ w, and hence a contradiction.

Thus, the only possible case is v� = v′�, vr = v′r, and this means that w′ must
have a unique repetition, if it has one at all. ��

An open question is how to de-randomize [GKM10, Algorithm 1]. The näıve
way to de-randomize it is to employ an exhaustive search algorithm: given an
L in L4, examine every w ∈ L+ in lexicographic order until a non-repetitive is
found, which by [GKM10, Theorem 1] must happen. In that sense, the correct-
ness of the probabilistic algorithm implies the correctness of the deterministic
exhaustive search algorithm. However, such an exhaustive search algorithm takes
4|L| steps in the worst case; is it possible to de-randomize it to a deterministic
polytime algorithm? Also, what is the expected running time of the probabilistic
algorithm?

276 N. Mhaskar and M. Soltys

3 Abelian Squares

There are generalizations of the notion of a square in a string. For example, while
a square in w is a subword vv ≤ w, an overlap is a subword of the form avava,
where a is a single symbol, and v is an arbitrary word (see [Sha09, pg. 37], and
the excellent [Ram07]). The point is that the string avava can be seen as two
overlapping occurrences of the word ava. While there are no arbitrarily long
square-free words over Σ2 = {0, 1}, there are arbitrarily long overlap-free words
over Σ2 (see [Sha09, Theorem 2.5.1, pg. 38]).

An abelian square is a word of the form ww′ where |w| = |w′|, and where w′ is
a permutation of w. That is, if w = w1w2 . . . wn, then w′ = wπ(1)wπ(2) . . . wπ(n),
where π : [n] −→ [n] is a bijection. A word w is abelian-square-free if there
is no vv′ ≤ w such that vv′ is an abelian square. While there are arbitrarily
long square-free words over Σ3, the question was posed in [Sha09, Section 2.9,
Problem 1(a), pg. 47] whether there are infinite abelian-square-free words (where
aa is not counted as an abelian square, that is, abelian-square-of-size-at-least-2-
free words). We show in Lemma 10 that there are no abelian-square-free words
of size 8 or bigger; but allowing abelian squares of size 1 makes the problem
more difficult. Here is a word of size 25, with no abelian-square-free but allowing
abelian squares of size 1: aaabaaacaaabbbaaacaa.

Lemma 10. If w is a word over Σ3 such that |w| ≥ 8, then w must have an
abelian square.

Proof. We show that if w ∈ Σ≥8
3 , i.e., w is a word over Σ3 of size at least 8, then

w necessarily has an abelian square.
Let τ : Σ3 −→ Σ3 be a bijection, that is, τ is a permutation of {a, b, c}. (Note

that this is not the same as the π above, which is a permutation of a string w.)
It is easy to see that for each of the six possible τ ’s, w is an abelian square if
and only if τ(w) is an abelian square. Therefore, if we show that for any w of
the form w = abx, where x ∈ Σ∗

3 , w has an abelian square, it will follow that
every w has an abelian square. (If w = aax, bbx, ccx then w has a square, which
is also an abelian square, and for the six cases that arise from two distinct initial
characters we apply a τ to reduce it to the w = abx case.)

Consider Figure 2 which represents with a tree the prefixes of all the strings
over Σ3. Think of the labels on the nodes on any branch starting at the root (ε)
as spelling out such a prefix. Note that all the branches starting with ab end in
a ×-leaf, which denotes that adding any symbol in Σ3 = {a, b, c} would yield an
abelian square. This proves the Lemma, as the other prefixes (starting with one
of {ba, bc, ca, cb}) would also eventually yield an abelian square. ��

Adapting the method of [GKM10] we can also show that there are infinite
abelian-square-free words over lists of size 4.

Lemma 11. Let L be any list where for all i, |Li| = 4. Then, there is an abelian-
square-free word over L.

Non-repetitive Strings over Alphabet Lists 277

ε

a

b

a

c

a

b

a

×

b

a

b

×

c

×

c

a

b

a

×

c

×

b

a

b

c

×

c

b

a c

c

a b

Fig. 2. No abelian squares of length greater than 8

Proof. Fix an ordering inside each Li, and let r = r1, r2, . . . , rm be a sequence
over {1, 2, 3, 4}. We use r to build an abelian-square-free word as follows: starting
with w = ε, in the i-th step, add to the right end of w the symbol in position ri in
L|w|+1. If the resulting w′ is abelian-square-free, continue. Otherwise, there is an
abelian square (which, unlike in the case of regular squares, does not have to be
unique — see Lemma 9). Let vv′ be the longest abelian square so that w′ = xvv′.
Delete v′ and restart the process. Let (D, s) be a log of the procedure, whereD is
a sequence of integers keeping track of the differences in size of the w’s from one
step to the next; let s be the final string after the entire r has been processed.
Following the same technique as in [GKM10], we show that given (D, s) there
is a unique r corresponding to it. By assuming that the total number of s’s are
less than a given n0, we get a contradiction by letting r be sufficiently large, and
bounding the number of logs with Catalan numbers [Sta99]. ��

The authors have written a short Python program for checking abelian squares;
you may find it on the second author’s web page.

4 Future Directions

4.1 Online Algorithms and Games

In the online version of the problem, L is presented piecemeal, one alphabet at
a time, and we select the next symbol without knowing the future, and once
selected, we cannot change it later. More precisely, the Li’s are presented one
at a time, starting with L1, and when Li is presented, we must select wi ∈ Li,
without knowing Li+1, Li+2, . . ., and without being able to change the selections
already committed to in L1, L2, . . . , Li−1.

278 N. Mhaskar and M. Soltys

We present the online problem in a game-theoretic context. Given a class
of lists L, and a positive integer n, the players take turns, starting with the
adversary. In the i-th round, the adversary presents a set Li, and the player
selects a wi ∈ Li; the first i rounds can be represented as:

G = L1, w1, L2, w2, . . . , Li, wi.

The condition imposed on the adversary is that L = L1, L2, . . . , Ln must be a
member of L.

The player has a winning strategy for L, if ∀L1∃w1∀L2∃w2 . . . ∀Ln∃wn, such
that L = L1, L2, . . . , Ln ∈ L and w = w1w2 . . . wn is square-free. For example,
the player does not have a winning strategy for L1 and L2; see Figure 3. On
the other hand, the player has a winning strategy for LΣ3 : simply pre-compute
a square-free w, and select wi from Li. However, this is not a bona fide online
problem, as all future Li’s are known beforehand. In a true online problem
we expect the adversary to have the ability to “adjust” the selection of the Li’s
based on the history of the game.

{a} a �� {a} a �� × {a, b} b �� {a, b} a �� {a, b} b �� ×

{a, b}

a

�����������

b

���
��

���
��

�

{a, b} a �� {a, b} b �� {a, b} a �� ×

Fig. 3. Player loses if adversary is allowed subsets of size less than 3: the moves of the
adversary are represented with subsets {a} and {a, b} and the moves of the player are
represented with labeled arrows, where the label represents the selection from a subset

We present another class of lists for which the player has a winning strategy.
Let sizeL(i) = |L1 ∪ . . . ∪ Li|. We say that L has the growth property if for all
1 ≤ i < n = |L|, sizeL(i) < sizeL(i + 1). We denote the class of lists with the
growth property as LGrow.

Lemma 12. The player has a winning strategy for LGrow.

Proof. In the i-th iteration, select wi that has not been selected previously; the
existence of such a wi is guaranteed by the growth property. ��

The growth property places a rather strong restriction on L, as it allows the
construction of square-free strings where all the symbols are different, and hence
they are trivially square-free. Note that the growth property implies the union
property discussed in Corollary 4. To see this note that the growth property

Non-repetitive Strings over Alphabet Lists 279

implies the existence of an SDR (discussed in Claim 3), in the stronger sense of
every Li containing an ai such that for all j �= i, ai �∈ Lj.

It would be interesting to study the relationship between admissible L in the
original sense, and those L for which the player has a winning strategy in the
online game sense. Clearly, if there exists a winning strategy for L, then L is
admissible; what about the converse?

4.2 Boolean Matrices

Instead of considering alphabets, we consider sets of natural numbers, i.e., each
Li ⊆ N, and L = L1, L2, . . . Ln, and L is a class of lists as before. We say that
w ∈ L+ if w = j1, j2, . . . , jn, i.e., w is a sequence of numbers, such that for all
i ∈ [n], ji ∈ Li. The definition of repetitive (square) is analogous to the alphabet
of symbols case.

Note that any L = L1, L2, . . . , Ln can be normalized to be L̂, where each Li

is replaced with L̂i ⊆ [3n]. This can be accomplished by mapping all integers
in ∪L, at most 3n many of them, in an order preserving way, to [3n]. Clearly,
L is admissible iff L̂ is admissible, and given a list L, it can be normalized in
polynomial time. This allows us to restate the game theoretic approach given in
the previous section with bounded quantification; this in turn places the problem
in the polytime hierarchy, and hence in PSPACE. This is not surprising as many
two-player zero-sum games are in this class (see [Pap94, Chapter 19]).

The integer restatement suggests an approach based on 0-1 matrices. Given a
normalized list L = {L1, L2, . . . , Ln}, we define the 0-1 n× 3n matrix AL where
row i of AL is the incidence vector of Li: AL(i, j) = 1 ⇐⇒ j ∈ Li.

The attraction of this setting is that it may potentially allow us to use the
machinery of combinatorial matrix theory to show that L3 is admissible.

It is easy to see that L is admissible iff there is a selection S that picks a
single 1 in each row in such a way that there are no i consecutive rows equal
to the next i consecutive rows. More precisely, L is admissible iff there does
not exist i, j, such that 1 ≤ i ≤ j ≤ �n2 �, and such that the submatrix of AL

consisting of rows i through j is equal to the submatrix of AL consisting of rows
j + 1 through 2(j + 1)− i.

Suppose that ΣL is re-ordered bijectively by Γ , and let

LΓ = {Γ (L1), Γ (L2), . . . , Γ (Ln)}.

Then L is admissible iff LΓ is admissible. Note that a bijective re-ordering of
ΣL is represented by a permutation of the columns of AL. Thus, permuting
the columns of AL does not really change the problem; the same is not true of
permuting the rows, which actually re-orders the list L, changing the constraints,
and therefore changing the problem.

Consider the matrices S = ALA
t
L and T = At

LAL. The element [sij] record
the number of elements common in the sets Li and Lj , where 1 ≤ i, j ≤ n .
The diagonal elements [sii] record the cardinality of the set Li, which is 3. The
element [tij] record the number of times the numbers i and j, where 1 ≤ i, j ≤ 3n,

280 N. Mhaskar and M. Soltys

occur together in the sets of L. The diagonal elements of T display the total
number of times each number in [3n] appears in L. The properties of these
matrices are studied to possibly use them in the construction of Φ(consistent
mapping).

4.3 Proof Complexity

By restating the generalized Thue problem in the language of 0-1 matrices, as
we did in Section 4.2, we can more easily formalize the relevant concepts in the
language of first order logic, and use its machinery to attack the problem.

We are going to adopt the logical theoryV0 as presented in [CN10], whose lan-
guage is L2

A = [0, 1,+, ·, ||; =1,=2,≤,∈] (see [CN10, Definition IV.2.2, pg. 76]).
Without going into all the details, this language allows the indexing of a 0-1
string X ; on the other hand, a 0-1 matrix AL can be represented as a string
XL with the definition: XL(3n(i − 1) + j) = AL(i, j). Hence, L2

A is eminently
suitable for expressing properties of strings.

Define the following auxiliary predicates:

– Let Three(XL) be a predicate which states that the matrix AL corresponding
to XL has exactly three 1s per row.

– Let Sel(YL, XL) be a predicate which states that YL is a selection of XL, in
the sense that YL corresponds to the 0-1 matrix which selects a single 1 in
each row of AL.

– Let SF(YL) be a predicate which states that YL is square-free (i.e., non-
repetitive).

Lemma 13. All three predicates Three, SF, Sel are ΣB
0 .

Our conjecture can be stated as a ΣB
1 formula over L2

A as follows:

α(XL) := ∃YL ≤ |XL|(Three(XL) ∧ Sel(YL, XL) ∧ SF(YL)).

Suppose we can prove that V0 + α(XL); then, we would be able to conclude
that given any L, we can compute a non-repetitive string over L in AC0. Like-
wise, if V1 + α(XL), then we would be able to conclude that the non-repetitive
string can be computed in polynomial time.

References

[Abr87] Abrahamson, K.R.: Generalized string matching. SIAM J. Comput. 16(6),
1039–1051 (1987)

[Ber95] Berstel, J.: Axel Thue’s papers on repetitions in words: a translation. Technical
report, Université du Québec a Montréal (1995)

[CN10] Cook, S.A., Nguyen, P.: Logical Foundations of Proof Complexity. Cambridge
Univeristy Press (2010)

[DKT11] Dvořák, Z., Kawarabayashi, K.-I., Thomas, R.: Three-coloring triangle-free
planar graphs in linear time. ACM Trans. Algorithms 7(4), 41:1–41:14 (2011)

Non-repetitive Strings over Alphabet Lists 281

[GJS76] Garey, M.R., Johnson, D.S., Stockmeyer, L.: Some simplified np-complete
graph problems. Theoretical Computer Science 1(3), 237–267 (1976)

[GKM10] Grytczuk, J., Kozik, J., Micek, P.: A new approach to nonrepetitive se-
quences. arXiv:1103.3809 (December 2010)

[Grö59] Grötzsch, H.: Ein dreifarbensatz für dreikreisfreie netze auf der kugel 8, 109–
120 (1959)

[Hal87] Hall, P.: On representatives of subsets. In: Gessel, I., Rota, G.-C. (eds.) Clas-
sic Papers in Combinatorics. Modern Birkhäuser Classics, pp. 58–62. Birkhäuser,
Basel (1987)

[Lee57] Leech, J.: A problem on strings of beads. Mathematical Gazette, 277 (Decem-
ber 1957)

[Pap94] Papadimitriou, C.H.: Computational Complexity. Addison-Wesley (1994)
[Ram07] Rampersad, N.: Overlap-free words and generalizations. PhD thesis, Waterloo

University (2007)
[Sha09] Shallit, J.: A second course in formal languages and automata theory. Cam-

bridge Univeristy Press (2009)
[Sta99] Stanley, R.P.: Exercises on catalan and related numbers. Enumerative Combi-

natorics 2 (1999)
[SW09] Smyth, W.F., Wang, S.: An adaptive hybrid pattern-matching algorithm on

indeterminate strings. Int. J. Found. Comput. Sci. 20(6), 985–1004 (2009)
[Thu06] Thue, A.: Über unendliche zeichenreichen. Skrifter: Matematisk-

Naturvidenskapelig Klasse. Dybwad (1906)
[Tom10] Robinson Tompkins, C.: The morphisms with unstackable image words.

CoRR, abs/1006.1273 (2010)

Summary of classes of lists

L denotes a class of lists

L = L1, L2, . . . , Ln denotes a (finite) list of alphabets

Li denotes a finite alphabet

Class name Description Admissible

LΣk for all i ∈ [n], Li = Σk for Σk, yes for k ≥ 3; no for k < 3

Lk for all i ∈ [n], |Li| = k yes for k ≥ 4; no for k ≤ 2; for k = 3 ?

LSDR L has an SDR yes

LUnion L has the union property yes

LConsist L has a consistent mapping yes

LPart L is a partition yes

LGrow for all i, | ∪i
j=1 Lj | < | ∪i+1

j=1 Lj | yes, even for online games

Dichotomy Theorems for Homomorphism

Polynomials of Graph Classes

Christian Engels

Saarland University, Department of Computer Science, Saarbruecken, Germany
engels@cs.uni-saarland.de

Abstract. In this paper, we will show dichotomy theorems for the com-
putation of polynomials corresponding to evaluation of graph homomor-
phisms in Valiant’s model. We are given a fixed graph H and want to
find all graphs, from some graph class, homomorphic to this H . These
graphs will be encoded by a family of polynomials.

We give dichotomies for the polynomials for cycles, cliques, trees, out-
erplanar graphs, planar graphs and graphs of bounded genus.

1 Introduction

Graph homomorphisms are studied because they give important generalizations of
manynatural questions (k-coloring, acyclicity, binaryCSPandmanymore cf. [16]).
One of the first results, given by Hell and Nešetřil [15], was on the decision problem
where they gave a dichotomy. The exact result was, that deciding if there exists a
homomorphism from some graph G to a fixed undirected graph H is polynomial
time computable if H is bipartite and NP-complete otherwise. A different side of
graphhomomorphismswas looked at byChekuri andRajaraman [4], Dalmau et al.
[6], Freuder [10] and finally Grohe [14]. They studied the following: Given a re-
stricted graph class G, decide if there is a graph G ∈ G homomorphic to a given
graphH . Instead of restricting the graph classesH as in the first problem, we re-
strict the graphs we map from. Later, focus shifted onto the counting versions of
these two sides where we have to count the number of homomorphisms. Dyer and
Greenhill [9] solved the first problem in the counting case andDalmau and Jonsson
[5] the second. The first problem was extended by Bulatov and Grohe [1] to graphs
with multiple edges. They also notice some interesting connections to statistical
physics and constraint satisfaction problems. A good introduction to the history
of graph homomorphism was written by Grohe and Thurley [13] and research on
these topics continues even today with two noticeable results being the works by
Goldberg et al. [11] and Cai et al. [3].

However, the arithmetic circuit complexity was still open. The previous re-
sults could only show that the hard cases have no polynomial size circuits for
counting the number of homomorphisms but it was unclear if these problems are
VNP complete. The study of VNP complete problems and the arithmetic world
was started in the seminal paper by Valiant [22]. In this world, we look at the
complexity of computing a family of polynomials using a family of arithmetic

M.S. Rahman and E. Tomita (Eds.): WALCOM 2015, LNCS 8973, pp. 282–293, 2015.
c© Springer International Publishing Switzerland 2015

Dichotomy Theorems for Homomorphism Polynomials of Graph Classes 283

circuits. Recently, a dichotomy for graph homomorphisms was shown by Rugy-
Altherre [20]. Here a graph is encoded by a product of edge variables and sets of
graphs as sums over these products. This is known as generating function and a
detailed definition will be provided in Section 2. However, his result was for the
first side of the graph homomorphism problem.

In this paper we look at the second side of the graph homomorphism problem
to complete the picture for the arithmetic circuit world. While we could not get a
general theorem as in [5], we show multiple hardness proofs for some classes. We
will look at cycles, cliques, trees, outerplanar graphs, planar graphs and graphs
of bounded genus.

Recently, homomorphism polynomials in a different form are even used for
giving natural characterizations of VP independent of the circuit definition [8].
In this way our results can be interpreted as showing that some straightforward
candidates originating from the counting world do not give a characterization of
VP.

Section 2 gives a formal introduction to our model, related hard problems and
states the problem precisely. We prove our dichotomies in Sections 3.1 to 3.6
where the constructions in Sections 3.4 to 3.6 build on each other. The construc-
tion in Section 3.3 will use a slightly different model as the other sections. We
will give a brief introduction into concepts from graph genus in Section 3.6 but
refer the reader to the textbook by Diestel [7].

2 Model and Definitions

Let us first give a brief introduction to the field of Valiant’s classes. For fur-
ther information the reader is referred to the textbook by Bürgisser [2]. In this
theory, we are given an arithmetic circuit (a directed acyclic connected graph)
with addition and multiplication gates over some field K. These gates are either
connected to other gates or input gates from the set K ∪ X for some set of
indeterminates X . At the end we have exactly one output gate. An arithmetic
circuit computes a polynomial in K[X] at the output gate in the obvious way.

As Valiant’s model is non-uniform, a problem consists of families of polynomi-
als. A p-family is a sequence of polynomials (fn) over K[X] where the number of
variables is n and the degree is bounded by some polynomial in n. Additionally
the family of polynomials (fn) should be computed by a family of arithmetic
circuits (Cn) where fn is computed by Cn for all n. Valiant’s Model focuses its
study on p-families of polynomials.

We define L(f) to be the number of gates for a minimal arithmetic circuit
computing a given polynomial f ∈ K[X]. VP is the class of all p-families of
polynomials where L(fn) is bounded polynomially in n. Let q(n), r(n), s(n) be
polynomially bounded functions. A p-family (fn) ∈ K[x1, . . . , xq(n)] is in VNP
if there exists a family (gn) ∈ K[x1, . . . , xr(n), y1, . . . , ys(n)] in VP such that

f(x1, . . . , xq(n)) =
∑

ε∈{0,1}s(n)

g(x1, . . . , xr(n), ε1, . . . , εs(n)).

284 C. Engels

The classes VP and VNP are considered algebraic analogues to P and NP or
more accurately #P. We can also define an algebraic version of AC0, mentioned
by Mahajan and Rao [17]. A p-family is in VAC0 if there exists a family of
arithmetic circuit of constant depth and polynomial size with unbounded fan-in
that computes the family of polynomials.

The notion of a reduction in Valiant’s model is given by p-projections. A
p-family (fn) is a p-projection of (gn), written as (fn) ≤p (gn), if there exists
a polynomially bounded function q(n) such that for every n, f(x1, . . . , xn) =
g(a1, . . . , aq(n)) for some ai ∈ K ∪ {x1, . . . , xn}. Once we have a reduction, we
get a notion of completeness in the usual way.

However, we use a different kind of reduction called a c-reduction. This is
similar to a Turing reduction in the Boolean world. We define Lg(f) as the
number of gates for computing f where the arithmetic circuits is enhanced with
an oracle gate for g. An oracle gate for the polynomial g ∈ K[x1, . . . , xn′] has as
output g(a1, . . . , an′) where a1, . . . , an′ are the inputs to this gate. This allows
us to evaluate g on a1, . . . , an′ in one step if we computed a1, . . . , an′ previously
in our circuit.

We say f c-reduces to g, written (fn) ≤c (gn), if there exists a polynomial p
such that Lgp(n)(f) is bounded by some polynomial. This reduction, however, is
only useful for VNP and not for VAC0 and VP. In this paper we will exclusively
deal with c-reductions for our VNP completeness results.

2.1 Complete Problems

We continue with the basic framework of graph properties. In the following K
will be an infinite field of characteristic not equal to two.

Definition 1. Let X be a set of indeterminates. Let E be a graph property, that
is, a class of graphs which contains with every graph also all of its isomorphic
copies. Let G = (V,E) be an edge weighted, undirected graph with a weight
function w : E → K∪X. We extend the weight function by w(E′) :=

∏
e∈E′ w(e)

to subsets E′ ⊆ E.
The generating function GF(G, E) of the property E is defined as

GF(G, E) :=
∑
E′⊆E

w(E′)

where the sum is over all subsets E′ such that the subgraph (V,E′) of G has
property E.

The reader should notice that the subgraph still contains all vertices and just
takes a subset of the edges.

In the following, let G be a graph and letX = {xe | e ∈ E}. We label each edge
e by the indeterminate xe. We conclude by stating some basic VNP-complete
problems. Proofs of these facts can be found in the textbook by Bürgisser [2].

Theorem 2 ([2]). GF(Kn,UHCn) is VNP-complete where UHCn is the set of
all hamiltonian cycles in Kn.

Dichotomy Theorems for Homomorphism Polynomials of Graph Classes 285

Theorem 3 ([2]). Let CL be the set of all cliques. Meaning, the set of all graphs,
where one connected component is a complete graph and each of the remaining
connected components consist of one vertex only. The family GF(Kn, CL) is
VNP-complete.

Theorem 4 ([2]). Let M be the set of all graphs where all connected compo-
nents have exactly two vertices. The family GF(Kn,M) is VNP-complete.

This polynomial gives us all perfect matchings in a graph. It is well known that
the original VNP-complete problem, the permanent, is equal to GF(Kn,n,M)
for bipartite graphs which is a projection of GF(Kn2 ,M).

2.2 The Problem and Related Definitions

We now formulate our problem. Let G,H be undirected graphs. We will generally
switch freely between having the variable indexed by either edges (xe) or vertices
(xi,j for i, j ∈ V). We let xj correspond to the self-loop at vertex j.

A homomorphism from G = (V,E) to H = (V ′, E′) is a mapping f : V → V ′

such that for all edges {u, v} ∈ E there exist an edge {f(u), f(v)} ∈ E′. We can
define the corresponding generating function as follows.

Definition 5. Let HH be the property of all connected graphs homomorphic to
a fixed H. We denote by FH,n the generating function FH,n := GF(Kn,HH).

We can state now the first dichotomy theorem.

Theorem 6 ([20]). If H has a loop or no edges, FH,n is in VAC0 and otherwise
it is VNP-complete under c-reductions.

Instead of looking at all graphs, we want to look at a restricted version. What
happens if we do not want to find every graph homomorphic to a given H
but every cycle homomorphic to a given H? We state our problem in the next
definitions.

Definition 7. Let En be a graph property. Then FH,n
En

is the generating function
for all graphs in En on n vertices homomorphic to a fixed graph H.

Definition 8. We define the following graph polynomials.

– FH,n
cyclen

where cyclen is the property where one connected component is a
cycle and the others are single vertices in a graph of size n.

– FH,n
cliquen

where cliquen is the property where one connected component is a
clique and the others are single vertices in a graph of size n.

– FH,n
tressn where treesn is the property where one connected component is a tree

and the others are single vertices in a graph of size n.
– FH,n

outerplanarn
where outerplanarn is the property where one connected com-

ponent is a outerplanar graph and the others are single vertices in a graph
of size n.

286 C. Engels

– FH,n
planarn

where planarn is the property where one connected component is a
planar graph and the others are single vertices in a graph of size n.

– FH,n
genus(k),n where genus(k),n is the property where one connected component

has genus k and the others are single vertices in a graph of size n.

Wewill use the notationFcycle,Fclique,F tree,Fouterplanar,Fplanar andFgenus(k)

as a shorthand.
Let us now introduce the homogeneous degree of a polynomial.

Definition 9. Let x̄ = xi1 , . . . , xil be a subset of variables and (fn) be a p-
family. We can write fn as

fn =
∑
ī

αī

n∏
j=1

x
ij
j .

The homogeneous component of fn of degree k with variables x̄ is

HOMCx̄
k(fn) =

∑
i1,...,il

k=
∑l

j=1 ij

αi1,...,ilx
ii
i1
. . . x

ij
il
.

Finally, we need a last lemma in our proofs. This lemma was stated explicit by
Rugy-Altherre [20] and can also be found in [2]. It will give us a way to extract
all polynomials of homogeneous degree k in some set of variables in c-reductions.

Lemma 10. Then for any sequence of integers (kn) there exists a c-reduction
from the homogeneous component to the polynomial itself:

HOMCx̄
kn
(fn) ≤c (fn).

The circuit for the reduction has size in O(nδn) where δn is the degree of fn.

The reader should note that using this theorem will blow up our circuit poly-
nomially in size and can hence be used only a constant number of times in
succession. However, we can use this lemma on subsets of vertices. We re-
place every variable xi in the subset by xiy for a new variable y and take the
homogeneous components of y. We will use this technique to enforce edges to
be taken. Notice that enforcing n edges to be taken only increases the circuit
size by a factor of n. Additionally, we can set edge variables to zero to deny our
polynomial using these edges.

Let G be a graph that is homomorphic to a givenH . We will, in general, ignore
self-loops in G, i.e. assume G to never have any self-loops. If we have proven
a theorem for all G without self loops, we can just take the homomorphism
polynomial with self-loops, take the homogeneous component of degree zero of
all self-loops and get the homomorphism polynomial without self-loops. As we
will prove the dichotomy for these, the hardness will follow.

Dichotomy Theorems for Homomorphism Polynomials of Graph Classes 287

3 Dichotomies

3.1 Cycles

As a first graph class we look at cycles. The proof for the dichotomy will be
relatively easy and gives us a nice example to get familiar with homomorphism
polynomials and hardness proofs. Our proofs will, in general, reason first about
the kind of monomials that exist for a given H and then try to extract or modify
these via Lemma 10 to get a solution to a VNP-complete problem. This will yield
the reduction. Our main dichotomy for cycles is the following theorem.

Theorem 11. If H has at least one edge or has a self-loop, then Fcycle is VNP-
complete under c-reductions. Else it is in VAC0.

The next simple fact shows us which cycles are homomorphic to a given graph
H . Let n0 be defined as n if n is even and n− 1 if n is odd.

Fact 1. Given H a graph with at least one edge, all cycles of length n0 are
homomorphic to H.

It is easy to see that by folding the graph in half we get one path which is trivially
homomorphic to an edge. Our hardness proof will only be able to handle cycles
of even length. Luckily this is enough to prove hardness.

Lemma 12. Let UHCn0,even be the graph property of all cycles of length n0.
Then GF(Kn0 ,UHCn0,even) is VNP-hard under c-reductions.

Proof. If n is even, we can immediately use the hardness of GF(Kn,UHCn)
(cf. Theorem 2). If n is odd, we use the following reduction. We have given
all cycles of length n − 1 and want to get all cycles of length n. We evaluate
the polynomial for Kn+1 and get all cycles of length n + 1. We can contract
one edge with the following argument. We enforce, via taking the homogeneous
component of degree one of xn+1,1, all cycles to use xn+1,1. We then replace
xi,n+1 by xi,1 for all i and set xn+1,1 to one. This gives us all cycles of length n
with a factor 2 for every monomial.

To see this let us look at the following argument. Let the edge (n + 1, 1) be
the edge we contract and let i, j be two arbitrary points picked in the graph.
If we connect i, j with a path through every point we can complete this into a
cycle two different ways. Either with the edges (1, i), (n+1, j) or (1, j), (n+1, i).
Notice, that every different choice of i, j will construct a different cycle if we
contract 1 and n + 1. This concludes our reduction to GF(Kn,UHCn). As our
circuit can easily divide by two if the polynomial is over an infinite field (see.
[21]). ��

Later proofs will also use the contracting idea from the previous lemma. A simple
case distinction will give us the proof of the theorem.

Proof (of Theorem 11).
If H has at least one edge, we know from Lemma 1 that all even cycles are
homomorphic to H and by this represented in our polynomial. If we take the

288 C. Engels

homogeneous components of degree n0, we extract all even cycles of length n0.
This is VNP-hard via the previous Lemma (12).

If H has a self-loop, we can map all cycles to the one vertex in H . We can then
extract the hamiltonian cycles of length n by using the homogeneous degree of
n as all cycles are homogeneous to a self-loop.

If H has no edge, our polynomial is the zero polynomial as we cannot map
any graph G containing an edge to H .

Using Valiant’s Criterion, we can prove membership of Fcycle in VNP
(cf.[2]). ��

3.2 Cliques

Here, we will not use cycles in the hardness proof but work directly with the
clique polynomial defined by Bürgisser. The complete proof is an easy exercise.
In contrast to the other results, we show that computing Fclique is easy for most
choices of H .

Theorem 13. If H has a self-loop then Fclique is VNP-complete under c-reduc-
tions. Otherwise Fclique is in VAC0.

3.3 Trees

As the new characterization of VP had a specific tree structure we want to
look at the general problem. In previous sections our polynomial just contained
the edges of the graph but for this section we need a slightly different model.
If a monomial in our polynomial would select the edges E′ we also select the
vertices {u, v|{u, v} ∈ E′} in our monomial. In essence, we will also select the
vertices forming the edges, giving us polynomials with variables X = {xe|e ∈
E} ∪ {xv|v ∈ V }. It will be clear later why we need this special form.

Theorem 14. If H contains an edge, then F tree is VNP-complete under
c-reductions. Otherwise F tree is in VAC0.

In the proof we construct a tree with vertices and edges as vertices in the graph.
We connect every edge in the original graph to the vertices and then look at
homogeneous components such that every vertex is covered but only n

2 edges
chosen. For space reasons this proof is omitted. But we still want to mention an
interesting fact of the proof. It does not use the fact that the graph class only
contains trees. Instead we only use that it contains trees. Hence the theorem can
be easily extended to other graph classes, provided we look at the homomorphism
polynomials which contain edges and the vertices connected to these edges.

3.4 Outerplanar Graphs

Next we will show a dichotomy for outerplanar graphs. We start with the case
of a triangle homomorphic to H .

Dichotomy Theorems for Homomorphism Polynomials of Graph Classes 289

(a) Triangle graph
(b) Illustration of graph
with buddy vertices

c

p(v) u u′

v

(c)

Fig. 1. Outerplanar Reductions

Lemma 15. If a triangle is homomorphic to H then Fouterplanar is VNP hard
under c-reductions.

Proof. We will reduce to Hamiltonian Cycle by using a construction as in Fig-
ure 1a. This means, we pick an arbitrary vertex c and enforce all n outgoing
edges from this vertex via homogeneous components. We further enforce the
whole graph to have n + n − 3 edges. The graph given is obviously outerpla-
nar but we still need to proof that no other graph fulfilling our criteria can be
outerplanar.

We call the implied order of the graph, the order of the outer circle of vertices
starting from the star and ending at it again without any edges crossing. As
there are two such orderings let us fix an arbitrary one for every graph. Let
us now look at a graph which has not an implied order of the outer vertices.
This implies that there exists a vertex u which has degree 4. With our ordering
every vertex (except c up to and including the later defined vertex v has a single
parent. Furthermore, let v be the first vertex of degree 4 in this order and let
p(v) be the parent of v. Notice that by enforcing all n instead of just n− 2 edges
starting at the center, a parent p(v) �= c has to exist.

Let u, u′ denote the other vertices adjacent to v different than p(v) and c.
As we enforced edges from c to every vertex, we can easily see the K2,3 with
v, c on the one side and u, u′, p(v) on the other side. Hence the graph cannot be
outerplanar. This implies that every vertex except c and the two neighbouring
vertices have degree at most 3. Enforcing the overall number of edges gives us
at least degree 3 and hence implies equality.

Constructing all cycles in a Kn−2 from this is now an easy task. We evaluate
edges which we do not need anymore with the value one and connect the path
in a similar way as in Lemma 12. This gives us again a weight of two for every
monomial which is easily corrected. ��

Theorem 16. If H has an edge then Fouterplanar is VNP-complete under c-
reductions and otherwise trivial.

Proof. To make the graph homomorphic to a single edge we will modify it in
the following way. For every vertex v, except c, we choose a buddy vertex v′. We
enforce the edge between every vertex and his buddy vertex and set the edge
between a buddy vertex and c to zero. Additionally, we set all vertices from v
to any other non buddy vertex to zero and all edges from a buddy vertex to a
different buddy vertex to be zero. In essence this splits every vertex into a left
and right part (see Figure 1b). The hardness proof follows from Lemma 15 by

290 C. Engels

contracting the edge between a vertex and his buddy vertex. Hence the combined
degree of a vertex and his buddy vertex is at most three. Taking the homogeneous
components increases the circuit size by a factor of n.

We know by [19] that checking if a graph is outerplanar is possible in linear
time. With this we can use Valiant’s Criterion to show the membership. ��

3.5 Planar Graphs

a

b

Fig. 2. Planar Gadget

Lemma 17. All graphs isomorphic to Figure 2 with the thick edges fixed and
n+ 2 + 2(n+ 2) edges required are all permutations of the vertices (1, . . . , n).

Proof. Take an embedding in the plane of the graph without any crossings. If we
show that every vertex has at most one edge going to the right, it follows that
the set of vertices from left to right ordered is a permutation of the vertices.

Let us look at the following subgraph. Let v be a vertex with two right suc-
cessors u, u′ and a parent p(v). By construction the parent always exists. We
denote the top and bottom vertex by a and b in our graph. We can now build
a K3,3 minor in the following way. S1 = {v, a, b} and S2 = {u, u′, p′}. As a and
b are connected to every vertex we only need to check that u is connected to
u, u′ and p which is by assumption. This proves that via edge deletion our graph
would have a K3,3 minor if the vertices would not give us a permutation. ��
Theorem 18. If H has an edge then Fplanar is VNP-complete under c-reduc-
tions. Otherwise Fplanar is in VAC0.

Proof. We again glue the second and second to last vertex in our planar gadget
together in a similar manner as in the previous constructions to get all cycles
from a path. Notice, how these are independent of the order and hence the same
for all possible ordering.

However, this graph is not yet homomorphic to a single edge. To accomplish
this, we will use a graph of size 2n. We, as in the outerplanar case, enforce every
vertex, except a and b, to have a buddy vertex uv. Then we subdivide the edge
(a, v) and (b, v) for every original, meaning none buddy, vertex v with a new
vertex v′a, v

′
b respectively. This will give us for every part a square consisting of

the vertices a, v, v′a, uv and the square b, v, v′b, uv.
Now it is easy to see that we can fold a to b which leaves us with a grid of

height one. A grid can be easily folded to one edge. The size of the circuit is
increased by a factor of at most 2n.

As testing planarity is easy, we can use Valiant’s Criterion to show member-
ship. ��

Dichotomy Theorems for Homomorphism Polynomials of Graph Classes 291

3.6 Genus k Graphs

Graph embeddings are one of the major relaxations of planarity. For this we
find a surface of a specific type such that a graph can be embedded in this
surface without any crossing edges. If we want to increase the orientable genus
of a surface by one, we can glue a handle onto it which edges can use without
crossing other edges. We call a graph a genus k graph if there exists a surface of
orientable genus k such that G can be embedded in this surface and k is minimal.
Notice, that a genus 0 graph is planar. While the topic of graph genus is vast, we
will mostly use theorems as a blackbox and only reason about graphs of genus
zero and one. For a detailed coverage of the topic, the reader is referred to [7].

With the planar result in place we can use the simple proof strategy. Construct
a genus k graph where we append the planar construction. In this way the genus
bound will ensure that our planar gadget gives us all permutation of vertices as
long as the connection of these two graphs will not reduce the genus.

1

2 3

4

5

6 7

8

(a) Gadget (b) Two Gadgets (c) Gadget with planar gadget

Fig. 3. Genus k Reduction

Lemma 19. The graph in Figure 3a has genus one.

Proof. We can use the given embedding with one handle for the crossing in the
middle to show an upper bound of one.

We again construct a K3,3 with the sets S1 = {2, 1, 6′}, S2 = {3, 4, 7′} where
6′ is the vertex constructed from contracting the edge (5, 6) and 7′ from the edge
(7, 8). And hence the graph is not planar and has a lower bound for the genus
of one. ��

The next theorem shows how we can glue graphs together to increase the
genus in a predictable way.

Definition 20 ([18]). G is a vertex amalgam of H1, H2 if G is obtained from
disjoint graphs H1 and H2 where we identify one vertex form H1 with one vertex
from H2.

With this we restate a theorem from Miller [18] to compute the genus of a
given graph.

Theorem 21 ([18]). Let γ(G) be the orientable genus of a graph G. LetG be con-
structed from vertex amalgams of graphs G1, . . . , Gn. Then γ(G) =

∑n
i=1 γ(Gi).

This now gives us immediately the result that a graph constructed as in Figure 3b
with k gadgets has genus k.

292 C. Engels

Theorem 22. IfH has an edge thenFgenus(k) isVNP-complete under c-reductions
for any k. Otherwise Fgenus(k) is in VAC0.

Proof. With Theorem 21, Lemma 17 and the construction in Figure 3 we are
almost done. Because we enforced a genus k graph to occur, all graphs that are
homomorphic to the planar gadget have genus zero and hence be planar.

The only thing left to do is to modify our graphs such that they are homo-
morphic to an edge without violating the properties. It is clear that we can fold
our genus one gadgets together. If we then subdivide the edge (1, 3) and (2, 4)
(which keeps our block property) we can first fold 7 to 5 and 3 to 1. Folding
then again 6 to 8 and 2 to 4 we get a square with two dangling edges. The
dangling edges can be folded onto the square and the square is homomorphic to
one edge. This construction increases the size of the circuit at most by a factor
of 14k+2n. As testing for a fixed genus is in NP, we can use Valiant’s Criterion
to show membership. ��

4 Conclusion

We have shown many dichotomy results for different graph classes but some
classes are still open. We want to especially mention the case of our graph class
being the class of trees. It is known that we can use Kirchoff’s Theorem to find
all spanning trees of a given graph. This, however, does not include monomials
of total degree less than n−1 which our polynomials include. From the algebraic
view, the knowledge ends here. In the counting view, where we solve the task
of counting all trees in a graph, a bit more is known. Goldberg and Jerrum [12]
showed that counting the number of subtrees that are distinct up to isomor-
phism is #P-complete. This, combined with our dichotomy for trees including
the vertices, gives us a strong indication that the similar problem is VNP-hard
in the algebraic world.

A different expansion of these results would be the case of bounded treewidth.
As mentioned earlier, in the counting version the case of bounded treewidth is
indeed the most general form and completely characterizes the easy and hard
instances of counting graph homomorphisms. Additionally, recent advancements
showed that graph homomorphisms of a specific type characterize VP. Can
homomorphism from graph classes parameterized by treewidth, similar to the
counting case, be used for a complete characterization of VP and VNP?

An interesting research direction would be the case of disconnected graph
properties. Rugy-Altherre looked at the property that any graph is homomor-
phic to a given graph H . This includes disconnected graphs with connected
components larger than one vertex. We instead only looked at restricted homo-
morphisms where one major connected component exists. It is unclear to the
author if our proofs could be adapted to this case.

Acknowledgments. I want to thank my doctoral advisor M. Bläser for his
guidance. I additionally want to thank R. Curticapean for many discussions
on the counting versions of these problems and B. V. Raghavendra Rao for

Dichotomy Theorems for Homomorphism Polynomials of Graph Classes 293

introducing me to this topic. I also want to thank the anonymous reviewers for
their helpful comments.

References

1. Bulatov, A.A., Grohe, M.: The complexity of partition functions. Theor. Comput.
Sci. 348(2-3), 148–186 (2005)

2. Bürgisser, P.: Completeness and reduction in algebraic complexity theory, vol. 7.
Springer (2000)

3. Cai, J., Chen, X., Lu, P.: Graph homomorphisms with complex values: A dichotomy
theorem. SIAM J. Comput. 42(3), 924–1029 (2013)

4. Chekuri, C., Rajaraman, A.: Conjunctive query containment revisited. Theor.
Comput. Sci. 239(2), 211–229 (2000)

5. Dalmau, V., Jonsson, P.: The complexity of counting homomorphisms seen from
the other side. Theor. Comput. Sci. 329(1-3), 315–323 (2004)

6. Dalmau, V., Kolaitis, P.G., Vardi, M.Y.: Constraint satisfaction, bounded
treewidth, and finite-variable logics. In: Van Hentenryck, P. (ed.) CP 2002. LNCS,
vol. 2470, pp. 310–326. Springer, Heidelberg (2002)

7. Diestel, R.: Graph Theory. Springer, GmbH & Company KG, Berlin and Heidelberg
(2000)

8. Durand, A., Mahajan, M., Malod, G., de Rugy-Althere, N., Saurabh, N.: Homo-
morphism polynomials complete for VP. In: FSTTCS (to appear, 2014)

9. Dyer, M.E., Greenhill, C.S.: The complexity of counting graph homomorphisms
(extended abstract). In: SODA, pp. 246–255 (2000)

10. Freuder, E.C.: Complexity of k-tree structured constraint satisfaction problems.
In: AAAI, pp. 4–9 (1990)

11. Goldberg, L.A., Grohe, M., Jerrum, M., Thurley, M.: A complexity dichotomy for
partition functions with mixed signs. SIAM J. Comput. 39(7), 3336–3402 (2010)

12. Goldberg, L.A., Jerrum, M.: Counting unlabelled subtrees of a tree is #p-complete.
LMS J. Comput. Math. 3, 117–124 (2000)

13. Grohe, M., Thurley, M.: Counting homomorphisms and partition functions. Model
Theoretic Methods in Finite Combinatorics 558, 243–292 (2011)

14. Grohe, M.: The complexity of homomorphism and constraint satisfaction problems
seen from the other side. J. ACM 54(1) (2007)

15. Hell, P., Nešetřil, J.: On the complexity of h-coloring. Journal of Combinatorial
Theory, Series B 48(1), 92–110 (1990)

16. Hell, P., Nešetřil, J.: Graphs and homomorphisms, vol. 28. Oxford University Press,
Oxford (2004)

17. Mahajan, M., Rao, B.V.R.: Small space analogues of valiant’s classes and the lim-
itations of skew formulas. Computational Complexity 22(1), 1–38 (2013)

18. Miller, G.L.: An additivity theorem for the genus of a graph. J. Comb. Theory,
Ser. B 43(1), 25–47 (1987)

19. Mitchell, S.L.: Linear algorithms to recognize outerplanar and maximal outerplanar
graphs. Information Processing Letters 9(5), 229–232 (1979)

20. de Rugy-Altherre, N.: A dichotomy theorem for homomorphism polynomials.
In: Rovan, B., Sassone, V., Widmayer, P. (eds.) MFCS 2012. LNCS, vol. 7464,
pp. 308–322. Springer, Heidelberg (2012)

21. Strassen, V.: Vermeidung von divisionen. Journal für die reine und angewandte
Mathematik 264, 184–202 (1973)

22. Valiant, L.G.: Completeness classes in algebra. In: STOC, pp. 249–261 (1979)

Common Unfolding of Regular Tetrahedron

and Johnson-Zalgaller Solid

Yoshiaki Araki1, Takashi Horiyama2, and Ryuhei Uehara3

1 Japan Tessellation Design Association, Japan
yoshiaki.araki@gmail.com

2 Information Technology Center,
Saitama University, Japan

horiyama@al.ics.saitama-u.ac.jp
3 School of Information Science,

Japan Advanced Institute of Science and Technology, Japan
uehara@jaist.ac.jp

Abstract. Common unfolding of a regular tetrahedron and a Johnson-
Zalgaller solid is investigated. More precisely, we investigate the sets of all
edge unfoldings of Johnson-Zalgaller solids. Among 92 Johnson-Zalgaller
solids, some of edge unfolding of J17 and J84 admit to fold into a regu-
lar tetrahedron. On the other hand, there are no edge unfolding of the
other Johnson-Zalgaller solids that admit to fold into a regular tetrahe-
dron.

1 Introduction

In 1525 the painter and printmaker Albrecht Dürer published a book, translated
as “The Painter’s Manual,” in which he explained the methods of perspective [13].
In the book, he includes a description of many polyhedra, which he presented as
surface unfoldings, are now called “nets.”An edge unfolding is defined by a develop-
ment of the surface of a polyhedron to a plane, such that the surface becomes a flat
polygon bounded by segments that derive from edges of the polyhedron.We would
like an unfolding to possess three characteristics. (1) The unfolding is a single, sim-
ply connected piece. (2) The boundary of the unfolding is composed of (whole)
edges of the polyhedron, that is, the unfolding is a union of polyhedron faces. (3)
The unfolding does not self-overlap, that is, it is a simple polygon.We call a simple
polygon that satisfies these conditions a net for the polyhedron.

Since then, nets for polyhedra have been widely investigated (rich background
can be found in [5], and recent results can be found in [10]). For example, Alexan-
drov’s theorem states that every metric with the global topology and local ge-
ometry required of a convex polyhedron is in fact the intrinsic metric of some
convex polyhedron. Thus, if P is a net of a convex polyhedron Q, then the shape
(as a convex polyhedron) is uniquely determined. Alexandrov’s theorem was
stated in 1942, and a constructive proof was given by Bobenko and Izmestiev
in 2008 [4]. A pseudo-polynomial algorithm for Alexandrov’s theorem, given by
Kane et al. in 2009, runs in O(n456.5r1891/ε121) time, where r is the ratio of

M.S. Rahman and E. Tomita (Eds.): WALCOM 2015, LNCS 8973, pp. 294–305, 2015.
c© Springer International Publishing Switzerland 2015

Common Unfolding of Regular Tetrahedron and Johnson-Zalgaller Solid 295

a

b

fold along
gray lines

fold along
dotted lines

fold along
gray lines

fold along
dotted lines

J17 Regular
tetrahedron J84

Fig. 1. (Left) an edge unfolding of the JZ solid J17, and (right) an edge unfolding
of the JZ solid J84, which are also nets of a regular tetrahedron, respectively. These
polygons are also p2 tilings.

the largest and smallest distances between vertices, and ε is the coordinate rela-
tive accuracy [9]. The exponents in the time bound of the result are remarkably
huge.

Therefore, we have to restrict ourselves to smaller classes of polyhedra to inves-
tigate from the viewpoint of efficient algorithms. In this paper, we consider some
classes of polyhedra that have common nets. In general, a polygon can be a net
of two or more convex polyhedra. Such a polygon is called a common net of the
polyhedra1. Recently, several polygons folding into two different polyhedra have
been investigated (see [12] for comprehensive list). In this context, it is natural
to ask whether there is a common net of two (or more) different Platonic solids.
This question has arisen several times independently, and it is still open (see [5,
Section 25.8.3]). In general nets, there is a polygon that can folds into a cube and
an almost regular tetrahedron with small error ε < 2.89200×10−1796 [12]. On the
other hand, when we restrict ourselves to deal with only edge unfoldings, there
are no edge unfolding of the Platonic solids except a regular tetrahedron that
can fold into a regular tetrahedron [8]. This result is not trivial since a regular
icosahedron and a regular dodecahedron have 43,380 edge unfoldings. In fact, it
is confirmed that all the edge unfolding are nets (i.e., without self-overlapping)
recently [6].

In this paper, we broaden the target of research from the set of five Platonic
solids to the set of 92 Johnson-Zalgaller solids (JZ solids for short). A JZ solid is
a strictly convex polyhedron, each face of which is a regular polygon, but which
is not uniform, i.e., not a Platonic solid, Archimedean solid, prism, or antiprism
(see, e.g., http://mathworld.wolfram.com/JohnsonSolid.html). Recently, the
number of edge unfoldings of the JZ solids are counted [7], however, it has not
been investigatedhowmanynets (without self-overlapping) are there.On the other
hand, the tilings of edge unfoldings of JZ solids are classified [2]. That is, they clas-
sified the class of the JZ solids whose edge unfoldings form tilings. Some tilings are
well investigated in the context of nets; a polygon is a net of a regular tetrahedron
if and only if it belongs to a special class of tilings [1].

1 Note that an edge of an unfolding can passes through a flat face of the polyhedra.

http://mathworld.wolfram.com/JohnsonSolid.html

296 Y. Araki, T. Horiyama, and R. Uehara

J84

 Regular
tetrahedron

fold along
dotted lines

fold along
gray lines

(a)

(b)

Fig. 2. An edge unfolding of the JZ solid J84. It has two different types of p2 tilings,
and hence there are two different ways to fold into a regular tetrahedron.

Fig. 3. An edge unfolding of the JZ solid J17 that can be folded into a regular tetra-
hedron in three different ways

In this paper, we concentrate on common nets of a regular tetrahedron and
the JZ solids. More precisely, we classify the set of edge unfoldings of the JZ
solids such that each of them is also folded into a regular tetrahedron. We first
show that there exists edge unfoldings of some JZ solids that are also nets of a
regular tetrahedra:

Theorem 1. An edge unfolding of the JZ solid J17 and an edge unfolding of
the JZ solid J84 fold into a regular tetrahedron.

We will show that Fig. 1 certainly proves Theorem 1. Next we also compute all
common nets that fold into both of a JZ solid and a regular tetrahedra:2

Theorem 2. (1) Among 13,014 edge unfoldings of the JZ solid J17 [7], there
are 87 nets that fold into a regular tetrahedron, which consist of 78 nets that
have one way of folding into a regular tetrahedron, 8 nets that have two ways of

2 These numbers are counted on the “unlabeled” solids, and congruent unfoldings are
not reduced. See [7] for further details.

Common Unfolding of Regular Tetrahedron and Johnson-Zalgaller Solid 297

Table 1. The JZ solids whose some edge unfoldings are nets of tetramonohedra

Name J1 J8 J10 J12 J13 J14

Image

of �s 1 5 1 0 0 3
of �s 4 4 12 6 10 6

LJi

√√
3

3
+ 1

√
5
√

3
3

+ 1

√√
3
3

+ 3
√
1.5

√
2.5

√√
3 + 3

2

= 1.255 · · · = 1.971 · · · = 1.891 · · · = 1.224 · · · = 1.581 · · · = 1.797 · · ·
Name J15 J16 J17 J49 J50 J51

Image

of �s 4 5 0 2 1 0
of �s 8 10 16 6 10 14

LJi

√
4
√

3
3

+ 2

√
5
√

3
3

+ 5
2

2

√
2
√

3
3

+ 3
2

√√
3

3
+ 5

2

√
3.5

= 2.075 · · · = 2.320 · · · = 1.629 · · · = 1.754 · · · = 1.870 · · ·
Name J84 J86 J87 J88 J89 J90

Image

of �s 0 2 1 2 3 4
of �s 12 12 16 16 18 20

LJi

√
3

√
2
√

3
3

+ 3
√√

3
3

+ 4
√

2
√

3 + 4
√√

3 + 9
2

√
4
√

3
3

+ 5

= 1.732 · · · = 2.038 · · · = 2.139 · · · = 2.270 · · · = 2.496 · · · = 2.703 · · ·

folding into a regular tetrahedron, and 1 net that has three ways of folding into
a regular tetrahedron. (2) Among 1,109 edge unfoldings of the JZ solid J84 [7],
there are 37 nets that fold into a regular tetrahedron, which consist of 32 nets
that have one way of folding into a regular tetrahedron, and 5 nets that have two
ways of folding into a regular tetrahedron.

We note that some nets allow to fold into a regular tetrahedron in two or three
different ways of folding. A typical example that has two ways of folding is shown
in Fig. 2. We can tile the net of the JZ solid J84 in two different ways, hence
we can fold a regular tetrahedron in two different ways according to the tilings.
The unique net that has three ways of folding is shown in Fig. 3.

Among 92 JZ solids, Akiyama et al. found that 18 JZ solids have edge
unfoldings that are also tilings [2]. We will show that all of them are also p2
tiling, which imply that they can be folded into tetramonohedra. As shown in
Theorem 1, two of them can be folded into regular tetrahedra. On the other
hand, the other 16 JZ solids do not have such edge unfoldings:

Theorem 3. Except J17 and J84, there is no other JZ solid such that its edge
unfolding is a net of a regular tetrahedron.

Therefore, we classify the set of edge unfoldings of the JZ solids by the foldability
of a regular tetrahedron.

298 Y. Araki, T. Horiyama, and R. Uehara

2 Preliminaries

We first show some basic results about unfolding of a polyhedron.

Lemma 1 ([5, Sec. 22.1.3]). All vertices of a polyhedron X are on the bound-
ary of any unfolding of X.

Let P be a polygon on the plane, and R be a set of four points (called rotation
centers) on the boundary of P . Then P has a tiling called symmetry group p2 (p2
tiling, for short) if P fills the plane by the repetition of 2-fold rotations around
the points in R. The filling should contain no gaps nor overlaps. The rotation
defines an equivalence relation on the points in the plane. Two points p1 and p2
are mutually equivalent if p1 can be moved to p2 by the 2-fold rotations. More
details of p2 tiling can be found, e.g., in [11]. Based on the notion of p2 tiling,
any unfolding of a tetramonohedron3 can be characterized as follows:

Theorem 4 ([1,3]). P is an unfolding of a tetramonohedron if and only if (1)
P has a p2 tiling, (2) four of the rotation centers consist in the triangular lattice
formed by the triangular faces of the tetramonohedron, (3) the four rotation
centers are the lattice points, and (4) no two of the four rotation centers belong
to the same equivalent class on the tiling.

We can obtain the characterization of the unfolding of a regular tetrahedron if
each triangular face in Theorem 4 is a regular triangle. By Theorem 4, Theorem
1 is directly proved by Fig. 1. (Of course it is not difficult to check these nets in
Fig. 1 by cutting and folding directly.)

In the classification in [2], they show only p1 tilings for the JZ solids J84,
J86 and J89. However, they also have edge unfoldings that form p2 tilings as
shown in Fig. 1 (J84) and Fig. 4 (J86 and J89), and hence they can fold into
tetramonohedra.

J86 J89

Fig. 4. p2 tilings by (left) an edge unfolding of JZ solid J86, and (right) an edge
unfolding of JZ solid J89

Let LJi be the length of an edge of a regular tetrahedron TJi that has the
same surface area of the JZ solid Ji. We assume that each face of Ji is a regular
polygon that consists of edges of unit length. Thus it is easy to compute LJi from
its surface area of Ji as shown in Table 1. If an edge unfolding PJi of the JZ

3 A tetramonohedron is a tetrahedron that consists of four congruent triangular faces.

Common Unfolding of Regular Tetrahedron and Johnson-Zalgaller Solid 299

v0

v1

v2v3v4v5v6

v7

v8v9
v10

v11

v12v13
v14

v15

v16v17
v18

v19

v20v21v22v23v24

v25

v26v27
v28

v29

v30v31
v32

v33

v34v35

v0

(a) (b) (c)

Fig. 5. (a) a spanning tree of the JZ solid J17, (b) its corresponding unfolding, and
(c) a p2 tiling around the rotation centers

solid Ji can be folded into a regular tetrahedron, the tetrahedron is congruent to
TJi since they have the same surface area. Moreover, by Theorem 4, PJi is a p2
tiling, and its four of the rotation centers form the regular triangular lattice filled
by regular triangles of edge length LJi. Let c1 and c2 be any pair of the rotation
centers of distance LJi. Then, by Lemma 1, c1 and c2 are on boundary of PJi

and P ′
Ji

for some polygons PJi and P ′
Ji
, respectively. By the same extension of

Theorem 25.3.1 in [5] used in [8, Lemma 8], we can assume that c1 and c2 are
on the corners or the middlepoints on some edges of regular faces of JZ solids Ji
without loss of generality. Summarizing them, we obtain the following lemma:

Lemma 2. Assume that a polygon PJi is obtained by an edge unfolding of a JZ
solid Ji. If PJi can be folded into a regular tetrahedron TJi, PJi forms a p2 tiling
T . Let c1 and c2 be any two rotation centers on T such that the distance between
c1 and c2 is LJi , equal to the length of an edge of TJi . Then, the vertices c1 and
c2 are on the corners or the middlepoints on edges of unit length in T .

3 The JZ Solids J17 and J84

In this section, we describe an algorithm to obtain Theorem 2. By applying the
technique in [6], we can enumerate a set of spanning trees of any polyhedron, where
a spanning tree is obtained as a set of edges. By traversing each spanning tree, we
can obtain its corresponding unfolding PJi . Since all edges of a JZ solid have the
same length, PJi can be represented by a cyclic list CJi of its interior angles aj ,
where vertices vj of PJi correspond to the corners or the middlepoints on some
edges of the original JZ solid. Since a spanning tree has n − 1 edges, each edge
appears twice as the boundary of PJi , and each edge is broken into two halves, PJi

has 4(n−1) vertices. Fig. 5 illustrates (a) a spanning tree of the JZ solid J17, and (b)
its corresponding unfolding, which can be represented byCJi = {60, 180, 120, 180,
180, 180, 60, 180, 300, 180, 60, 180, 300, 180, 60, 180, 300, 180, 60, 180, 120, 180, 180,
180, 60, 180, 300, 180, 60, 180, 300, 180, 60, 180, 300, 180}.

300 Y. Araki, T. Horiyama, and R. Uehara

Now, we use Theorem 4 and check if each edge unfolding is a p2 tiling or not.
We can use the similar idea with the algorithm for gluing borders of a polyhedron
(see [5, Chap. 25.2]): around each rotation center, check if the corresponding
points make together 360◦. If not, we dismiss this case, and otherwise, we obtain
a gluing to form a regular tetrahedron.

We first consider the JZ solid J17. In this case, we can determine the length of
each edge of the triangular lattice equals to 2, since each face of the (potential)
regular tetrahedron consists of four unit tiles. We can check if each unfolding of
the JZ solid J17 can be folded into a regular tetrahedron as follows:

1. For each pair of vj1 and vj2 , suppose they are rotation centers, and check if
the distance between them is 2.

2. Obtain a path vj′1–vj1–vj′′1 which is glued to vj′′1 –vj1–vj′1 by a 2-fold rotation
around vj1 . So do a path vj′2–vj2–vj′′2 for vj2 .

3. Replace interior angles of aj′1 , . . . , aj1 , . . . , aj′′1 in CJi with angle a′j1 , where
a′j1 = aj′1 + aj′′1 if j′1 �= j′′1 and a′j1 = aj1 +180 if j′1 = j′′1 = j1. So do aj′2 , . . . ,
aj′′2 . Let C

′
Ji

be the resulting cyclic list.
4. For each pair of vj3 and vj4 , suppose they are rotation centers, and check if

a path vj3–vj4 in C′
Ji

is glued to the remaining path vj4–vj3 .
5. Check if vj3 and vj4 are the lattice points of the regular triangular lattice

defined by vj1 , vj2 , and check if no two of vj1 , vj2 , vj3 and vj4 belong to the
same equivalent class.

In Step 1, since every face of the JZ solid J17 is a triangle, aj is always a
multiple of 60. The relative position of vj from v0 can be represented as a linear
combination of two unit vectors u and v that make a 60◦ angle. Thus, we check
if vector −−−→vj1vj2 is one of ±2u, ±2v, ±2(u− v) in this step.

In Step 2, two vertices vj′1 and vj′′1 are obtained as vj1−k and vj1+k with
an integer k satisfying aj1−k + aj1+k < 360 and aj1−k′ + aj1+k′ = 360 for
all 0 ≤ k′ < k. In Fig. 5, v1 and v7 are supposed to be rotation centers,
and paths v0–v1–v2 and v4–v7–v10 are glued to v2–v1–v0 and v10–v7–v4, respec-
tively. By rotating PJi around vj1 and vj2 repeatedly, we obtain a horizontally
infinite sequence of PJi as shown in Fig. 5(c), whose upper and lower bor-
ders are the repetition of the path denoted in double line. The list of the in-
terior angles along the double line is obtained as C′

Ji
in Step 3. In Fig. 5(c),

C′
Ji

is {180, 180, 240, 180, 300, 180, 60, 180, 300, 180, 60, 180, 120, 180, 180, 180, 60,
180, 300, 180, 60, 180, 300, 180, 60, 180, 300, 180}.

In Step 4, we check if aj3 = aj4 = 180 holds and aj3−k + aj3+k = 360 for
other gluing of vertices vj3−k and vj3+k in C′

Ji
. If PJi passes all checks in Steps

1–4, PJi has a p2 tiling with rotation centers vj1 , vj2 , vj3 and vj4 . In Step 5,
we check if the four points meet Theorem 4(2)–(4) and if each triangular face
is a regular triangle. As in Step 1, this check can be done from the positions of
vertices represented as a linear combination of u and v.

For the JZ solid J84, we can check in the same way by letting the length
of the triangular lattice equal to

√
3, and thus, in Step 1, we check if vector

−−−→vj1vj2 is one of ±(u+ v), ±(2u− v), ±(2v − u). The complete catalogue of 87
and 37 nets of the JZ solids J17 and J84, respectively, that fold into a regular

Common Unfolding of Regular Tetrahedron and Johnson-Zalgaller Solid 301

tetrahedron is given in http://www.al.ics.saitama-u.ac.jp/horiyama/res

earch/unfolding/common/.

4 The Other JZ Solids

In this section, we prove Theorem 3. Combining the results in [2] and the tilings
in Fig. 1 and Fig. 4, the set J of JZ solids whose edge unfoldings can be p2
tiling is J = {J1, J8, J10, J12, J13, J14, J15, J16, J17, J49, J50, J51, J84, J86,
J87, J88, J89, J90}. In other words, some edge unfoldings of the JZ solids in J
can be folded into tetramonohedra. Among them, J17 and J84 allow to fold into
regular tetrahedra from their edge unfoldings as shown in Fig. 1. We will show
that the other JZ solids do not. Hereafter, we only consider the JZ solids in J .
Then each face is either a unit square or a unit triangle. We call each of them a
unit tile to simplify. We consider the rotation centers form the regular triangular
lattice of size LJi. Let c1 and c2 be any pair of the rotation centers of distance
LJi . We use the fact that the distance between c1 and c2 is equal to LJi , and
show that any combination of unit tiles cannot achieve the length.

Intuitively, two points c1 and c2 are joined by a sequence of edges of unit
length that are supported by unit tiles in T . Thus, by Lemma 2, we can observe
that there exists a linkage LJi = (p0, q1, p1, q2, p2, . . . , qk, pk) such that (1) c1 is
on either p0 or q1, (2) c2 is on either qk or pk, (3) the length of pipi+1 is 1, (4) the
length of pi−1qi and qipi is 1/2 (in other words, qi is the center point of pi−1pi),
(5) each angle at qi (1 ≤ i ≤ k) is 180◦, (6) each angle at pi (1 ≤ i ≤ k − 1)
is in {60◦, 90◦, 120◦, 150◦, 180◦, 210◦, 240◦, 270◦, 300◦}, and (7) the linkage is not
self-crossing. (See [5] for the definition of the notion of linkage.) Without loss
of generality, we suppose that LJi has the minimum length among the linkages
satisfying the conditions from (1) to (7). By the minimality, we also assume that
(8) pi �= pj for each i �= j, and (9) if |i− j| > 1, the distance between pi and pj
is not 1 (otherwise, we obtain a shorter linkage).

Therefore, by Theorem 4, for sufficiently large k, if all possible pairs c1 and
c2 on the linkages satisfying the conditions from (1) to (9) do not achieve the
required distance LJi , any edge unfolding of the JZ solid Ji cannot be folded
into a corresponding regular tetrahedron TJi . We show an upper bound of k:

Theorem 5. Let J be the set {J1, J8, J10, J12, J13, J14, J15, J16, J17, J49,
J50, J51, J84, J86, J87, J88, J89, J90} of the JZ solids that have some edge
unfoldings which are also p2 tilings. For some Ji ∈ J , suppose that the linkage
LJi = (p0, q1, p1, q2, p2, . . . , qk, pk) defined above exist. Then k ≤ 10.

Proof. By simple calculation, LJi takes the maximum value
√
4
√
3/3 + 5 =

2.703 · · · for J90 in J . Thus the length of the line segment c1c2 is at most
2.703 · · · .

Now we assume that the line segment c1c2 passes through a sequence C1C2 · · ·
Ch of unit tiles in this order. That is, the line segment c1c2 has nonempty
intersection with each of Ci in this order. If c1c2 passes an edge shared by two

302 Y. Araki, T. Horiyama, and R. Uehara

Ci-1 Ci+1
Ci

c1

c2

Fig. 6. The shortest way to pierce
three consecutive unit tiles

Ch

c2

Fig. 7. The shortest intersection
with the last unit tile Ch

unit tiles, we take arbitrary one of two in the sequence. We consider the minimum
length of the part of c1c2 that intersects three consecutive unit tiles Ci−1CiCi+1

in the sequence. Since they are unit triangles and/or squares, three unit tiles
make greater than or equal to 180◦ at a vertex. Therefore the minimum length is
achieved by the three consecutive triangles arranged in Fig. 6, and in this case,
the length is greater than or equal to

√
3/2 = 0.866 · · · . Thus, if c1c2 passes

through nine unit tiles, the intersection has length at least 3
√
3/2 = 2.598 · · · .

On the other hand, the last point c2 is on the vertex or a midpoint of an edge of
the last unit tile Ch. Then the intersection of c1c2 and Ch has at least

√
3/4 =

0.433 · · · (Fig. 7). Since 3
√
3/2 +

√
3/4 = 3.03 · · · > 2.703, c1c2 passes through

at most 9 unit tiles.

c1 c2

p5

p6 p7

p8

p9p4

Fig. 8. Unit square can contribute three edges to the linkage

Now we turn to the linkage LJi = (p0, q1, p1, q2, p2, . . . , qk, pk) supported by
the unit tiles C1C2 · · ·Ch with h ≤ 9. We consider the number of edges of a
unit tile that contributes to LJi . Locally, the worst case is that a unit square
that contributes three edges to LJi (Fig. 8). However, in this case, the length of
the intersection of the square and c1c2 has length at least 1. Therefore, further
analysis for the remaining length at most 2.703 · · · − 1 = 1.703 · · · , and we can
confirm that this case does not give the worst value of k. In the same reason, if
c1c2 passes through an entire edge of length 1, it does not give the worst value
of k. Next considerable case is that a unit tile Ci contributes two edges to LJi

Common Unfolding of Regular Tetrahedron and Johnson-Zalgaller Solid 303

independent from Ci−1 and Ci+1. That is, c1c2 passes through two vertices of
Ci. Then Ci is not a unit triangle since we can replace two edges by the third
edge and obtain a shorter linkage. Thus Ci is a unit square, and c1c2 passes
through the diagonal of Ci since two edges are not shared by Ci−1 and Ci+1.
Then the intersection of c1c2 and Ci has length

√
2 = 1.414 · · · , and hence this

case does not give the worst value of k again. Therefore, in the worst case, each
unit tile contributes exactly two edges to LJi , and each edge is shared by two
consecutive unit tiles in the sequence C1C2 · · ·Ch, where h ≤ 9. Therefore, the
linkage consists of at most 10 unit length edges, that is, k ≤ 10. ��

Now, for k ≤ 10, if all possible pairs c1 and c2 on the linkages satisfying
the conditions from (1) to (9) do not realize any distance LJi in Table 1, any
edge unfolding of the JZ solid Ji cannot be folded into a corresponding regular
tetrahedron TJi . However, the number of possible configurations of the linkage
is still huge. To reduce the number, we use the following theorem:

Theorem 6. Let J be the set {J1, J8, J10, J12, J13, J14, J15, J16, J17, J49,
J50, J51, J84, J86, J87, J88, J89, J90} of the JZ solids that have some edge
unfoldings which are also p2 tilings. For some Ji ∈ J , suppose that the linkage
LJi = (p0, q1, p1, q2, p2, . . . , qk, pk) defined above exist. Let I be the set of integers
and I+1/2 be the set defined by I ∪ {i + 1/2 | i ∈ I}. Let u1 = (1, 0), u2 =

(
√
3/2, 1/2), u3 = (1/2,

√
3/2), u4 = (0, 1), u5 = (−1/2,

√
3/2), and u6 =

(−
√
3/2, 1/2) be six unit length vectors (Fig. 9). Then there are four integers

k2, . . . , k5 in I and two numbers k1, k6 in I+1/2 such that
∑6

i=1 |ki| ≤ 10 and

c2 = c1 +
∑6

i=1 kiui.

Proof. When we regard each edge in the linkage as a unit vector, since vectors
are commutative, we can swap two edges without changing the coordinate of c2
(see Fig. 10; one can find the same idea in, e.g., [5, Section 5.1.1]). Thus we have
the theorem. ��

Corollary 1. For the two points c1 and c2 with c2 = c1+
∑6

i=1 kiui in Theorem

6, There are four numbers h1, h2, h3, h4 in I+1/2 such that c2 = c1 +
∑4

i=1 hiui.

u1

u2

u3
u4u5

u6

Fig. 9. Six unit vec-
tors

c1

c2

v1

v2

v3

v4

v5

v6

c2

c1

v1

v2

v3+v6

v4+v7

v5

c2

c1

(a) (b) (c)v7

Fig. 10. Linkage as the set of unit vectors: (a) given tiling
and linkage, (b) corresponding vectors, and (c) reorganized
vectors

304 Y. Araki, T. Horiyama, and R. Uehara

Proof. Since u6 = u4 −u2 and u5 = u3 −u1, we can remove two vectors from
the equation. Precisely, we have

∑6
i=1 kiui = (k1 − k5)u1 + (k2 − k6)u2 + (k3 +

k5)u3 + (k4 + k4)u4. ��

Now we prove the main theorem in this section:

Proof. (of Theorem 3) First we consider two points c1 and c2 given in Corollary

1: c2 = c1 +
∑4

i=1 hiui for some four numbers h1, h2, h3, h4 in I+1/2. Then

|c1c2| 2 = L2
Ji

= h2
1+h2

4+h1h3+h2h4+13(h2
2+h2

3)/4+2
√
3(h1h2+h2h3+h3h4).

Now we fix some JZ solid Ji for some i. Let mi and ni be the number of
triangles and squares in Ji, respectively. Then we have L2

Ji
= mi/4 +

√
3ni/3.

By the condition that h1, h2, h3, h4 ∈ I+1/2, we can observe that

mi = 4h2
1 + 4h2

4 + 4h1h3 + 4h2h4 + 13h2
2 + 13h2

3 (1)

ni = 6(h1h2 + h2h3 + h3h4) (2)

From the second equation, we can observe that ni is a multiple of 3. Thus the
JZ solids J1, J8, J10, J15, J16, J49, J50, J86, J87, J88, and J90 have no edge
unfolding that is a net of a regular tetrahedron.

For the remaining JZ solids J12 (n = 0,m = 6), J13 (n = 0,m = 10), J14
(n = 3,m = 6), J51 (n = 0,m = 14), and J89 (n = 3,m = 18), we check
them by a brute force. More precisely, we generate all possible k1, k2, . . . , k6 ∈
[−10..10] ∩ I+1/2 with

∑6
i=1 |ki| ≤ 10, and compute h1 = k1 − k6, h2 = k2 −

k5, h3 = k3 + k6, h4 = k4 + k5, and n and m by the above equations. Then no
6-tuple (k1, k2, . . . , k6) generates any pair of (n = 0,m = 6), (n = 0,m = 10),
(n = 3,m = 6), (n = 0,m = 14), and (n = 3,m = 18) 4.

Therefore, in J , only J17 and J84 have feasible solutions LJ17 = 2 and LJ84 =√
3 in the distances. ��

5 Convex Polyhedra with Regular Polygonal Faces

According to the classification in [2], there are 23 polyhedra with regular polyg-
onal faces whose edge unfoldings allow tilings. Among them, 18 JZ solids have
been discussed in Section 4, and four Platonic solids were discussed in [8]. The
remaining one is hexagonal antiprism that consists of two regular hexagons and
12 unit triangles. By splitting each regular hexagon into six unit triangles, which
is called coplanar deltahedron, we can show the following theorem using the same
argument above:

Theorem 7. The hexagonal antiprism has no edge unfolding that can fold into
a regular tetrahedron.

4 From the viewpoint of the programming, we introduce integer variables k′
1 = 2k1,

k′
2 = 2k2, . . ., and k′

6 = 2k6, and compute 4m and 4n. Then all computation can be
done on integers. Hence we can avoid computational errors, and the program runs
in a second.

Common Unfolding of Regular Tetrahedron and Johnson-Zalgaller Solid 305

Thus we can conclude as follows:

Corollary 8. Among convex polyhedra with regular polygonal faces, including
the Platonic solids, the Archimedean solids, and the JZ solids, regular prisms,
and regular anti-prisms, only the JZ solids J17 and J84 (and regular tetrahedron)
admit to fold into regular tetrahedra from their edge unfoldings.

6 Concluding Remarks

In this paper, we show that the JZ solids J17 and J84 are exceptionally in the
sense that their edge unfoldings admit to fold into regular tetrahedra. Especially,
some edge unfoldings can fold into a regular tetrahedron in two or three different
ways. In this research, the characterization of nets by tiling (Theorem 4) plays an
important role. In general, even the decision problem that asks if a polyhedron
can be folded from a given polygon is quite difficult problem [5, Chapter 25].
More general framework to solve the problem is future work.

References

1. Akiyama, J.: Tile-Makers and Semi-Tile-Makers. The Mathematical Association of
Amerika, Monthly 114, 602–609 (2007)

2. Akiyama, J., Kuwata, T., Langerman, S., Okawa, K., Sato, I., Shephard, G.C.:
Determination of All Tessellation Polyhedra with Regular Polygonal Faces. In:
Akiyama, J., Bo, J., Kano, M., Tan, X. (eds.) CGGA 2010. LNCS, vol. 7033,
pp. 1–11. Springer, Heidelberg (2011)

3. Akiyama, J., Nara, C.: Developments of Polyhedra Using Oblique Coordinates. J.
Indonesia. Math. Soc. 13(1), 99–114 (2007)

4. Bobenko, A.I., Izmestiev, I.: Alexandrov’s theorem, weighted Delaunay triangula-
tions, and mixed volumes. arXiv:math.DG/0609447 (February 2008)

5. Demaine, E.D., O’Rourke, J.: Geometric Folding Algorithms: Linkages, Origami,
Polyhedra. Cambridge University Press (2007)

6. Horiyama, T., Shoji, W.: Edge unfoldings of Platonic solids never overlap. In: Proc.
CCCG 2011, pp. 65–70 (2011)

7. Horiyama, T., Shoji, W.: The Number of Different Unfoldings of Polyhedra. In:
Cai, L., Cheng, S.-W., Lam, T.-W. (eds.) ISAAC 2013. LNCS, vol. 8283,
pp. 623–633. Springer, Heidelberg (2013)

8. Horiyama, T., Uehara, R.: Nonexistence of Common Edge Developments of Regular
Tetrahedron and Other Platonic Solids. In: Proc. China-Japan Joint Conference
on Computational Geometry, Graphs and Applications (CGGA 2010), pp. 56–57
(2010)

9. Kane, D., Price, G.N., Demaine, E.D.: A pseudopolynomial algorithm for Alexan-
drov’s Theorem. In: Dehne, F., Gavrilova, M., Sack, J.-R., Tóth, C.D. (eds.) WADS
2009. LNCS, vol. 5664, pp. 435–446. Springer, Heidelberg (2009)

10. O’Rourke, J.: How to Fold It: The Mathematics of Linkage, Origami and Polyhedra.
Cambridge University Press (2011)

11. Schattschneider, D.: The plane symmetry groups: their recognition and notation.
American Mathematical Monthly 85, 439–450 (1978)

12. Shirakawa, T., Horiyama, T., Uehara, R.: Construct of Common Development of
Regular Tetrahedron and Cube. In: Proc. EuroCG 2011, pp. 47–50 (2011)

13. Strauss, W.S., Dürer, A.: The Painter’s Manual. Abaris Books (1977)

Threshold Circuits for Global Patterns

in 2-Dimensional Maps

Kei Uchizawa1, Daiki Yashima2, and Xiao Zhou2

1 Faculty of Engineering, Yamagata University,
Jonan 4-3-16, Yonezawa-shi Yamagata, 992-8510, Japan

2 Graduate School of Information Sciences, Tohoku University,
Aramaki-aza Aoba 6-6-05, Aoba-ku, Sendai, 980-8579, Japan

uchizawa@yz.yamagata-u.ac.jp

yashima.daiki@ec.ecei.ac.jp

zhou@ecei.tohoku.ac.jp

Abstract. In this paper, we consider a biologically-inspired Boolean
function, called Pn

D, which models a task for detecting specific global
spatial arrangements of local visual patterns on a 2-dimensional map. We
prove that Pn

D is computable by a threshold circuit of size O(
√
n log n),

which is improvement on the previous upper bound O(n). We also show
that the size of our circuit is almost optimal up to logarithmic factor: we
show that any threshold circuit computing Pn

D needs size Ω(
√
n/ log n).

1 Introduction

A threshold circuit is a combinatorial circuit consisting of logic gates computing
linear threshold functions, and is one of the most well-studied computational
models in circuit complexity theory. Through the decades, threshold circuits
receive much attention in the literature. It is known that threshold circuits
have surprising computational power: polynomial-size and even constant-depth
threshold circuits are able to compute a variety of Boolean functions includ-
ing basic arithmetic operations such as ADDITION, ITERATED ADDITION,
MULTIPLICATION, DIVISION, SORTING, etc. ([3, 5–8]).

On the other hand, there is another aspect of threshold circuit: a threshold
circuit is a theoretical model of a neural network in the brain ([3, 4, 8]). It is
known that a threshold gate, the basic element of a threshold circuit, captures
a basic input-output characteristic of a biological neuron. As information pro-
cessing of a neural network is carried out by neurons emitting electrical signals,
computation of a threshold circuit is carried out by gates outputting Boolean
values. In the line of research, we expect to make a step for understanding how a
neural network realize an information processing (e.g., sensory processing) with
high speed and low energy consumption.

However, classical circuit complexity theory offers little insight into the ques-
tion; one of the reasons, as pointed out in the paper [1], is because focus of
circuit complexity theory lies on a different set of computational problems such

M.S. Rahman and E. Tomita (Eds.): WALCOM 2015, LNCS 8973, pp. 306–316, 2015.
c© Springer International Publishing Switzerland 2015

Threshold Circuits for Global Patterns in 2-Dimensional Maps 307

as the arithmetic operations mentioned above. Motivated by this reason, Leg-
enstein and Maass [1] proposed several Boolean functions that model particular
tasks for visual information processing. Among such functions, we focus on a
Boolean function Pn

D modeling the following task (See Section 2.2 for the precise
definition). Suppose local feature detectors are arranged in 2-dimensional map
that reflects spatial relationship in the outside world, where each of the local
feature detectors is able to detect the presence of a salient local feature, such
as a center which emits higher intensity than its surrounding, line segment in
a certain direction, or even more complex local visual patterns like an eye or a
nose. Then we wish to detect a global pattern arrangements consisting of the
local features such as the letter “T,” or human face as an ultimate goal. Pn

D is
a simplified variation of the pattern detection problem. It was shown in [1] that
Pn
D is computable by such a threshold circuit of size (i.e., the number of gates)

O(n) and depth O(log n) that is suitable for VLSI implementation: their circuit
consists of O(n) Boolean gate of fan-in 2 and fan-out 2 together with threshold
gates of fan-in O(log n), and moreover, its total wire length, one of the most
influential complexity measures for the size of VLSI, is O(n).

While the circuit given by Legenstein and Maass is optimized to and quite
suitable for VLSI implementation, the minimum size of threshold circuits com-
puting Pn

D is of independent interest. We can prove, as main result of this paper,
that Pn

D is computable by a threshold circuit of size O(
√
n logn) and depth

O(
√
n). Thus, by considering unbounded fan-in, fan-out and depth, we improve

on the size of threshold circuits computing Pn
D. We obtain the result by con-

structing the desired circuit, and hence our proof exhibit the explicit structure
of the circuit. As a complement to the result, we also show that any thresh-
old circuit computing Pn

D requires size Ω(
√
n/ logn). Thus, our construction is

optimal up to a polylogarithmic factor.
The rest of the paper is organized as follows. In Section 2, we define some

terms on threshold circuits, and give formal definition of Pn
D. In Section 3, we

show that Pn
D is computable by a threshold circuit of

√
n logn gates. In Section

4, we provide the
√
n/ logn lower bound. In Section 5, we conclude with some

remarks.

2 Definitions

2.1 Threshold Circuits

A threshold gate with an arbitrary number z of inputs computes a linear thresh-
old function with z inputs: for every input x = (x1, x2, . . . , xz) ∈ {0, 1}z, the
output g(x) of a threshold gate g with integer weights w1, w2, . . . , wz and thresh-
old t is defined as

g(x) = sign

(
z∑

i=1

wixi − t

)
where, for any number η, sign(η) = 1 if η ≥ 0, sign(η) = 0, otherwise.

308 K. Uchizawa, D. Yashima, and X. Zhou

n

i

nj

i, j

j

i

Fig. 1. Arrangement of indices of x = (x0,0, x0,1, . . . , x√
n−1,

√
n−1) ∈ {0, 1}n and y =

(y0,0, y0,1, . . . , y√n−1,
√

n−1) ∈ {0, 1}n on the 2-dimensional grid

A threshold circuit C is a combinatorial circuit of threshold gates, and is
defined by a directed acyclic graph. Let n be the number of input variables
to C. Then each node of in-degree 0 in C corresponds to one of the n input
variables x1, x2, . . . , xn, and the other nodes correspond to threshold gates. The
size s of a threshold circuit is defined to be the number of threshold gates in the
circuit.

Let C be a threshold circuit with n input variables x1, x2, . . . , xn, and have
size s. Let g1, g2, . . . , gs be the gates in C, where g1, g2, . . . , gs are topologically
ordered with respect to the underlying directed acyclic graph of C. We regard the
output of gs as the output C(x) of C, and call the gate gs the top gate of C. The
depth d of C is defined to be the number of gates on the longest path to the top
gate g. A threshold circuit C computes a Boolean function f : {0, 1}n → {0, 1}
if C(x) = f(x) for every input x = (x1, x2, . . . , xn) ∈ {0, 1}n.

2.2 Function Pn
D

Let n be a positive integer. In the rest of the paper, we assume that n is a square
number. Let x = {x0,0, x0,1, . . . , x√

n−1,
√
n−1} ∈ {0, 1}n be input variables that

are arranged in a 2-dimensional square grid and represent detectors for a partic-
ular local feature; and, similarly, let y = {y0,0, y0,1, . . . , y√n−1,

√
n−1} ∈ {0, 1}n

be input variables that are arranged in the square grid and represent detectors
for another particular local feature. (See Fig. 1.)

The function Pn
D represents a simple task relating global patterns concerning

the two local features, and is defined as

Pn
D(x,y) =

{
1 if ∃i, j, k, l : xi,j = yk,l = 1 such that i > k and j < l;
0 otherwise

for every pair ofx = (x0,0, x0,1, . . . , x√
n−1,

√
n−1).Thus,more intuitively,Pn

D(x,y)
= 1 if and only if there exists a pair of locations xi,j and yk,l such that (i) xi,j =
yk,l = 1, and (ii) xi,j is below and to the left of yk,l (See Fig. 2).

Threshold Circuits for Global Patterns in 2-Dimensional Maps 309

x y

Fig. 2. An input assignment (x, y) for P 7
D, where (a) depicts x and (b) does y. Note

that we omit zeros in x and y for simplicity. In this case, P 6
D(x,y) = 1, since x3,1 = 1

and y1,2 = 1 (the corresponding locations are shaded).

3 Construction of Circuit

In this section we give an upper bound on the size of threshold circuits computing
Pn
D, as in the following theorem.

Theorem 1. Pn
D is computable by a threshold circuit of size O(

√
n logn) and

depth O(
√
n).

We prove the theorem by construction. Before proceeding to giving the explicit
construction, we define some terms, and obtain a useful lemma. Throughout the
proof, we denote an arbitrary pair of inputs to Pn

D by

x = (x0,0, x0,1, . . . , x√
n−1,

√
n−1) ∈ {0, 1}n

and

y = (y0,0, y0,1, . . . , y√n−1,
√
n−1) ∈ {0, 1}n.

[Terms and idea]
For each j, 0 ≤ j ≤

√
n− 1, we consider the jth column of x (i.e., x0,j , x1,j , . . . ,

x√
n−1,j) and define α∗

j (x) as the maximum index i satisfying xi,j = 1:

α∗
j (x) = max{i | xi,j = 1};

if there is no index i satisfying xi,j = 1, we define α∗
j (x) = 0. Similarly, for

each j, 0 ≤ j ≤
√
n− 1, we below define β∗

j . Consider the lth column of y (i.e.,
y0,l, y1,l, . . . , y√n−1,l), and let βj be the integer obtained by the minimum index
k satisfying yk,l = 1:

βl(y) =
√
n− 1−min{k | yk,l = 1};

if there is no index k satisfying yk,l = 1, we define βl(y) = 0.

310 K. Uchizawa, D. Yashima, and X. Zhou

Using β1(y), β2(y), . . . , β√
n−1(y), we now inductively define β∗

l for l, 0 ≤ l ≤√
n− 1 as follows:

β∗√
n−1(y) = β√

n−1(y);

and, for each l,
√
n− 2 ≥ l ≥ 0,

β∗
l (y) = max

(
βl(y), β

∗
l+1(y)

)
.

Clearly, β∗
l (y) is the maximum over βl(y), βl+1(y), . . . , β√

n−1(y).
The following claim shows that we can determine Pn

D(x,y) by the values of
α∗
j (x) and β∗

l (y), 0 ≤ j, l ≤
√
n− 1.

Lemma 1. Pn
D(x,y) = 1 if and only if there exists a pair of indices j and l

such that

j = l − 1 (1)

and

√
n ≤ α∗

j (x) + β∗
l (y). (2)

Proof. (⇐) Suppose there exists a pair of indices j and l satisfying (1) and (2).
Let

i = α∗
j (x) and k =

√
n− 1− β∗

l (y). (3)

By the definition of α∗
j and β∗

l ,

xi,j = 1 (4)

and there exists an index l′, l ≤ l′ ≤
√
n− 1, satisfying

yk,l′ = 1. (5)

Consider then the indices i, j, k, l′. Since (2) and (3) imply that
√
n ≤ i +√

n− 1− k, it holds that

i > k. (6)

Furthermore, we have by (1) that j = l − 1, and hence

j < l ≤ l′. (7)

Thus, by (4)−(7), Pn
D(x,y) = 1 holds.

(⇒) Suppose Pn
D(x,y) = 1, that is, there exist indices i, j, k and l such that

xi,j = 1 and yk,l = 1 satisfying

i > k (8)

Threshold Circuits for Global Patterns in 2-Dimensional Maps 311

and

j < l. (9)

Let l′ = j+1. Then j = l′−1. Since (9) holds, we have l′ ≤ l. Then, by definition,
we have i ≤ α∗

j (x) and
√
n− 1− k ≤ β∗

l′(y), and hence it holds that

√
n+ (i − k − 1) ≤ α∗

j (x) + β∗
l′(y).

Thus (8) implies that
√
n ≤ α∗

j (x) + β∗
l′(y), as required. ��

Based on Lemma 3, we below construct the desired threshold circuit C. Let
τ = �log√n� for simplicity.

[Construction of C]
Firstly, for each j, 0 ≤ j ≤

√
n − 1, we construct a set of τ threshold gates

g∗j,0, g
∗
j,1, . . . , g

∗
j,τ so that the outputs of τ gates represent α∗

j (x) in binary system;
we employ a circuit construction used in [1]. For each pair of i, 0 ≤ i ≤

√
n− 1,

and t, 0 ≤ t ≤ τ , let

pi,t =

⌊
i

2t

⌋
and

ui,t = (−1)1+pi,t · 2i. (10)

Clearly, if the (t + 1)st bit of the binary representation of i is one, then pi,t is
odd, and hence ui,t = 2i; and otherwise, pi,t is even, and hence ui,t = −2i. Let j,
0 ≤ j ≤

√
n− 1, be an arbitrarily fixed index. For each t, 0 ≤ t ≤ τ − 1, the gate

g∗j,t has threshold one, and receives every input in the jth column: g∗j,t receives
xi,jwith weight ui,t for every i, 0 ≤ i ≤

√
n− 1. Thus, for every x ∈ {0, 1}n,

g∗j,t(x) = sign

⎛⎝−1 + √
n−1∑
i=0

ui,txi,j

⎞⎠ . (11)

Equations (10) and (11) imply that the output of g∗j,t is determined by xi′,j
satisfying

i′ = max {i | xi,j = 1},
and thus equals to the (t + 1)st bit of the binary representation of α∗

j . Conse-
quently,

α∗
j (x) =

τ−1∑
t=0

2t · g∗j,t(x). (12)

Secondly, for each l, 0 ≤ l ≤
√
n−1, we similarly construct a set of τ threshold

gates hl,0, hl,1, . . . , hl,τ−1 so that the outputs of the τ gates represent βl(y) in
binary system. Let

qk,t =

⌊√
n− 1− k

2t

⌋
.

312 K. Uchizawa, D. Yashima, and X. Zhou

For each t, 0 ≤ t ≤ τ − 1, the gate hl,t has threshold one, and receives every
input in the lth column: hl,t receives yk,l with weight

vk,t = (−1)1+qk,t · 2
√
n−1−k, (13)

for every k, 0 ≤ k ≤
√
n− 1. Thus, for every y ∈ {0, 1}n,

hl,t(x) = sign

⎛⎝−1 + √
n−1∑
k=0

vk,tyk,l

⎞⎠ . (14)

Then the output of hk,t is determined by yk′,l satisfying

k′ = min {k | yk,l = 1},

and equals to the (t+1)st bit of the binary representation of βj . Therefore, Eqs.
(13) and (14) imply that

βl(y) =

τ−1∑
t=0

2t · hl,t(y). (15)

Using hl,0, hl,1, . . . , hl,τ−1, we construct gates h∗
l,0, h

∗
l,1, . . . , h

∗
l,τ−1 that repre-

sent β∗
l (y); the construction is inductive on l from

√
n − 1 to 0. For the case

where l =
√
n− 1, we do not create any new gate, and simply identify h∗√

n−1,t

with h√
n−1,t for every t, 0 ≤ t ≤ τ−1, since we have β∗√

n−1
(y) = β√

n−1(y). For

each l,
√
n− 2 ≥ l ≥ 0, we introduce two gates al, bl and 2τ gates al0, a

l
1, . . . , a

l
τ ,

bl0, b
l
1, . . . , b

l
τ whose outputs will be used for inputs to h∗

l,0, h
∗
l,1, . . . , h

∗
l,τ . The

gates al and bl determine whether or not βl(y) is larger than β∗
l+1(y), and are

defined as

al(y) = sign

(
−1 +

τ−1∑
t=0

2thl,t(y)−
τ−1∑
t=0

2th∗
l+1,t(y)

)
and

bl(y) = sign

(
−

τ−1∑
t=0

2thl,t(y) +

τ−1∑
t=0

2th∗
l+1,t(y)

)
By Eq. (15), al outputs one if and only if βl(y) > β∗

l+1(y); while bl outputs one
if and only if βl(y) ≤ β∗

l+1(y). Thus, exactly one of al and bl outputs one for

any input. Then, for each t, 0,≤ t ≤ τ − 1, the gate alt computes AND of the
outputs of hl,t and al:

alt(y) = sign(hl,t(y) + al(y)− 2).

Clearly, the output of alt equals to that of hl,t if a
l(y) = 1 (i.e. βl(y) > βl+1(y));

and equals to zero, otherwise. Similarly, the gate blt computes AND of the outputs
of h∗

l+1,t and bl:

blt(y) = sign(h∗
l+1,t(y) + bl(y)− 2);

Threshold Circuits for Global Patterns in 2-Dimensional Maps 313

Fig. 3. Overview of the circuit for h∗
l,0, h

∗
l,1, . . . , h

∗
l,τ−1, where the gates labeled with

“∧” compute AND of two inputs, and the gates labeled with “∨” computes OR of two
inputs

the output of blt equals to that of h∗
l+1,t if b

l(y) = 1 (i.e. βl(y) ≤ βl+1(y)); and
equals to zero, otherwise. For each t, 0 ≤ t ≤ τ − 1, we obtain the gate h∗

l,t

simply computing OR of the outputs of alt and blt;

h∗
l,t(y) = sign(alt(y) + blt(y)− 1).

Clearly, we have

β∗
j (y) =

τ−1∑
t=0

2t · h∗
j,t(y). (16)

See Fig. 3 which depicts the circuit for computing h∗
l,0, h

∗
l,1, . . . , h

∗
l,τ−1.

Lastly, we construct
√
n − 1 gates r0, r1, . . . , r√n−2 such that, for each j,

0 ≤ j ≤ √n− 1, the gate rj determines if there exists an index l satisfying Eqs.
(1) and (2). Eqs. (12) and (16) imply that we can obtain such rj , as follows: rj
has threshold −

√
n and receives the outputs of g∗j,t and h∗

l,t, where j = l − 1,

with weight 2t for every t, 0 ≤ t ≤ τ − 1. More formally,

rj(x, y) = sign

(
−
√
n+

τ−1∑
t=0

2t · g∗j,t(x) +
τ−1∑
t=0

2t · h∗
j+1,t(y)

)
.

314 K. Uchizawa, D. Yashima, and X. Zhou

Consequently, Lemma 3 implies that Pn
D(x, y) = 1 if and only if there exists an

index j, 0 ≤ j ≤
√
n− 1, such that rj(x, y) = 1. Therefore, our construction of

C is completed by adding the top gate s computing OR of r0, r1, . . . , r√n−2:

s(x,y) = sign

⎛⎝−1 + √
n−2∑
j=0

rj(x,y)

⎞⎠ .

We now evaluate the size and depth of C. For every j, 0 ≤ j ≤ √n − 1, we
have τ gates g∗j,0, g

∗
j,1, . . . , g

∗
j,τ−1. For every l, 0 ≤ l ≤

√
n − 1, we have τ gates

hj,0, hj,1, . . . , hj,τ−1. In addition, for every l, 0 ≤ l ≤
√
n−1, we have 2τ+2 gates

al, bl, al0, a
l
1, . . . , a

l
τ−1, b

l
0, b

l
1, . . . , b

l
τ−1 together with τ gates h∗

l,0, h
∗
l,1, . . . h

∗
l,τ−1.

Besides, we have r0, r1, . . . , r√n−2 and s. Consequently, the size of C is

τ
√
n+ τ

√
n+ (2τ + 2)(

√
n− 1) + τ(

√
n− 1) +

√
n− 1 + 1 = O(

√
n logn).

Moreover, we require at most three layers to obtain h∗
l,0, h

∗
l,1, . . . h

∗
l,τ−1 for each

l, 0 ≤ l ≤
√
n − 1, followed by the two layers containing r0, r1, . . . , r√n−2 and

the top gate s. Thus, the depth is O(
√
n).

4 Lower Bound

In this section, we show that the circuit given in Theorem 1 is optimal up to
logarithmic factor, as in the following theorem.

Theorem 2. Let C be an arbitrary threshold circuit computing Pn
D. Then C has

size Ω(
√
n/ logn).

Let C be an arbitrary threshold circuit computing Pn
D. We prove the theorem

by reducing the disjointness function DISJn to our function, where DISJn is
defined as follows: For every pair of x = (x1, x2, . . . , xn) ∈ {0, 1}n and y =
(y1, y2, . . . , yn) ∈ {0, 1}n,

DISJn(x,y) =

{
1 if ∀i : xi �= yi;
0 otherwise.

It is known that any threshold circuit computing DISJn has almost linear size
in n.

Lemma 2 ([2]). Let C be an arbitrary threshold circuit computing DISJn.
Then C has size Ω(n/ logn).

Thus, it suffices to show that we can construct a circuitC′ computingDISJO(
√
n)

from C so that C′ has same size as that of C. We obtain the desired circuit C′

by just fixing some of the input variables of C to zeros, as follows.
Let X and Y be sets of the input variables to Pn

D:

X = {x0,0, x0,1, . . . , x√
n−1,

√
n−1}

Threshold Circuits for Global Patterns in 2-Dimensional Maps 315

y

y

y

n

i

nj

x

x

x

X'

n

i

nj

Y'

Fig. 4. In (a) (and (b), respectively), the unshaded locations indicate X ′ (and Y ′),
while shaded locations indicate X\X ′ (and Y \Y ′)

and
Y = {y0,0, y0,1, . . . , y√n−1,

√
n−1}.

We define sets X ′ and Y ′ of the input variables as

X ′ = {xj+1,j | 0 ≤ j ≤
√
n− 2} ⊆ X

and
Y ′ = {yk,k+1 | 0 ≤ k ≤

√
n− 2} ⊆ Y.

(See Fig. 4.) We then fix every input in (X\X ′) ∪ (Y \Y ′) of C to zero. We
denote by C∗ the resulting circuit. Clearly, C∗ computes Pn

D over X ′ ∪ Y ′. By
the definition of Pn

D, C∗ outputs one if and only if there exist indices j and k
such that j + 1 > k and j < k + 1:

k − 1 < j < k + 1,

and hence j = k. Consequently, C∗ outputs one if and only if there exists an
index j, 0 ≤ j ≤

√
n − 2, such that xj+1,j = yj,j+1 = 1; thus C∗ computes the

complement of DISJ
√
n−1.

We complete the construction of C′ by replacing the top gate g of C∗ by a
new gate g∗ computing its complement. Suppose g has threshold t and weight
w1, w2, . . . , wz for a number z of inputs consisting of xj+1,j and yj,j+1, 0 ≤ j ≤√
n− 2, together with the outputs of the gates in C∗. We then replace g by g∗

with threshold −2t+ 1 and weight −2w1,−2w2, . . . ,−2wz.

5 Conclusion

In this paper, we consider a Boolean function Pn
D that models a simple task

for information processing on 2-dimensional square grid. We show that Pn
D is

computable by a threshold circuit of size O(
√
n logn), while any threshold circuit

computing Pn
D requires size Ω(

√
n/ logn). Note that our circuit has smaller size

than one given in [1], but has larger depth Θ(
√
n) than the ones in [1]. It is

316 K. Uchizawa, D. Yashima, and X. Zhou

interesting if we can find a relationship between size and depth of threshold
circuits computing Pn

D; smaller size may require larger depth, while smaller depth
may require larger size.

References

1. Legenstein, R.A., Maass, W.: Foundations for a circuit complexity theory of sensory
processing. In: Proceedings of Advances in Neural Information Processing Systems
(NIPS 2000), pp. 259–265 (2001)

2. Nisan, N.: The communication complexity of threshold gates. In: Proceeding of
Combinatorics, Paul Erdös is Eighty, pp. 301–315 (1993)

3. Parberry, I.: Circuit Complexity and Neural Networks. MIT Press, Cambridge
(1994)

4. Sima, J., Orponen, P.: General-purpose computation with neural networks: A sur-
vey of complexity theoretic results. Neural Computation 15, 2727–2778 (2003)

5. Siu, K.Y., Bruck, J.: On the power of threshold circuits with small weights. SIAM
Journal on Discrete Mathematics 4(3), 423–435 (1991)

6. Siu, K.-Y., Bruck, J., Kailath, T., Hofmeister, T.: Depth efficient neural networks
for division and related problems. IEEE Transactions on Information Theory 39(3),
946–956 (1993)

7. Siu, K.Y., Roychowdhury, V.: On optimal depth threshold circuits for multiplica-
tion and related problems. SIAM Journal on Discrete Mathematics 7(2), 284–292
(1994)

8. Siu, K.Y., Roychowdhury, V., Kailath, T.: Discrete Neural Computation; A The-
oretical Foundation. Prentice-Hall, Inc., Upper Saddle River (1995)

Superset Generation on Decision Diagrams

Takahisa Toda1,�, Shogo Takeuchi2, Koji Tsuda2,3,4, and Shin-ichi Minato2,5

1 Graduate School of Information Systems,
The University of Electro-Communications, Chofu, Japan

2 ERATO MINATO Discrete Structure Manipulation System Project,
Japan Science and Technology Agency, at Hokkaido University, Sapporo, Japan

3 Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
4 Computational Biology Research Center, National Institute of Advanced Industrial

Science and Technology (AIST), Tokyo, Japan
5 Graduate School of Information Science and Technology,

Hokkaido University, Sapporo, Japan

Abstract. Generating all supersets from a given set family is important,
because it is closely related to identifying cause-effect relationship. This
paper presents an efficient method for superset generation by using the
compressed data structures BDDs and ZDDs effectively. We analyze the
size of a BDD that represents all supersets. As a by-product, we obtain a
non-trivial upper bound for the size of a BDD that represents a monotone
Boolean function in a fixed variable ordering.

Keywords: superset, binary decision diagram, zero-suppressed binary
decision diagram, cause-effect relationship, Boolean completion.

1 Introduction

Generating all supersets from a given family of sets is an important task, because
it is closely related to the problem of identifying cause-effect relationship [1].
Suppose we observed that some combinations of items caused an effect P . The
problem is to compute all combinations of items that can cause the effect P
from the obvervation. For example, consider potential factors that may cause a
disease as items and combinations of such factors that are actually identified in
an occurrence of the disease as observed itemsets. If there is no prior knowledge
on P , then we would have to conduct exhaustive search over all combinations of
items, which results in exponential explosion. However, such a situation is rare
and one can usually assume some regularity. This paper assumes monotonicity:
if a combination of items causes an effect P , then any combination extending
it causes the same effect. For a simple example, consider that if a combina-
tion of foods causes a stomachache, then it is very likely that any combination
that contains those foods also causes a stomachache. Monotonicity allows us to
identify all potential causes that can be derived from observation. Monotonicity
frequently appears in practical situations. It is mentioned [2] that the property

� The first author is supported by JSPS KAKENHI Grant Number 26870011.

M.S. Rahman and E. Tomita (Eds.): WALCOM 2015, LNCS 8973, pp. 317–322, 2015.
c© Springer International Publishing Switzerland 2015

318 T. Toda et al.

of monotonicity for data has potential to significantly improve the reliability
of computer-aided diagnosis. Monotonicity can also be seen in the context of
product design [3], linkage problem of records in different databases [4], etc.

Our problem can be formally described as follows. We have a set of items V
and a set family S over V . Each set in S means a combination of items that
caused some effect. We want to compute all subsets of V that contain at least
one set in S. In this paper, we say that U is a superset of T if T ⊆ U , and we
denote S↑ := {U ⊆ V : ∃T ∈ S, T ⊆ U}.

Since the size of S↑ can grow exponentially, one may feel impractical to com-
pute S↑. However, the difficulty can often be reduced largely by considering S↑

as a Boolean formula and implicitly computing it on the compressed data struc-
ture, called binary decision diagram (BDD for short). A BDD is a graphical
representation for Boolean functions, and it has been widely used in the design
and verification of VLSI circuits (see [5, pp.257-258]). An advantage of BDDs is
that BDDs tend to achieve a high compression efficiency in practice, and further-
more various basic operations to manipulate Boolean functions such as logical
conjunction, disjunction and negation, etc are available on BDDs. Once the BDD
for S↑ is built, one can efficiently execute computation such as optimization and
enumeration [5, pp.209-212].

In this paper, we present an efficient method for computing the BDD that
represents all supersets for a given family of sets. Although BDDs are well suited
for families of supersets, this does not apply to arbitrary set families, because the
compression rule (i.e., the node elimination rule) of BDD is not so effective if a
set family does not satisfy monotonicity. We thus separately use the two different
data structures BDDs and ZDDs, where ZDDs are a yet another data structure
specialized for set families. Our approach is that we first convert an input set
family into a ZDD representation, and then construct the BDD for supersets
from the ZDD. We analyze the size of an output BDD because it greatly affects
the performance of whole computation. To do this, we introduce the notion of
separator of a ZDD, which is related to the notion of cutwidth of a CNF or
a hypergraph. We show that the size of an output BDD is linear in |V | and
exponential only in the maximum size of a separator in the ZDD for S. This
result implies that it is quite important in our method to find a good order of V
so that the size of a separator is as small as possible. As a by-product, we obtain
a non-trivial upper bound for the size of a BDD that represents a monotone
Boolean function in a fixed variable ordering.

2 Decision Diagrams

A zero-suppressed binary decision diagram (ZDD for short) is a graphical rep-
resentation for set families. Exactly one node has indegree 0, which is called the
root. Each nonterminal node f has a label and exactly two children, which are
indicated by the three fields V (f), LO (f), HI (f) associated with f . Each node
has an element in a ground set V as its label. The children indicated by LO (f)
and HI (f) are called the LO child and HI child of f , respectively. The arc to

Superset Generation on Decision Diagrams 319

a LO child is called a LO arc and illustrated by a dashed arrow, while the arc
to a HI child is called a HI arc and illustrated by a solid arrow. There are only
two terminal nodes, denoted by , and ⊥. ZDDs satisfy the following two con-
ditions. They must be ordered : if a node u points to a nonterminal node v, then
V (u) < V (v). They must be reduced : no further application of the following
reduction operation rules is possible.

1. If there is a nonterminal node u whose HI arc points to ⊥, then redirect all
the incoming arcs of u to the LO child, and then eliminate u.

2. If there are two nonterminal nodes u and v such that the subgraphs rooted
by them are equivalent, then merge them.

It is known (see for example [5]) that if the order in V is fixed, then set families
on V correspond in a one-to-one way to ZDDs whose labels are taken from V .

A binary decision diagram (BDD for short) is a similar graphical representa-
tion to ZDDs , but BDDs represent Boolean functions. BDDs have two different
features from ZDDs. Firstly, BDDs have the following reduction rules.

1. If there is a nonterminal node u whose arcs both point to v, then redirect
all the incoming arcs of u to v, and then eliminate u.

2. If there are two nonterminal nodes u and v such that the subgraphs rooted
by them are equivalent, then merge them.

Secondly, given a BDD, each path from the root to , corresponds to a (0, 1)-
assignment to Boolean variables and the value of a Boolean function. That is,
assign 1 to xk if the HI arc of a node with label k is selected; otherwise, assign 0
to xk, and for such an assignment, the function value becomes 1. For efficiency,
BDD nodes are usually implemented using a hash table, called a uniquetable,
so that for any triple (k, lo, hi) of a node label and two BDD nodes, there is a
unique BDD node f with V (f) = k, LO (f) = lo, and HI (f) = hi. Given a triple
(k, lo, hi), the function getbddnode returns an associated node in the uniquetable
if exists; otherwise, create a new node f such that V (f) = k, LO (f) = lo, and
HI (f) = hi; register f to the uniquetable and return f .

3 Algorithm

Suppose that we are given a set family S := {S1, . . . , Sm} over a ground set
V := {1, . . . , n}. We present a method of computing all supersets for S as a
Boolean function, thereby as a BDD.

Recall that the family of all supersets for S is denoted by S↑. Let us observe
that S↑ can be identified with the following DNF:

ψS(x1, . . . , xn) :=
∨

1≤i≤m

∧
j∈Si

xj .

For convenience, we call a vector v ∈ {0, 1}n with ψS(v) = 1 a solution of ψS ,
where ψS is seen as a Boolean function. If no confusion, we identify v with the

320 T. Toda et al.

set representation {i ∈ V : vi = 1}, where vi denotes the i-th component of v.
Now, we show that all solutions of ψS form S↑. Suppose that v is a solution of
ψS . There is a term in ψS that is satisfied by v. Let

∧
j∈Sk

xj be such a term. It
is clear that Sk ⊆ {i ∈ V : vi = 1}. The converse direction would be now clear.

We are now ready to describe our algorithm for computing the BDD B(ψS)
that represents all supersets for S. Our algorithm is as follows.

1. Given a set family S over V , compute the ZDD Z(S) that represents S.
2. Compute B(ψS) from Z(S).

In the former part, we use the bottom-up construction method of ZDDs after
sorting S (see [6] for details). This computation requires O(

∑
{|U | : U ∈ S})

time and extra space in the worst case except for the cost for sorting S. Thus,
the latter part is a computation bottleneck. In the latter part, we execute the
function SUP defined in Algorithm 1. Since the correctness of Algorithm 1 would
be clear, we omit a proof.

Algorithm 1.Given a ZDD for a set family S, compute the BDD that represents
all supersets for S. The function bddor computes the logical disjunction.

function SUP(g)
if g = �ZDD then

return �BDD;
else if g = ⊥ZDD then

return ⊥BDD;
end if
l ← SUP (LO (g)); t ← SUP(HI (g)); h ← bddor (l, t);
return getbddnode (V (g) , l, h);

end function

4 Analysis

We analyze the size of an output BDD in Algorithm 1. Huang and Darwiche [7]
used the notions of cutwidth for CNFs, and proved that given a CNF with a
fixed variable ordering, the size of the BDD represented by the CNF is linear in
the number of variables and exponential only in the cutwidth. Inspired by their
appoarch, we introduce a related notion for ZDDs and analyze a BDD size (see
Fig. 1).

Definition 1. The i-th separator in a ZDD is the set of nonterminal nodes g
such that g is a tail of some arc (j, k) with j ≤ i and i < k, where j and k denote
node labels. The maximum size of a separator in a ZDD f is denoted by s(f).

Theorem 1. Let S be a set family over a ground set V in a fixed order. Let Z
be the ZDD that represents S. The BDD size for all supersets of S is bounded
above by |V | · 2s(Z).

Superset Generation on Decision Diagrams 321

Fig. 1. The paths in a ZDD reaching 5© and 4© under the instanciation with x1 =
0, x2 = 1, x3 = 0, where the 3-th separator is indicated just below a zigzag line

Proof. Let B be the output BDD, and let f(x1, . . . , xn) be the Boolean function
of the DNF that is represented by Z, where n := |V |. Observe that nodes in B
exactly correspond to subfunctions of f , where a subfunction means a function
obtained from f by instanciating some consecutive variables x1, . . . , xi from the
first. Indeed, given a node in B, the subgraph rooted by the node is also a BDD,
and thus it represents a Boolean function. Clearly, this gives a surjective mapping
from BDD nodes onto subfunctions of f . To see it is injective, consider that if
two subgraphs represent an identical (i.e. logically equivalent) subfunction, then
these graphs must be equivalent and thus merged because of the node sharing
rule. This means that if two different instanciations of x1, . . . , xi yield an identical
subfunction, then the paths going down B along these instanciations must merge
at the node corresponding to the subfunction.

In order to bound the size of B, we consider the number of different subfunc-
tions after instanciations of the i-th or less variables. Without loss of generality,
we exclude constant subfunctions, i.e., the functions that always return true or
false values, respectively. Given an instanciation, the terms of the DNF that is
represented by Z are partitioned into two groups: unsatisfiable terms under the
instanciation and the other terms. This partition induces a 2-coloring of the i-th
separator. For example, let us see the ZDD illustrated in Fig. 1. Recall that
each path from the root to , represents a term. Consider the instanciation with
x1 = 0, x2 = 1, x3 = 0. The two nodes in the 3-th separator is then colored in
the following way. All paths starting with 1© ��� 2© → 3© → become unsatis-
fiable because the corresponding terms have x3 in common. Thus let us color
the node 5© in the 3-th separator black. For the node 4© in the 3-th separa-
tor, although all paths starting with 1© → also become unsatisfiable, the path
1© ��� 2©→ 3© ��� can reach 4© without becoming unsatisfiable, thus let us color
4© white. In general, we color nodes in the i-th separator white if they have a
reachable path without becoming unsatisfiable in the current instanciation. This
coloring contains a complete information to decide if a DNF is satisfied. Thus,
if another instanciation of the i-th or less variables happens to yield the same
coloring in the i-th separator, then the two instantiations must have the same
subfunction in common. Since the number of all possible colorings is at most
2s(Z), the number of different subfunctions after instanciations of the i-th or less

322 T. Toda et al.

variables is bounded above by 2s(Z). Therefore, we conclude that the size of an
output BDD is bounded above by |V |2s(Z). ��

Corollary 1. Let ψ be a DNF of n variables without negative literals, and let s
be the maximum size of a separator in the ZDD that represents ψ as a set family.
The BDD that represents ψ has size at most n · 2s.

The following theorem assumes that the function getbddnode runs in constant
time and the function bddor runs in the product of two input sizes, which both
can be achieved in average time if one implements using a hashtable.

Theorem 2. Algorithm 1 can be implemented to run in O(|Z| · |V |2 · 22s(Z))
time, where V is a ground set and |Z| denotes the number of nodes in an input
ZDD Z.

Proof. Suppose that each ZDD node has an auxiliary field AUX. For each
recursive call with an input ZDD g, set the output BDD to AUX(g). It is then
sufficient to compute SUP (g) exactly once for each ZDD node g in Z. Thus,
the number of recursive calls is 2|Z|, since it is bounded above by the number
of arcs in Z. Clearly the maximum sizes of a separator in LO (g) and HI (g) are
at most the maximum size of a separator in Z. From Theorem 1, it follows that
the sizes of SUP (LO (g)) and SUP (HI (g)) are both at most |V | · 2s(Z). Since
the logical disjunction operation requires the time proportional to the product
of input sizes, the total time is proportional to |Z| · (|V | · 2s(Z))2. ��

References

1. Crama, Y., Hammer, P., Ibaraki, T.: Cause-effect relationships and partially de-
fined Boolean functions. Annals of Operations Research 16(1), 299–325 (1988)

2. Kovalerchuk, B., Triantaphyllou, E., Ruiz, J.F., Torvik, V.I., Vityaev, E.: The reli-
ability issue of computer-aided breast cancer diagnosis. Computers and Biomedical
Research 33(4), 296–313 (2000)

3. Kovalerchuk, B., Vityaev, E., Triantaphyllou, E.: How can AI procedures become
more effective for manufacturings? In: Proc. of the Artificial Intelligence and Man-
ufacturing Research Planning Workshop, Albuquerque, New, Mexico, pp. 103–111
(June 1996)

4. Judson, D.: Statistical rule induction in the presence of prior information: The
bayesian record linkage problem. In: Triantaphyllou, E., Felici, G. (eds.) Data Min-
ing and Knowledge Discovery Approaches Based on Rule Induction Techniques.
Massive Computing, vol. 6, pp. 655–694. Springer US (2006)

5. Knuth, D.E.: The Art of Computer Programming Volume 4a. Addison-Wesley
Professional, New Jersey (2011)

6. Toda, T.: Fast compression of large-scale hypergraphs for solving combinatorial
problems. In: Fürnkranz, J., Hüllermeier, E., Higuchi, T. (eds.) DS 2013. LNCS,
vol. 8140, pp. 281–293. Springer, Heidelberg (2013)

7. Huang, J., Darwiche, A.: Using DPLL for efficient OBDD construction. In: Hoos,
H.H., Mitchell, D.G. (eds.) SAT 2004. LNCS, vol. 3542, pp. 157–172. Springer,
Heidelberg (2005)

On Triangle Cover Contact Graphs

Md. Iqbal Hossain, Shaheena Sultana, Nazmun Nessa Moon, Tahsina Hashem,
and Md. Saidur Rahman

Department of Computer Science and Engineering,
Bangladesh University of Engineering and Technology (BUET),

Dhaka-1000, Bangladesh
{mdiqbalhossain,saidurrahman}@cse.buet.ac.bd

{zareefas.sultana,tahsinahashem}@gmail.com, moon ruet@yahoo.com

Abstract. Let S = {p1, p2, . . . , pn} be a set of pairwise disjoint geomet-
ric objects of some type in a 2D plane and let C = {c1, c2, . . . , cn} be a
set of closed objects of some type in the same plane with the property
that each element in C covers exactly one element in S and any two
elements in C are interior-disjoint. We call an element in S a seed and
an element in C a cover. A cover contact graph (CCG) has a vertex for
each element of C and an edge between two vertices whenever the cor-
responding cover elements touch. It is known how to construct, for any
given point seed set, a disk or triangle cover whose contact graph is 1-
or 2-connected but the problem of deciding whether a k-connected CCG
can be constructed or not for k > 2 is still unsolved. A triangle cover
contact graph (TCCG) is a cover contact graph whose cover elements are
triangles. In this paper, we give an algorithm to construct a 4-connected
TCCG for a given set of point seeds. We also show that any outerplanar
graph has a realization as a TCCG on a given set of collinear point seeds.
Note that, under this restriction, only trees and cycles are known to be
realizable as CCG.

1 Introduction

Let S = {p1, p2, . . . , pn} be a set of pairwise disjoint geometric objects of some
type in a 2D plane and let C = {c1, c2, . . . , cn} be a set of closed objects of
some type in the same plane with the property that each element in C covers
exactly one element in S and any two elements in C can intersect only on their
boundaries. We call an element in S a seed and an element in C a cover. The
seeds may be points, disks or triangles and covering elements may be disks or
triangles. The cover contact graph (CCG) consists of a set of vertices and a set of
edges where each vertex corresponds to a cover and each edge corresponds to a
connection between two covers if they touch at their boundaries. In other words,
two vertices of a cover contact graph are adjacent if the corresponding cover
elements touch at their boundaries. Note that the vertices of the cover contact
graph are in one-to-one correspondence to both seeds and covering objects. In
a cover contact graph, if disks are used as covers then it is called a disk cover
contact graph and if triangles are used as covers then it is called a triangle

M.S. Rahman and E. Tomita (Eds.): WALCOM 2015, LNCS 8973, pp. 323–328, 2015.
c© Springer International Publishing Switzerland 2015

324 M.I. Hossain et al.

cover contact graph (TCCG). Figure 1(b) depicts the disk cover contact graph
induced by the disk covers in Fig. 1(a), whereas Fig. 1(d) depicts the triangle
cover contact graph induced by the triangle covers in Fig. 1(c).

Fig. 1. Illustration for CCG and TCCG; (a) a disk cover, (b) a CCG, (c) a triangle
cover and (d) a TCCG

A coin graph is a graph formed by a set of disks, no two of which have over-
lapping interiors, by making a vertex for each circle and an edge for each pair
of circles that touches. Koebe’s theorem [5,7] states that every planar graph can
be represented as a coin graph. There are several works [8,9,4] in the geometric-
optimization community where the problem is how to cover geometric objects
such as points by other geometric objects such as convex shapes, disks. The main
goal is to minimize the radius of a set of k disks to cover n input points. Appli-
cations of such covering problems are found in geometric optimization problems
such as facility location problems [8,9]. Abellanas et al. [1] worked on a “coin
placement problem,” which is NP-complete. They tried to cover n points using n
disks (each having different radius) by placing each disk in the center position at
one of the points so that no two disks overlap. Further Abellanas et al. [2] con-
sidered another related problem. They showed that a given set of points in the
plane, it is also NP-complete to decide whether there are disjoint disks centered
at the points such that the contact graph of the disks is connected.

Recently, Atienza et al. [3] introduced the concept of cover contact graphswhere
the seeds are not necessarily the center of the disks.They gave anO(n logn) time al-
gorithmto decidewhether a given set of point seeds canbe coveredwithhomothetic
triangles or disks such that the resulting cover contact graph is 1- or 2-connected.
The k-connectivity problem is still unsolved for k > 2.Atienza et al. [3] also consid-
ered the problem from another direction which they called “realization problem.”
In a realization problem we are given a graphG of n vertices and a set S of n seeds
and we are asked whether there is any covering so that the resulting cover contact
graph is G. They gave some necessary conditions and then showed that it is NP-
hard to decide whether a given graph can be realized as a disk cover contact graph
if the correspondence between vertices and point seeds is given. They also showed
that every tree and cycle have realizations asCCGs on a given set of collinear point
seeds.

In this paper, we consider a set of arbitrary seeds in the plane where the seeds
are points and the covers are triangles. In Section 2 we show that every set of
six or more seeds admits a cover with 4-connected TCCG and such a cover can

On Triangle Cover Contact Graphs 325

be constructed in O(n log n) time. Section 3 gives an algorithm that realizes a
given outerplanar graph as a triangle cover contact graph (TCCG) for a given
set of seeds on a line. Finally, Section 4 concludes the paper by suggesting some
future works.

2 Connectivity in TCCG

In this section we consider the connectivity problem in TCCG and develop
an O(n logn) time algorithm to show that a set of given seeds can always be
covered with triangles such that the resulting cover contact graph is 4-connected.
We refer [6,10] for the graph theoretic terminologies used in this paper.

Consider a given set S of seeds such that no two seeds in S lie on a vertical
line or on a horizontal line. It is trivial to show that S admits a path TCCG
as follows. We first sort the seeds according to x-coordinate value. We then
cover the seeds with triangles such that every triangle touches the previous and
next triangle (except the first and the last triangle). Thus the contact graph
of the triangles forms a path. However constructions of TCCGs with higher
connectivities look gradually difficult. We next deal with the construction of a
4-connected TCCG and prove the following theorem.

Theorem 1. Let S be a set of six or more seeds such that no two seeds are
neither on a vertical line nor on a horizontal line. Then S admits a 4-connected
TCCG, and such a TCCG can be found in O(n log n) time.

We give a constructive proof of Theorem 1. The outline of our construction
is as follows. We first sort the seeds p1, p2, . . . , pn according to their left-to-
right order. We next select the topmost and the bottommost seeds pt and pb,
respectively, among the seeds except p1 and pn. We enclose S − {p1, pn, pt, pb}
by a trapezoid as illustrated in Fig. 2(a). We then cover p1 and pn seeds by the
triangles T1 and Tn such that they touch at a point. We next cover pt and pb
seeds by the triangles Tt and Tb such that they touch T1 and Tn as illustrated in
Fig. 2(b). Finally, each of the remaining uncovered seeds is covered by a triangle
such that it touches Tt and Tb, the left and the right triangles as illustrated in
Fig. 2(c). We prove that resulting graph is a 4-connected TCCG by showing that
there exist four internally vertex-disjoint paths between every pair of vertices.

Before giving a formal proof of Theorem 1 we need some definitions. For
a point a in a 2D plane, we denote by xa and ya the x-coordinate and the y-
coordinate of a, respectively. We specify the position of a in the plane by (xa, ya).
We denote the straight-line segment that passes through the points a and b by
Lab. We denote a triangle connecting three points a1, a2, a3 by T (a1, a2, a3)
and a trapezoid connecting four points a1, a2, a3, a4 by trap(a1, a2, a3, a4). We
denote a path in a simple graph by the ordered sequence of vertices on the path.
We are now ready to prove Theorem 1.

Proof of Theorem 1: We first construct a triangle cover of each seed in S as
follows. Let pl and pr be the leftmost and the rightmost seeds in S, respectively.

326 M.I. Hossain et al.

�

�

�

�

�

�

�
�

�

�

(c)

�

�

�

� � �v1
v2 v3 v4 v5 v6 v7 vk

vt

vb
(d)(a) (b)

l1

l2

l3

l4

T1

Tt

Tk

Tb

�

�

�

�

�

�

�
�

�

�

l1

l2

l3

l4

�

�

�

�

�

�

�
�

�

�

� � � � � �
�

Fig. 2. (a) A set S of n seeds and a trapezoid enclosing n− 4 seeds, (b) illustration for
the triangles T1, Tk, Tt and Tb, (c) S is covered by n triangles and (d) a 4-connected
TCCG

Let pt and pb be the topmost and the bottommost seeds in S − {pl, pr}, respec-
tively. Let p1 = pl, p2, . . . , pk = pr be the seeds in S−{pt, pb} according to their
left-to-right ordering. Then k = n−2. Let S′ = {p2, p3, . . . , pk−1}. We denote by
(xlm, ylm) the crossing point of two straight-lines l and m. We now enclose S′ by
a trapezoid trap(l1, l2, l3, l4) so that trap(l1, l2, l3, l4) satisfies the properties: (a)
l2 and l4 lines are horizontal; (b) l1 and l3 lines are not parallel; (c) l1 divides
the seeds into {p1} and S−{p1}; (d) l2 divides the seeds into {pt} and S−{pt};
(e) l3 divides the seeds into {pk} and S−{pk}; (f) l4 divides the seeds into {pb}
and S−{pb}; (g) xl1l2 and xl1l4 are smaller than xp2 ; and (h) xl2l3 and xl3l4 are
greater than xpk−1

. Figure 2(a) illustrates an example of the trapezoid. One can
easily see that such a trapezoid can be found because pt, pb, p1 and pk are the
topmost, the bottommost, the leftmost and the rightmost seeds, respectively.

We first cover the four seeds p1, pk, pt and pb by the triangles T1, Tk, Tt

and Tb, respectively, as follows. Let the equation of l2 be y = yt − c1 = yl2 and
equation of l4 be y = yb + c2 = yl4 , where c1 and c2 are two small constants.
(Precisely, c1 < yt− y′t and c2 < y′b− yb; where yt and yb are y-coordinates of pt
and pb, respectively, and y′t and y′b are y-coordinates of the topmost point and
the bottommost point among the points in S′, respectively.)

Since l1 and l3 are not parallel, without loss of generality assume that l1 and
l3 cross at (xl1l3 , yl1l3), where yl1l3 > yl2 . We now cover the seed p1 by the tri-
angle T1((xp1 − c, yp1), (xl1l4 , yl1l4), (xl1l3 , yl1l3)), where c is any small positive
constant. Then we cover the seed pk by the triangle Tk((xpk

+ c, ypk
), (xl3l4 ,

yl3l4), (xl1l3 , yl1l3)). Next we cover the seed pt by the triangle Tt((xpt , ypt +
c), (xl1l2 , yl1l2), (xl2l3 , yl2l3)). Triangle Tb((xpb

, ypb
− c), (xl3l4 , yl3l4), (xl1l4 , yl1l4))

covers the seed pb. Clearly, T1 and Tk touch both the triangles Tt and Tb, and
T1 touches Tk.

We next cover the seeds in S′ by triangles as follows. First we cover the seed
p2 by the triangle T2((A, yp2), (xp2 +

xp3−xp2

2 , yl4), (xp2 +
xp3−xp2

2 , yl2)), where
(A, yp2) lies on l1. Clearly, T2 touches T1, Tt and Tb. We then cover each pi for 2 <

i < k− 1 by the triangle Ti((xpi−1 +
xpi

−xpi−1

2 , ypi), (xpi +
xpi+1

−xpi

2 , yl4), (xpi +
xpi+1

−xpi

2 , yl2)). Note that the point (xpi−1 +
xpi

−xpi−1

2 , ypi) lies on the boundary
of Ti−1. This implies that Ti touches Ti−1, Tt and Tb. We finally cover the seed

pk−1 by Tk−1((xpk−2
+

xpk−1
−xpk−2

2 , ypk−1
), (xpk−1

+
xpk

−xpk−1

2 , yl4), (xl2l3 , yl2l3)).
Clearly, Tk−1 touches Tk−2, Tt, Tk and Tb.

On Triangle Cover Contact Graphs 327

Let G = (V,E) be the resulting TCCG of S with the vertex set V =
{v1, v2, . . . , vk, vt, vb} such that each vi, 1 ≤ i ≤ k, corresponds to the trian-
gle Ti, vt corresponds to the triangle Tt and vb corresponds to the triangle Tb.
We now show that G is 4-connected. Since T1 touches T2, Tk, Tt and Tb, we have
(v1, v

′) ∈ E, where v′ ∈ {v2, vk, vt, vb}. Since Tt touches Ti, 1 ≤ i ≤ k, we have
(vt, v

′) ∈ E, where v′ ∈ {v1, v2, v3, . . . , vk−1, vk}. Since Tb touches Ti, 1 ≤ i ≤ k,
we have (vb, v

′) ∈ E, where v′ ∈ {v1, v2, v3, . . . , vk−1, vk}. Since Tk touches T1,
Tk−1, Tt and Tb, we have (vk, v

′) ∈ E, where v′ ∈ {v1, vk−1, vt, vb}. Since Ti,
2 ≤ i ≤ k − 1, touches Ti−1 and Ti+1, we have the path (v1, v2, . . . , vk). Figure
2(d) shows the TCCG of the seed set in Fig. 2(a).

Since S has six or more vertices, S′ has at least two vertices and hence ev-
ery vertex of G has degree at least four. Thus to prove our claim that G is
4-connected, it is now sufficient to show that four internally vertex-disjoint paths
exist between each of the pairs {vi, vj}, {vi, vt}, {vi, vb} and {vt, vb} of vertices,
where 1 ≤ i < j ≤ k, (see Fig. 2(d)). The paths between the vertices vi and
vj are path (vi, vi+1, . . . , vj), path (vi, vt, vj), path (vi, vb, vj) and path (vi, vi−1

, . . . , v1, vk, vk−1 , . . . , vj). The paths between the vertices v1 and vt are path
(v1, vt), path (v1, v2, vt), path (v1, vk, vt) and path (v1, vb, v3, vt). The paths be-
tween the vertices vk and vt are path (vk, vt), path (vk, vk−1, vt), path (vk, v1, vt)
and path (vk, vb, vk−2, vt). The paths between the vertices vi and vt are path
(vi, vt), path (vi, vi−1, vt), path (vi, vi+1, vt) and path (vi, vb, vk, vt) if i �= k − 1
or path (vi, vb, v1, vt) if i �= 2. Similarly there are at least four internally vertex-
disjoint paths exist between vertices vi and vb. It is not difficult to see that k
paths exist between vt and vb through vi. Thus four internally vertex-disjoint
paths exist between each pair of vertices.

We now analyze the time complexity of our construction. For computing the
triangle covers of n seeds we need O(n) time. Since we are sorting the seeds,
4-connected TCCG can be found in O(n log n) time. ��

Our construction for a 4-connected TCCG given in the proof of Theorem 1
can be used for any set of six or more seeds; if two seeds are on a vertical line
or on a horizontal line then rotate the plane such that no two points remain on
a vertical line or on a horizontal line.

3 Realizability of Outerplanar Graphs

In this section we show that an outerplanar graph has a realization as a triangle
cover contact graph (TCCG) on a given set of seeds on a line as in the following
theorem.

Theorem 2. Let G be a connected outerplanar graph of n vertices. Let S be a
set of n seeds aligned on a straight line. Then G is realizable on S as a TCCG
in O(n logn) time.

In fact, we prove a claim stronger than that in Theorem 2 as in Theorem 3
on weighted version of the problem. A weighted triangle cover contact graph
(WTCCG) G is a weighted CCG of n covers and

∑n
i=1 wi seeds where each

328 M.I. Hossain et al.

vertex vi of G has a weight wi and the cover ci corresponds to vi covers wi seeds
of
∑n

i=1 wi (wi ∈ Z) seeds. We now give Theorem 3 on WTCCG.

Theorem 3. Let wi be the weight of a vertex vi of a weighted connected outer-
planar graph G of n vertices, and let S be a set of

∑n
i=1 wi seeds on a line. Then

G is realizable on S as a WTCCG in O(n log n) time.

The proof of Theorem 3 is involved. We only give our idea in this short version.
Let G be a weighted connected outerplanar graph. We contract each biconnected
components and bridges of G into a single vertex. Doing the operation recur-
sively, the resulting graph G′ is either a biconnected graph or a single vertex, and
also a weighted graph where the weight of each vertex is the sum of the weights of
the vertices of the corresponding uncontracted biconnected component or bridge
of G. We then construct WTCCG of G′ and expanding the WTCCG of G′ we
obtain a WTCCG of G.

4 Conclusion

In this paper we have shown that any set of six or more point seeds admits
covers with 4-connected TCCG and such covers can be found in O(n log n)
time. We also have shown that every connected outerplanar graph and weighted
outerplanar graph can be realized as a TCCG of a set of point seeds on a straight
line. Our future work is to investigate which larger classes of graphs are realizable
as TCCG.

References

1. Abellanas, M., Bereg, S., Hurtado, F., Olaverri, A.G., Rappaport, D., Tejel, J.:
Moving coins. Comput. Geom. 34(1), 35–48 (2006)

2. Abellanas, M., Castro, N., Hernández, G., Márquez, A., Moreno-Jiménez, C.: Gear
System Graphs (2006) (manuscript)

3. Atienza, N., Castro, N., Cortés, C., Garrido, M.A., Grima, C.I., Hernández, G.,
Márquez, A., Moreno, A., Nöllenburg, M., Portillo, J.R., Reyes, P., Valenzuela, J.,
Trinidad Villar, M., Wolff, A.: Cover contact graphs. Journal of Computational
Geometry 3(1), 102–131 (2012)

4. Durocher, S., Mehrabi, S., Skala, M., Wahid, M.A.: The cover contact graph of
discs touching a line. In: CCCG, pp. 59–64 (2012)

5. Koebe, P.: Kontaktprobleme der konformen abbildung. Ber. Sächs. Akad. Wiss.
Leipzig, Math.-Phys. Klasse 88(1-3), 141–164 (1936)

6. Nishizeki, T., Rahman, M.S.: Planar Graph Drawing. Lecture Notes Series on
Computing. World Scientific, Singapore (2004)

7. Pach, J., Agarwal, P.K.: Combinatorial Geometry. John Wiley and Sons, New York
(1995)

8. Robert, J.M., Toussaint, G.T. (eds.): Computational geometry and facility loca-
tion. In: Proc. Int. Conf. Oper. Res. Manage. Sci., vol. 68 (1990)

9. Welzl, E.: Smallest enclosing disks (balls and ellipsoids). In: Maurer, H.A. (ed.)
New Results and New Trends in Computer Science. LNCS, vol. 555, pp. 359–370.
Springer, Heidelberg (1991)

10. West, D.B.: Introduction to Graph Theory, 2nd edn. Prentice-Hall (2001)

Logspace and FPT Algorithms for Graph

Isomorphism for Subclasses of Bounded
Tree-Width Graphs

Bireswar Das�, Murali Krishna Enduri��, and I. Vinod Reddy

IIT Gandhinagar, India
{bireswar,endurimuralikrishna,reddy vinod}@iitgn.ac.in

Abstract. We give a deterministic logspace algorithm for the graph
isomorphism problem for graphs with bounded tree-depth. We also show
that the graph isomorphism problem is fixed parameter tractable for
a related parameterized graph class where the graph parameter is the
length of the longest cycle.

1 Introduction

The Graph Isomorphism (GI) problem is to determine whether two given graphs
G1 and G2 are isomorphic. This problem is important in complexity theory
due to its unknown complexity status. Despite its unresolved complexity sta-
tus, efficient algorithms for GI are known for restricted classes of graphs. Lindell
studied the space complexity of tree isomorphism and showed that the problem
is in logspace [11]. Reingold’s logspace algorithm for undirected reachability [15]
made it possible to design many of the recent logspace algorithms for GI for re-
stricted classes of graphs [6,5]. The space complexity of GI for bounded treewidth
remains an open problem. The GI problem has been studied and was shown to
be in logspace for some subclasses of bounded treewidth [1,2]. In this paper we
give a deterministic logspace algorithm for GI for bounded tree-depth graphs
which is an interesting subclass of bounded treewidth graphs. Our isomorphism
algorithm uses another algorithm as a subroutine that computes the tree-depth
decomposition of bounded tree-depth graphs in logspace.

Bouland et al. [3] gave an fpt algorithm for GI parameterized by tree-depth
of the graph. Following their work we give an fpt algorithm for the GI problem
where the parameter is the length of the longest cycle. Fixed parameter tractable
algorithms for GI are known for many interesting parameterization [16,9,10,3].
A graph whose longest cycle length is k has treewidth at most k. Thus, GI
parameterized by longest cycle length becomes a natural subproblem of GI pa-
rameterized by treewidth. Our main motivation was to study the parameterized
complexity of the GI problem where the parameter is treewidth. In a recent paper
Lokshtanov et al. [12] gave an fpt algorithm for the GI problem parameterized by

� DIMACS postdoctoral fellow, supported by IUSSTF fellowship.
�� Supported by Tata Consultancy Services (TCS) research fellowship.

M.S. Rahman and E. Tomita (Eds.): WALCOM 2015, LNCS 8973, pp. 329–334, 2015.
c© Springer International Publishing Switzerland 2015

330 B. Das, M.K. Enduri, and I.V. Reddy

treewidth thus subsuming our result. Nevertheless, our algorithm is very differ-
ent from [12] and may be useful to give a different fpt algorithm or new logspace
algorithm for bounded treewidth graphs.

2 Preliminaries

In our fpt algorithm for GI parameterized by length of longest cycle , we use the
idea of block tree representation of connected graphs. A maximal biconnected
subgraph of a graph is called a block. The block graph representation of a graph
G is a bipartite graph whose bipartition consists of the set of articulation points
and the set of blocks. There is an edge between an articulation point v and a
block B if and only if v ∈ B. The block graph of a connected graph is a tree [7].

One interesting graph parameter is tree-depth introduced by [14] Nešetřil et
al, which measures how close a graph is to star graphs. The tree-depth decom-
position of a graph is defined as follows: Let T be a rooted tree. The closure of T
denoted clos(T) is the graph obtained by adding edges from each vertex v to all
vertices which lie on a path from the root to vertex v. A tree-depth decomposition
of a graph G is a tree T over V (G) such that G is a subgraph of clos(T). The
depth of the tree-depth decomposition T is the height of T . The tree-depth of
a graph G, denoted td(G) is the minimum depth among all possible tree-depth
decompositions of G. The tree-depth of a graph can be equivalently defined as
follows:

Definition 1. Let G be a graph with connected components G1, · · · , Gp. Then
the tree-depth td(G) of G is 1 if |V (G)| = 1. If |V (G)| > 1 and p = 1 then
td(G) := 1 + min

v∈V (G)
td(G− v) else td(G) := max

i=1···p
td(Gi).

We state a lemma due to Nešetřil et al. that we use for our fpt algorithm.

Lemma 1 ([13]). Let G be a biconnected graph with length of longest cycle not
more than k. Then 1 + �log2 k� ≤ td(G) ≤ 1 + (k − 2)2.

3 Logspace Algorithm for Bounded Tree-depth Graphs

In this section we present a logspace algorithms to recognize and compute tree-
depth decomposition of bounded tree-depth graphs.

Lemma 2. Let d be a fixed constant. There is a logspace algorithm AR that on
input a connected graph G decides if td(G) ≤ d.

Proof. The Turing machine forAR uses one of its tape as a stack to store vertices
appearing in the root to leaf paths in the tree-depth decomposition. If the tree-
depth is indeed at most d then we do not have to store more than d vertices. First
the algorithm attempts a vertex v1 ∈ V (G) as the root of the decomposition and
puts it on the stack and tries to verify if td(G − v) ≤ d − 1. Let G1, · · · , Gp be
the connected components of G − v1. The algorithm inductively verifies that

Logspace and FPT Algorithms for GI for Subclasses 331

td(Gi) ≤ d − 1 for each i. If for some i, td(Gi) > d − 1 then the algorithm
removes v1 from the stack tries a different vertex. The connected components
are identified by the smallest vertex according to the input order appearing in
them with the help of Reingold’s algorithm for undirected reachability [15].

In the general inductive step there will be vertices v1, · · · , vm on the stack
and the goal is to verify if a connected component G′′ of G′− vm has tree-depth
at most d − m where G′ is the connected component of G − {v1, · · · , vm−1}
containing vm. To check if td(G′′) ≤ d−m, the algorithm tries different vertices
vm+1 of G′′ as the root of its decomposition just as above. Clearly, td(G′′) ≤
d − m iff one of the choices for vm+1 works. Once the algorithm verifies that
td(G′′) ≤ d−m, it removes vm+1 from the stack and goes to the next connected
component or to the previous level of recursion depending on whether there are
next connected components or not. ��

Next we give a logspace algorithm for computing tree-depth decomposition
based on the previous algorithm.

Lemma 3. There is a logspace algorithm AD that on input a graph G with
tree-depth at most d outputs a tree-depth decomposition of G.

Proof. Notice that in AR (Lemma 2) many of the vertices on the stack does not
work as the roots of the decompositions of the connected components. These
vertices gets replaced by other vertices in the backtracking process. There are
also some vertices that does work. The key idea is to isolate all the vertices
that are part of the total successful computation and output them along with
their positions on the stack. Since the set of vertices along with their positions
on the stack gives the complete information about all the root to leaf paths in
the decomposition, it can be used to compute the decomposition easily. To find
out if a vertex is a part of the total successful computation (i.e., it never gets
replaced because of failure) the recursive calls has to be made multiple times.

If the tree-depth is indeed at most d, the algorithmAR finally says “yes” when
there is one vertex v1 on the stack and no more connected component to be tested.
At this point (v1, 1) could be safely output. The next task is to find the decomposi-
tions of the connected components ofG− v1. To do this we start the computation
ofAR again with v1 on the stack. Just beforeAR decides that td(G′) ≤ d−1where
G′ is a connected component ofG− v1, there will be a vertex v2 in the second level
of the stack and the algorithm can safely output (v2, 2). The computation proceeds
in a similar way until AD finds the complete decomposition. Since AR is logspace
this algorithm is also logspace. ��
Theorem 1. Let d be a fixed constant. Then there is a logspace algorithm AISO

that given a pair of graphs G,H with tree-depth at most d decides if G ∼= H.

Proof. First using algorithm AD from Lemma 3 we find a tree-depth decompo-
sition TG of G. The idea is to use TG to find an isomorphic decomposition1 of H
and thus establishing G ∼= H . Similar idea has been used in [4]. We pick a vertex
v1 in H to check if it can act as the root of an isomorphic decomposition of H .

1 Two decompositions are isomorphic if there is an isomorphism between the two trees
which is also an isomorphism of the original graphs.

332 B. Das, M.K. Enduri, and I.V. Reddy

Suppose G1, · · · , Gp are the connected components of G − u1 where u1 is the
root of TG. Let H1, · · · , Hp be the connected components of H − v1. The goal is
to check if the connected components in both the graphs can be isomorphically
matched in such a way that it gives an isomorphic tree-depth decomposition
of the whole graph H . In general for G we will have a partial path u1, · · · , um

where u1 is the root of TG and ui is the parent of ui+1. Similarly for H we will
have a set {v1, · · · , vm} of vertices that are being tested as candidates for the
image of u1, · · · , um in the isomorphic decomposition. Let G′′ and H ′′ be two
connected components of G′−um and H ′−vm respectively, where G′ is the con-
nected component of G−{u1, · · · , um−1} containing um and H ′ is the connected
component of H − {v1, · · · , vm−1} containing vm. Let um+1 be the root of G′′

in TG. We pick a vertex vm+1 in H ′′ to check if it can act as the image of um+1.
To do this the algorithm checks if 1) {vm+1, vi} ∈ E(H) iff {um+1, ui} ∈ E(G)
for each i = 1, · · · ,m and 2) all the connected components of G′′ − um+1 and
H ′′ − vm+1 can be inductively matched isomorphically. If vm+1 does not work,
the algorithm tries the next vertex in H ′′ in the input order.

The logspace implementation is similar toAR. LetG
′′
1 , · · · , G′′

p andH
′′
1 , · · · , H ′′

p

be the connected components of G′′ − um+1 and H ′′ − vm+1 respectively. The
algorithm starts matching theG′′

i ’s one after another according to the order given
by the decomposition2 with H ′′

1 , · · · , H ′′
p . To match G′′

i the algorithm first counts
the number of isomorphicallymatching copies ofG′′

i amongG′′
1 , · · · , G′′

i−1. To keep
track of this number the algorithm maintains a counter in each level. Suppose the
number is x. Then G′′

i is the (x + 1)st copy and it has to be matched with x + 1
different copies amongH ′′

1 , · · · , H ′′
p . If the corresponding number of copies in both

the graphs in each level is found to be equal then the two graphs are isomorphic.
��

4 An FPT Algorithm

First we show that to design an fpt algorithm for a graph class it is enough to
design an fpt algorithm for colored biconnected graphs in that class.

Lemma 4. Let G be a parameterized graph class with the property that if G ∈ G
then the biconnected components of G are also in G. Let A be an algorithm to
test isomorphism of colored biconnected graphs in G that runs in time T (n, k)
where n is the input size and k is the parameter. Then there is an isomorphism
algorithm B in G that runs in time O(n2T (n, k)).

Proof. Without loss of generality we assume that G and H are connected but not
biconnected. First compute the block trees TG and TH for G and H . Block nodes
and articulation nodes are vertices in a block tree that correspond to blocks and
articulation points in the original graph. The leaves of a block tree are block
nodes. Also notice that the block nodes and the articulation nodes alternate in
any path in a block tree. Thus a block tree has a unique center. We assume that
TG and TH are rooted at their centers.

2 W.l.g., we assume that G′′
1 , · · · , G′′

p is the listing according to the order.

Logspace and FPT Algorithms for GI for Subclasses 333

The algorithm starts from the leaves of the block trees and proceeds in stages
where each stage corresponds to the levels of the trees. In each stage the algo-
rithm finds out if the subgraphs D1 and D2 induced in G and H by pairs of
subtrees T1 and T2 of TG and TH are isomorphic. If they are isomorphic, we call
T1 and T2 an isomorphically matching pair (imp). For each pair of subtrees in a
level the algorithm maintains a table to remember if they are imp.

In the base case T1 and T2 correspond to block nodes. Any block corresponding
to these blocks is biconnected with at most one articulation point. We run A on
pairs of such blocks by coloring the articulation points with color “red” to decide
if they are imps. For each such pair T1 and T2 the result is stored in the table.

The stages corresponding to articulation nodes are easier to handle. We just
have to check if the subtrees T11, T12, · · · , T1p and T21, T22, · · · , T2p of T1 and
T2 can be pairwise matched isomorphically. We use the imps (T1i, T2j) already
computed in the previous stage to decide if (T1, T2) is imp.

Next we describe the stages corresponding to non-leaf block nodes. Let B1 and
B2 be the blocks corresponding to roots r1 and r2 of T1 and T2. The algorithm
tests the isomorphism of D1 and D2 by checking the isomorphism of B1 and
B2 by coloring the articulation points in B1 and B2. Let a1 and a2 be the
articulation points in B1 and B2 corresponding to the parents of r1 and r2. We
color a1 and a2 by red color3. The other articulation points will corresponds to
subtrees hanging below from the blocks B1 and B2. We color these articulation
points by the isomorphism type of the subtree hanging below. We run A on the
colored blocks B1, B2 to decide if (T1, T2) is imp. Since A is used O(n2) many
times, the run-time of the algorithm is O(n2T (n, k)). ��

Apart from Lemma 4, one of the main ingredients is an fpt algorithm for graph
isomorphism for colored graphs parameterized by the tree-depth. The algorithm
is similar to the algorithm by Bouland et al.[3], except that we have to consider
colors. But this is not difficult. Bouland et al. defines an isomorphism ordering
for their algorithm. Colors of the vertices can be handled by modifying their
definition in the obvious way. For details see [3].

Next we combine Bouland’s algorithm and Lemma 4 to obtain the following
theorem.

Theorem 2. Let G and H be two graphs with length of longest cycle not more
than k. Then we can check whether G ∼= H in time f(k)nO(1) where f is a fixed
function.

Proof. We use Bouland’s algorithm (colored version) with tree-depth parameter
d = 1+(k−2)2 in place ofA in Lemma 4. Notice that by Lemma 1 the tree-depth
of the biconnected components in the Lemma 4 is at most 1 + (k − 2)2. ��

5 Conclusion

The recognition problem for graphs with bounded tree-depth is in AC0 [8]. It
would be interesting to know if our logspace upper bound for GI can be improved

3 We do not use the color red to color any other articulation points.

334 B. Das, M.K. Enduri, and I.V. Reddy

to AC0 or NC1. The question of whether there is a logspace algorithm for bounded
treewidth graphs seems to be a much harder problem and probably needs new
techniques. Although the result on fpt algorithm for GI is subsumed by [12], our
algorithm is very different and it would be interesting to see if this method can
be extended to give a different fpt algorithm for GI parameterized by treewidth.

References

1. Arvind, V., Das, B., Köbler, J.: A logspace algorithm for partial 2-tree canoniza-
tion. In: Hirsch, E.A., Razborov, A.A., Semenov, A., Slissenko, A. (eds.) CSR 2008.
LNCS, vol. 5010, pp. 40–51. Springer, Heidelberg (2008)

2. Arvind, V., Das, B., Köbler, J., Kuhnert, S.: The isomorphism problem for k-trees
is complete for logspace. Information and Computation 217, 1–11 (2012)

3. Bouland, A., Dawar, A., Kopczyński, E.: On tractable parameterizations of graph
isomorphism. In: Thilikos, D.M., Woeginger, G.J. (eds.) IPEC 2012. LNCS,
vol. 7535, pp. 218–230. Springer, Heidelberg (2012)

4. Das, B., Torán, J., Wagner, F.: Restricted space algorithms for isomorphism on
bounded treewidth graphs. Information and Computation 217, 71–83 (2012)

5. Datta, S., Limaye, N., Nimbhorkar, P., Thierauf, T., Wagner, F.: Planar graph
isomorphism is in log-space. In: Proceedings of 24th Annual IEEE Conference on
Computational Complexity, pp. 203–214. IEEE (2009)

6. Datta, S., Nimbhorkar, P., Thierauf, T., Wagner, F.: Graph isomorphism for K3,3-
free and K5-free graphs is in log-space. In: LIPIcs-Leibniz International Proceedings
in Informatics. vol. 4. Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2009)

7. Diestel, R.: Graph Theory Graduate Texts in Mathematics, vol. 173. Springer,
GmbH & Company KG, Berlin and Heidelberg (2000)

8. Elberfeld, M., Jakoby, A., Tantau, T.: Algorithmic meta theorems for circuit classes
of constant and logarithmic depth. In: Symposium on Theoretical Aspects of Com-
puter Science, vol. 14, pp. 66–77 (2012)

9. Evdokimov, S., Ponomarenko, I.: Isomorphism of coloured graphs with slowly in-
creasing multiplicity of jordan blocks. Combinatorica 19(3), 321–333 (1999)

10. Kratsch, S., Schweitzer, P.: Isomorphism for graphs of bounded feedback vertex set
number. In: Kaplan, H. (ed.) SWAT 2010. LNCS, vol. 6139, pp. 81–92. Springer,
Heidelberg (2010)

11. Lindell, S.: A logspace algorithm for tree canonization. In: Proceedings of the 24th
Annual ACM Symposium on Theory of Computing, pp. 400–404. ACM (1992)

12. Lokshtanov, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Fixed-parameter
tractable canonization and isomorphism test for graphs of bounded treewidth. In:
FOCS (2014), http://arxiv.org/abs/1404.0818

13. Nešetřil, J., De Mendez, P.O.: Sparsity: Graphs, Structures, and Algorithms,
vol. 28. Springer (2012)

14. Nešetřil, J., de Mendez, P.O.: Tree-depth, subgraph coloring and homomorphism
bounds. European Journal of Combinatorics 27(6), 1022–1041 (2006)

15. Reingold, O.: Undirected connectivity in log-space. J. ACM 55(4), 17:1–17:24
(2008)

16. Yamazaki, K., Bodlaender, H.L., de Fluiter, B., Thilikos, D.M.: Isomorphism for
graphs of bounded distance width. Algorithmica 24(2), 105–127 (1999)

http://arxiv.org/abs/1404.0818

�������� �	�
������ �������� �	�

�������������� ������ ���	������

������ ���	�
��� ��� ����� �	�� ��	 ����� �������

��� ��� ���	
 �������� ��� ��������� ��� ������� ����������

��� ����! �� �"����#��
 $��%���& �'(�)
 �(��)	 �"����#��
 ������!

����������		
�����
���������������	��������	��	���

�� �	������ �� ����� �� ��� �������� �� ��� ������ ��������
 �������� ��� ���
������������ ��
� ������ ������ �����
 �������	 �� !"#$ ��� ������ ��
 �������

����� %��� ��� ��� �� f2(c) = 1
k

∑k
i=1 ci �� �������� �����	 �� !"� ������
 &#

	��� ��� ���	 	'� �� �� ����� �� ��� ����$ �� ��� �����%���� %� ���� �'� ����
�����$ (�� 	������ ���'� ��� �����
 ��	 ��� ���
�������� %� ����� �� ��� ��������
 � ��$

�� ��� ��'��� �� ��� ���� �� !"� ������
 &#� ��� �) �������

max
x∈I1

{
M1

x
+

M2x

z�

}
�� �����	���	 ���� *+'����� �,$ -���� ���
�)�
'
 �� ������� 	����
���	 ��
x∗ =

√
(M1z

�)/M2$ �� ����� x∗ /∈ I1� ��	� ��'�� *+'����� �, 	��� ��� ���	$ ���
��
�
����.� ��� ����
�	� �� *+'����� �""� �$�$� ��� ������
�)�
'
 �� ���
� ���� �� I2$

/��� ���� ��� ���� ������ ��
�	�0�	 �'�� ���� ��� �����	 ��
 �������
����� �� �����$ -�%����� �� !1#� � ���� ������� ��������
 ��� ��� ������������
��
� ������ ������ �����
 �� �������	� �� �'�����	 ����%$

-�����%� ��	 ���� 	�0�� ��� ������ ��������
 �������	
����
���� ���k

��� ��� k���������� ��
� ������ ������ �����
 %��� ��� ��� �� �� ���������
����
���� ������'�'� �'������ f : Rk → R� ��� ��������
 "$

��� t = 1, 2, . . . , T ��

���� � pt =
(
p1t , . . . , p

k
t

)ᵀ
�� f

(
M1

p1
t
, . . . , Mk

pk
t

)
≤ f

(
p1
t

m1
, . . . ,

pk
t

mk

)
$

���

��	��
�� �� 2������	 3���� 3����� ���k

DOI 10.1007/

M.S. Rahman and E. Tomita (Eds.): WALCOM 2015, LNCS 8973, pp. 210–221, 2015.
c© Springer International Publishing Switzerland 2015

978-3-319-15612-5_31

�� ����� �	
��� ����
�
�� 	��������
����� �����
�� ���
 �������� ����

��
�
��� �
�� ��
� �����

� f2 ��� k = 2�

������� � �	
���

�� ����� ��� ������� ������ ���� �����	� �
 ���

��	��
 f2 �
� k = 2� ��� �
��
��� �
����

z2f2 =
1

2

⎡⎣√(
1

2

(
M2

m2
− 1

))2

+
M1

m1
+

1

2

(
M2

m2
+ 1

)⎤⎦ .

����������

�� �������		
 �� �	� ���
 � �	� �������
 ��� ����������� �	������ ��� �����
!�"������ !	��	� ��#�������� �	� $�������	#� �� ��� %�� &��'���� �	 ��#�������
�	� ����������	 (&�)�!�*�)+��
 ���� ,%-.
 ��� /�01//� (/0�2*

/� 3���#�4�
 �� �	� ����
 ��� !������ !	��	� ��#������� ��� ��� ����� !�"������ ����
������ ������ $������� ��5����206�077-7�7 8���9�:

The original online version for this chapter can be found at

http://dx.doi.org/10.1007/978-3-319-15612-5_19

(/0�2*

4�� zfk = sup(x1,...,xk)∈Sk
f
f
(

M1

x1
, . . . , Mk

xk

)
� %����

Sk
f =

{
(x1, . . . , xk) ∈ I1 × · · · × Ik : f

(
M1

x1
, . . . ,

Mk

xk

)
= f

(
x1

m1
, . . . ,

xk

mk

)}
%��� Ii = [mi,Mi] ��� i = 1, . . . , k$

-�����%� ��	 ���� ���� ����� ��� ��� ������� k ≥ 1 ��	 ���
�������
������'�'� �'������ f : Rk → R� ��� ��
 ������� ����� �� ���k %��� ��� ��� �� f
�� ����� �� zkf ��	 ���� �� ��� ���� ������� ��
 ������� ������ ��� !1� ������� 5$"#$

Author Index

Aoki, Hiroshi 161
Araki, Yoshiaki 294
Asada, Yuma 187

Bae, Sang Won 125
Barbay, Jérémy 199
Bekos, Michael A. 222
Bhagat, Subhash 149
Brandenburg, Franz J. 246

Chakaravarthy, Venkatesan 8
Chakraborty, Diptarka 258
Chao, Kun-Mao 77

Das, Bireswar 329
de Berg, Mark 101
Demaine, Erik D. 113
Denzumi, Shuhei 161

Emamjomeh-Zadeh, Ehsan 44
Enduri, Murali Krishna 329
Engels, Christian 282
Eppstein, David 113

Ferreira, Carlos E. 137
Fischer, Johannes 65

Gan Chaudhuri, Sruti 149
Ghodsi, Mohammad 44
Guan, Li 20
Gupta, Ankur 199
Gupta, Neelima 8

Hanada, Hiroyuki 161
Hashem, Tahsina 323
Heinsohn, Niklas 246
Hesterberg, Adam 113
Homapour, Hamid 44
Horiyama, Takashi 294
Hossain, Md. Iqbal 323

Ide, Jonas 210
Inoue, Michiko 187
Inoue, Yuma 161

Ito, Hiro 113
Iwaide, Ken 234

Jo, Seungbum 53

Kaufmann, Michael 246
Kindermann, Philipp 222

Li, Jianping 20
Li, Weidong 20
Lin, Wei-Yin 77
Lubiw, Anna 113

Mehrabi, Ali D. 101
Mhaskar, Neerja 270
Minato, Shin-ichi 161, 317
Moon, Nazmun Nessa 323
Mukhopadhyaya, Krishnendu 149

Nagamochi, Hiroshi 234
Narayanaswamy, N.S. 89
Neuwirth, Daniel 246
Nishizeki, Takao 32

Obata, Yuji 32

Pancholi, Aditya 8
Peters, Daniel 65

Rahman, Md. Saidur 323
Ramakrishna, G. 89
Raman, Rajeev 1, 53
Rao Satti, Srinivasa 53, 199
Ravelo, Santiago V. 137
Reddy, I. Vinod 329
Roy, Sambuddha 8

Schöbel, Anita 210
Seddighin, Masoud 44
Singh, Gaurav 89
Soltys, Michael 270
Sorenson, Jonathan 199
Strothmann, Thim 175
Sultana, Shaheena 323

Takeuchi, Shogo 161, 317
Tewari, Raghunath 258
Tiedemann, Morten 210

336 Author Index

Toda, Takahisa 317

Tsuda, Koji 317

Uchizawa, Kei 306
Uehara, Ryuhei 113, 294

Uno, Yushi 113

van Dijk, Thomas C. 222

Wang, Hung-Lung 77
Wolff, Alexander 222
Wu, Yen-Wei 77

Yashima, Daiki 306
Yasuda, Norihito 161

Zhang, Xuejie 20
Zhou, Xiao 306

	Preface
	Organization
	Invited Talks
	Polynomial Identity Testing
	References

	Power of Enumeration — BDD/ZDD-BasedMethods for Indexing Combinatorial Patterns
	References

	Encoding Data Structures
	Table of Contents
	Invited Contribution
	Encoding Data Structures
	1Introduction
	2Encoding Data Structures
	3Results on Encoding Data Structures
	3.1Range Statistics on 1D-Arrays
	3.22D Range Maximum Queries
	3.3Nearest Larger Values

	4Conclusion
	References

	Approximation Algorithms
	Fast Algorithms for Constrained Graph Density Problems
	1Introduction
	2Main Contributions
	3Preliminaries
	4Proof of Theorem 1
	References

	The Directed Ring Loading with Penalty Cost
	1Introduction
	2Preliminaries
	3The DRLPC Problem with Divisible Demand
	3.1NP-hardness
	3.2An Approximation Algorithm

	4The DRLPC Problem with Indivisible Demand
	4.1General Cases
	4.2A Special Case when kj=1

	5Conclusions
	References

	Edge-Colorings of Weighted Graphs
	1 Introduction
	2 Preliminaries
	3 Algorithm Delta
	4 Edge-Degenerated Graphs
	5 Algorithm Factor
	References

	Unit Covering in Color-Spanning Set Model
	1 Introduction
	2 Preliminaries and Notation
	3 MinCSBC
	3.1 Hardness of MinCSBC
	3.2 Approximation Algorithms for MinCSBC

	4 MaxCSBC
	4.1 Hardness of MaxCSBC
	4.2 Approximation Algorithm for MaxCSBC

	5 Conclusion
	References

	Data Structures and Algorithms
	Compact Encodings and Indexes for the Nearest Larger Neighbor Problem
	1 Introduction and Motivation
	2 Indexing NLRV on 1-dimensional Arrays
	3 NLV on 2-D Binary Arrays
	4 Encoding of NLV on 2-D Arrays
	References

	A Practical Succinct Data Structure for Tree-Like Graphs
	1 Introduction
	1.1 Our Contribution
	1.2 Further Theoretical Work on Succinct Graphs

	2 Preliminaries
	2.1 Succinct Data Structures
	2.2 The Level Order Unary Degree Sequence (LOUDS)

	3 New Data Structure
	3.1 Algorithms
	3.2 Space Analysis

	4 Implementation Details
	4.1 Representing Trit-Vectors
	4.2 Other Data Structures

	5 Practical Results
	6 Conclusions
	References

	Forming Plurality at Minimum Cost
	1Introduction
	2Preliminaries
	2.1Problem Definition
	2.2Properties of Plurality Points

	3NP-Hardness of the Minimum-Cost Plurality Problem
	The Case Where Voters Are Equally Weighted
	4.1 The Case �V ∗ ∩ V ∗ �= ∅
	4.2 The Case �V ∗ ∩ V ∗ = ∅
	A Polynomial-Time Algorithm

	Concluding Remarks
	References

	Approximate Distance Oracle in O(n2) Time and O(n) Space for Chordal Graphs
	1 Introduction
	2 Preliminaries
	3 Distance Information from Clique Trees
	4 Approximate Distance Oracle for Chordal Graphs
	4.1 O(1) Time Response to Distance Queries

	5 Conclusion
	References

	Computational Geometry
	Straight-Path Queries in Trajectory Data
	1Introduction
	2The Data Structures
	2.1A Look-up Table for Straight-Path Queries
	2.2A More Space-Efficient Alternative

	3Distance-Preserving Path Simplification
	References

	Folding a Paper Strip to Minimize Thickness
	1 Introduction
	2 Preliminaries
	3 NP-completeness
	4 Fixed-Parameter Tractability
	5 Conclusion
	References

	An Almost Optimal Algorithm for Voronoi Diagrams of Non-disjoint Line Segments
	1Introduction
	2Preliminaries
	2.1Voronoi Diagrams of Line Segments
	2.2Weakly Simple Polygons

	3Voronoi Diagram of a Polygon
	3.1Voronoi Diagram of a Weakly Simple Polygon
	3.2Voronoi Diagram of a Polygon with Holes

	4Voronoi Diagram of Line Segments
	References

	Combinatorial Algorithms
	PTAS's for Some Metric p-source Communication Spanning Tree Problems
	1Introduction
	2Definitions
	3Optimal Valid k-star for Metric p-OCT
	4Approximation Lemma (for Metric p-OCT Problems)
	5PTAS for Three p-OCT Metric Problems
	6Conclusions
	References

	Fault-Tolerant Gathering of Asynchronous Oblivious Mobile Robots under One-Axis Agreement
	1 Introduction
	1.1 Earlier Works
	1.2 Our Contribution

	2 Terminology
	3 Algorithm
	4 Correctness
	5 Conclusion
	References

	Enumerating Eulerian Trailsvia Hamiltonian Path Enumeration
	1Introduction
	2Definitions
	3Representing Eulerian Trails as Hamiltonian Paths in the Line Graph
	3.1Line Graph
	3.2The Condition When a Path in a Line Graph Represents a Trail in the Original Graph

	4Enumerating Hamiltonian Paths in the Line Graph Corresponding to Eulerian Trails
	4.1Representing Hamiltonian Paths by Zero-Suppressed Binary Decision Diagram
	4.2Algorithm for Enumerating Eulerian Trails

	5Experiment
	5.1Setting
	5.2Result

	6Conclusion
	References

	Distributed and Online Algorithms
	The impact of communication patterns on distributed locally self-adjusting binary search trees
	1 Introduction
	1.1 Model and Notions
	1.2 Related Work
	1.3 Our Contribution

	2 Analysis
	2.1 Convergence and Rotation Equilibria
	2.2 Non-convergence and Sink Equilibria

	3 Conclusion and Open Problems
	References

	An Efficient Silent Self-Stabilizing Algorithm for 1-Maximal Matching in Anonymous Networks
	1 Introduction
	2 Preliminaries
	3 Algorithm MM1
	4 Correctness
	5 Conclusion
	References

	Dynamic Online Multiselection in Internal and External Memory
	1 Introduction
	1.1 Previous Work
	1.2 Our Results

	2 Background
	2.1 Terminology
	2.2 Description of the Static Algorithm

	3 Optimal Online Dynamic Multiselection
	3.1 Preliminaries
	3.2 Dynamic Online Multiselection

	4 External Online Multiselection
	4.1 A Lower Bound for Multiselect in External Memory
	4.2 Partitioning in External Memory
	4.3 Algorithm Achieving O(Bm(Sq)) I/Os

	References

	Competitive Analysis for Multi-objective Online Algorithms
	1 Introduction
	1.1 Previous Work
	1.2 Our Contribution

	2 Competitive Analysis for Multi-Objective Online Algorithms
	2.1 Multi-Objective Online Problems
	2.2 The Competitive Ratio and Competitiveness

	3 The Multi-objective Time Series Search Problem
	3.1 Worst-Component Competitive Analysis
	3.2 Mean-Component Competitive Analysis

	4 Conclusion and Future Research
	References

	Graph Drawing and Algorithms
	Simultaneous Drawing of Planar Graphs with Right-Angle Crossings and Few Bends
	1 Introduction
	2 RacSim Drawings of General Graphs
	3 RacSim Drawings with One Bend Per Edge
	4 RacSim Drawings with Two Bends Per Edge
	5 Conclusions and Open Problems
	References

	An Improved Algorithm for Parameterized Edge Dominating Set Problem
	1 Introduction
	2 Preliminaries
	2.1 Terminology and Notation
	2.2 Instances with Covered and Discarded Vertices

	3 The Algorithm
	4 The Analysis
	5 A Related Problem: The Parameterized Weighted Edge Dominating Set Problem
	6 Conclusion
	References

	On Bar (1,j)-Visibility Graphs
	1 Introduction
	2 Upper Edge Bounds for Bar (1,j)-Visibility Graphs
	3 Construction of the Main Tool: The Ship-Gadget
	4 Hierarchy and Sparsity of Bar (1,j)-Visibility Graphs
	5 NP-Completeness of Bar (1,)-Visibility
	6 Conclusion and Open Problems
	References

	Simultaneous Time-Space Upper Bounds for Red-Blue Path Problem in Planar DAGs
	1 Introduction
	2 Preliminaries
	3 Red-Blue Path Problem
	3.1 Deciding Red-Blue Path in Planar DAGs
	3.2 Deciding Even Path in Planar DAGs

	References

	Combinatorial Problems and Complexity
	Non-repetitive Strings over Alphabet Lists
	1 Introduction
	2 Combinatorial Results
	3 Abelian Squares
	4 Future Directions
	4.1 Online Algorithms and Games
	4.2 Boolean Matrices
	4.3 Proof Complexity

	References

	Dichotomy Theorems for Homomorphism Polynomials of Graph Classes
	1Introduction
	2Model and Definitions
	2.1Complete Problems
	2.2The Problem and Related Definitions

	3Dichotomies
	3.1Cycles
	3.2Cliques
	3.3Trees
	3.4Outerplanar Graphs
	3.5Planar Graphs
	3.6Genus k Graphs

	4Conclusion
	References

	Common Unfolding of Regular Tetrahedron and Johnson-Zalgaller Solid
	1 Introduction
	2 Preliminaries
	3 The JZ Solids J17 and J84
	4 The Other JZ Solids
	5 Convex Polyhedra with Regular Polygonal Faces
	6 Concluding Remarks
	References

	Threshold Circuits for Global Patterns in 2-Dimensional Maps
	1 Introduction
	2 Definitions
	2.1 Threshold Circuits
	2.2 Function PnD

	3 Construction of Circuit
	4 Lower Bound
	5 Conclusion
	References

	Graph Enumeration and Algorithms
	Superset Generation on Decision Diagrams
	1 Introduction
	2 Decision Diagrams
	3 Algorithm
	4 Analysis
	References

	On Triangle Cover Contact Graphs
	1 Introduction
	2 Connectivity in TCCG
	3 Realizability of Outerplanar Graphs
	4 Conclusion
	References

	Logspace and FPT Algorithms for Graph Isomorphism for Subclasses of Bounded Tree-Width Graphs
	1 Introduction
	2 Preliminaries
	3 Logspace Algorithm for Bounded Tree-depth Graphs
	4 An FPT Algorithm
	5 Conclusion
	References

	Author Index

