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Overview
This dissertation studies the following:

■ A pair of foundational issues in algorithmic stability 
(robustness and tuning), with application to 
clustering in high-throughput computational biology.

■ An issue in data cleansing (outlier detection), with 
application to pre-processing in streaming 
meteorological measurement. 
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Big Data
■ The concept of big data was probably first mentioned in 1997 by Michael Cox 

and David Ellsworth when they worked on the visualization of computational fluid 
dynamics.

■ Three Vs: volume, velocity and variety.

■ Big data comes from a wide variety of fields. Examples include meteorology, 
genomics, neuroscience, social networks, public health, sensors, retail, financial 
services, transportation, web search, telecommunications and many other 
domains.

■ Most big data algorithms fall into one of several broad categories. These 
categories often overlap with no clear boundaries.



Experimental Data
■ More than 500,000 microarray datasets are publicly available due to the 

cheap price of genome sequencing.

■ We carefully selected gene co-expression datasets from Gene Expression 
Omnibus (GEO).
■ Baker’s yeast (S. cerevisiae)
■ Fruit fly (D. melanogaster)
■ Bacteria (E. coli))
■ Mouse (M. musculus
■ Fungi (P. chrysogenum)

■ Analysis was performed on the Compute and Data Environment for 
Science (CADES) clusters at ORNL.



Experimental Data

■ Atmospheric Radiation Measurement 
(ARM) facility collects data  from 
instruments deployed in ground 
stations across the globe.

■ We used data from Surface Meteorology Systems (MET) collected 
at the ARM Southern Great Plains (SGP) site in Oklahoma.

■ Five core variables are used:
■ Air temperature
■ Vapor pressure
■ Atmospheric pressure
■ Relative humidity
■ Wind speed



Important Graph-Theoretic Concepts

■ A graph G=(V,E) is formed by a set of vertices V(G) and a set of edges E(G).

■ Graphs mentioned in the dissertation are simple, finite, undirected and 
unweighted, unless otherwise stated.

■ A clique, or complete subgraph, is a subgraph in which each vertex is connected 
to every other vertex in that subgraph. A maximal clique is a clique to which no 
vertex can be added to form a larger clique. A maximum clique is a largest 
maximal clique.

■ A paraclique is a near-clique, that is, one that is missing a handful of edges. It is 
designed to ameliorate the effects of noise, and is constructed by first finding a 
maximum clique, C, and then adding vertices adjacent to most but not all of C in 
a tightly controlled fashion.



Graph Clustering Workflow

Similarity Metrics Threshold

Clustering 
AlgorithmCluster Quality
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mutual 
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clusteringParaclique

K-means and 
many others
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Clustering Basics
A clustering algorithm classifies a set of objects into subsets using some 
measure of similarity between each object pair.

Measuring cluster quality:

■ Problem: ground truth is often unknown.

■ known classification schemes (e.g. domain-specific knowledge such as 
ontological enrichment)

■ theoretical standards (e.g. modularity, clustering coefficient, silhouette 
coefficient, etc.)
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Robustness Motivation

❏ Clustering algorithms typically have one or more adjustable settings.

❏ Such a setting may represent, for example, a preset variable, a parameter of 
interest, or various sorts of initial assignments.

❏ A question of interest then is this: to what degree do the clusters produced 
vary as setting values change?
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Robustness Definition
If a pair of items appear together once, will they appear together 
consistently?

R = t / (dr)

■ t - the total number of (not necessarily distinct) pairs of objects that 
appear together in some cluster summed over all runs.

■ d - the number of distinct pairs of objects that appear together in some 
cluster produced by some run.

■ r - the number of times the clustering algorithm was run, each run using a 
different value for some setting of interest.

■ Robustness lies in the interval (0, 1].



An Example

(A,B): 3/3; (A,C): 1/3; (A,D): 1/3; (B,C): 1/3; (B,D): 1/3; (C,D): 2/3; (C,E): 1/3; (D,F): 
1/3; and (E,F): 2/3. Robustness = 0.481



Clustering Methods Tested for Robustness

Hierarchical Setting Graph-based Setting

Average Number of clusters CLICK Cluster homogeneity

Complete Number of clusters NNN Min neighborhood size

Mcquitty Number of clusters Paraclique Starting clique

Ward Number of clusters WGCNA Power

Partitioning Setting Neural network Setting

K-means Number of clusters SOM Grid type/size

QT Clust Max cluster diameter



Robustness of Four Hierarchical Algorithms on 
24 Transcriptomic Datasets



Robustness of All Algorithms Tested on 24 
Transcriptomic Datasets



Average Robustness of Each Algorithm



Coefficient of Variation of Each Algorithm



Discussion
❏ Hierarchical methods display the highest overall robustness. 

❏ WGCNA uses soft-power to construct its network, however, the topology of 

each weighted network changes with different powers, so that item pairs are not 

at all stable. 

❏ For K-means, items often shift to different clusters as the number of clusters 

changes.

❏ It is a similar situation for SOM, QT Clust, CLICK and NNN.

❏ For paraclique, the high robustness with different starting cliques is likely due in 

part to the fact that many of these cliques have significant overlap.
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Motivation

❏ When more than one maximum clique is present, deciding which to 
employ is usually left unspecified. In practice, graph clustering algorithms 
usually use the first maximum clique found.

❏ We empirically tested three different maximum clique selection 
strategies, comparing Gene Ontology (GO) enrichment p-values of 
paracliques produced by each.



28 yeast microarray 
expression datasets and 
experimental results 
obtained at a threshold 
of 0.80.



p1 = 0.0000163

p2 = 0.00047

Comparisons Between Highest and Lowest 
Weight Maximum Cliques



p1 = 0.00219

p2 = 0.0000278

Comparisons Between Highest and Random 
Weight Maximum Cliques



Comparisons Between Random and Lowest 
Weight Maximum Cliques

A random choice was better in 191 graphs, there was no difference in 215 graphs, and 
a lowest choice was better in 162 graphs. 

Although the ratio was still above one (at 1.179), neither binomial test reached the 
level of significance, with p = 0.035 and p = 0.0876, respectively.



Discussion

❏ Sometimes there is little difference in enrichment p-values due to 
significant overlap between maximum cliques. In GDS344, for example, 
84 of 87 vertices appear in all maximum cliques at a threshold of 0.8. 

❏ The number of maximum cliques can vary greatly between datasets, and 
even between graphs constructed at different thresholds from the same 
dataset. 
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Motivation

❏ Collected datasets at ARM require high accuracy to enable rigorous 
study of atmospheric processes. But outliers are common due to 
instrument failure or extreme weather events.

❏ Currently, the datasets are checked manually by Data Quality Office 
(DQO).

❏ Thus an effective and efficient outlier and noise detection method is 
crucial for ARM to provide scientific users with high quality data for 
research.



Background
❏ Outlier detection is a common task in many application domains.

❏ Common techniques for outlier detection include signal processing, 
classification, clustering, nearest neighbor, density, statistical, information 
theory, spectral decomposition, etc.

❏ We compared three methods from pairwise, univariate, and multivariate 
perspective respectively.



Pearson Correlation Coefficient
❏ Co-located meteorological variables measure different aspects of 

atmospheric conditions at any location, and driven by atmospheric 
physics are inherently correlated with each others. Any atmospheric 
phenomena at the location would affect all variables in an expected and 
correlated fashion. 

❏ We performed pairwise comparisons of the five variables using Pearson 
correlation on data from 24 extended facilities.

❏ Calculated Pearson correlation coefficients are stored as the expected 
values between two variables. If this pairwise Pearson correlation of two 
variables deviates far away from our expected historical correlation, we 
treat it as an outlier. 



Pearson Correlation patterns for ten meteorological variable 
pairs during spring season across all the years.



Singular Spectrum Analysis

❏ Singular Spectrum Analysis (SSA) is a univariate time series analysis 
method which was applied to detect outliers by removing the anticipated 
annual and seasonal cycles from the signal to accentuate anomalies. 

❏ The general idea is to use a subset of the decomposition of trajectory 
matrix to approximate the original data.



Decomposition of air temperature data from MET instrument at facility E33 
using SSA method to isolate various frequencies.



Mean temperature outliers detected by SSA on instrument E33 from 2012 to 
2017.

http://yupinglu.me/arm-ssa/plotly/temp_mean/E33-2012-2017.html

http://yupinglu.me/arm-ssa/plotly/temp_mean/E33-2012-2017.html


K-means
❏ The southern plains, where SGP site is located, are known to experience 

frequent extreme storms occurring most often during spring and early 
summer. 

❏ However, meteorological variables during such events won’t be captured 
by Pearson Correlation as they may still follow known correlation 
structure at seasonal scales or by SSA method since any individual 
variable may not show large deviation. 

❏ Multivariate approaches such as K-means clustering have been widely 
used to identify weather and climate regimes. 



K-means
■ We applied k-means clustering to 

ARM meteorological data. 

■ We then calculated the distance of 
each point within a cluster to its 
corresponding cluster centroid. 

■ Given known seasonal patterns at 
the site we set k to four to 
determine weather regimes for four 
seasons.



Outliers detected by K-means on instrument E33 from 2012 to 2017.

http://yupinglu.me/arm-ssa/plotly/kmeans/E33.0.html

http://yupinglu.me/arm-ssa/plotly/kmeans/E33.0.html


Evaluation of Detected Outliers

❏ We treated outliers detected in DQR database as True Positives. The 
equations below show the calculation of Precision and Recall.



Results

SSA and K-means outlier set size
Precision and recall of SSA and K-means



Outliers detected at facility E33 for air temperature by Pearson correlation, SSA and 
k-means algorithms. Outliers detected by Pearson correlation are in the shaded yellow 
region. Outliers detected by both SSA and k-means algorithms are shown by red squares, 
while those identified by SSA and k-means only are indicated by black stars and orange 
diamonds respectively. DQR records are denoted by the vertical green shaded areas.

http://yupinglu.me/arm-ssa/plotly/combined/E33.0.html

http://yupinglu.me/arm-ssa/plotly/combined/E33.0.html


Discussion
■ Pearson correlation coefficient is a pairwise comparison method, however, if the 

two variables deviate in the same direction, their correlation may not change 
significantly and thus may go undetected. Due to seasonal nature of the analysis, it 
was not able to identify outliers that persisted at hours to days only. 

■ Univariate SSA method was very effective at identifying outliers with extreme 
high and low values in the time series but required the input data to be consistent 
with no missing values. 

■ K-means could be used to detect extreme storms and weather events but it was 
hard to tell which variable mainly caused the abnormality. 

■ However, these drawbacks could be easily overcome by combining methods 
together to detect outliers from three different angles.
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Our Work in the Field
■ “A Robustness Metric for Biological Data Clustering Algorithms” 

[14th International Symposium on Bioinformatics Research and Applications (ISBRA 
2018), Beijing, China]

■ “Clique Selection and its Effect on Paraclique Enrichment: An 
Experimental Study” 

[Under review]

■ “Detecting Outliers in Streaming Time Series Data from ARM 
Distributed Sensors” 

[IEEE International Conference on Data Mining Workshop (ICDMW 2018), Singapore]
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Summary of Contributions

■ We demonstrated how the robustness of clustering algorithms can 
be measured and compared. Our tests on transcriptomic data show 
that hierarchical methods and the paraclique algorithm have higher 
robustness scores than other clustering algorithms.

■ We performed empirical testing on three different maximum clique 
selection strategies and found that selecting a maximum clique with 
highest average edge weight tends to produce superior results on 
transcriptomic data.

■ We described a novel automated framework for outlier detection in 
meteorological data. Experimental results show that 88.9% of 
outliers detected by the framework are not found in the database.



Future Research Directions: Robustness

❏ Extend the metric to overlapping clustering algorithms.

❏ Test the metric on other types of biological data and data 
from other domains such as communications, transportation 
and social networks.



Future Research Directions: Tuning

❏ Test whether the selection strategies have the same effect 
on the second or deeper level paracliques. 

❏ Test other selection strategies. For instance, instead of 
restricting the choice to maximum cliques, one might choose 
the (not necessarily maximum) clique with the highest total 
edge weight. 

❏ Further analyses on larger and more diverse datasets may 
also reveal greater improvements. 



Future Research Directions: Outlier Detection

❏ Test the framework on meteorological data collected from 
other sites, and even other types of ARM data, for example, 
weather radar data and satellite observation data.

❏ Multivariate SSA methods and machine learning could also be 
explored in an effort to detect outliers more effectively.



Future Research Directions

❏ This dissertation only focused on three tasks in big data 
analytics for biological data and meteorological data. Future 
tasks include classification, regression, visualization and many 
others.

❏ Other technologies could also be explored, for example, 
Spark, Cassandra, Neo4j, etc.
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