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Abstract—The Atmospheric Radiation Measurement (ARM)
Data Center at ORNL collects data from a number of permanent
and mobile facilities around the globe. The data is then ingested
to create high level scientific products. High frequency streaming
measurements from sensors and radar instruments at ARM sites
require high degree of accuracy to enable rigorous study of
atmospheric processes. Outliers in collected data are common
due to instrument failure or extreme weather events. Thus,
it is critical to identify and flag them. We employed multiple
univariate, multivariate and time series techniques for outlier
detection methods and studied their effectiveness. First, we ex-
amined Pearson correlation coefficient which is used to measure
the pairwise correlations between variables. Singular Spectrum
Analysis (SSA) was applied to detect outliers by removing the
anticipated annual and seasonal cycles from the signal to accentu-
ate anomalies. K-means was applied for multivariate examination
of data from collection of sensors to identify any deviation from
expected and known patterns and identify abnormal observation.
The Pearson correlation coefficient, SSA and K-means methods
were later combined together in a framework to detect outliers
through a range of checks. We applied the developed method to
data from meteorological sensors at ARM Southern Great Plains
site and validated against existing database of known data quality
issues.

Index Terms—outlier detection, time series, clustering, atmo-
spheric science

I. INTRODUCTION

The Atmospheric Radiation Measurement (ARM) user fa-

cility was founded by the U.S. Department of Energy (DOE)

in 1989 [1]. Since then, its aim is to be the platform for

the observation and study of Earth’s climate. ARM facility

collects large volume of datasets from instruments deployed in

different ground stations across the globe [2]. The ARM Data

Center (ADC) is responsible for ingesting the collected data

and creating high level scientific data products for distribution

and dissemination to scientific research community, especially

to inform and improve the representation of atmospheric, cloud

and aerosols processes in global climate models (GCMs) [3].

They also develop a large number of high level data products,

also called “Value Added Products” (VAPs), quality of which

are highly dependent on the correctness of the raw data. Data

are transferred from individual site to ADC in a streaming

near-real-time fashion and the raw data is ingested, processed

to produce VAPs and made available to users via a web-based

data discovery interface with a lag time of less than an hour.

Along with expediency, it is also essential to identify, address,

and communicate any noise and outliers in the data to maintain

high data quality. Thus an effective and efficient outlier and

noise detection is crucial for ARM to provide scientific users

with high quality data for research.

Outlier detection, also called anomaly detection or intrusion

detection, is a common task in many application domains

that include time series data, streaming data, distributed

data, spatio-temporal data, and network data [4]. Common

techniques for outlier detection include signal processing,

classification, clustering, nearest neighbor, density, statistical,

information theory, spectral decomposition, and visualization.

Among all these techniques, time series data outlier detection

and temporal network outlier detection are especially useful

for ARM data.

Outlier detection in time series data was first studied by Fox

in 1972 [5]. Common types of outliers are additive outliers,

level shifts, temporary changes, and innovative outliers. One

common approach is the discriminative method which is based

on a similarity function. For example, the normalized longest

common subsequence (NLCS) is a similarity measurement

widely used in the field of data mining [6]–[8]. Commonly

used clustering methods such as K-means [9], dynamic clus-

tering [8], single-linkage clustering [10], principal component

analysis (PCA) [11], and self-organizing map (SOM) [12] are

also popular.

Different from the methods mentioned above, window-

based detection breaks the time series data into overlapping

subsequences with fixed window size [13]. Each window is

assigned an anomaly score, and then a final score for the

times series data is calculated by aggregating the window

scores. Subspace based analysis for univariate time series data

is similar to window-based detection. The subspace based

transformation is to convert a univariate time series into

a multivariate time series with fixed window size. It then

transforms the multivariate time series back to univariate time
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series. Singular Spectrum Analysis is a widely used algorithm

for such problem [14].

ARM data also belongs to the class of temporal data as

we can sequentially create a time series of network changes

or graph snapshots at different periods. Each period forms

a graph snapshot using various graph distance metrics from

a set of nodes. Many challenges exist for outlier detection

for temporal data. First, the algorithm or model needs to be

chosen carefully as the properties of each data and network

are different. Second, the temporal data has space and time

dimensions which make it complex to analysis. Third, its scale

is massive, and efficient algorithm is crucial for fast outlier

detection. One common problem for temporal data is to detect

outlier graph snapshots from a series of graph snapshots in

temporal networks. Pearson correlation coefficient , which is

explained in detail later, is a good candidate for such problem.

A number of approaches have been developed in literature

for temporal outlier detection, especially for environmental

sensor data. Birant et al. [15] discovered high wave heights

values as outliers while studying the wave height values from

the east of the Mediterranean Sea, the Marmara Sea, the Black

sea, and the Aegean Sea. Hill et al. [16], [17] filtered out

measurement errors in the wind speed data stream from Water

and Environmental Research Systems (WATERS) Network

Corpus Christi Bay testbed with dynamic Bayesian networks.

Drosdowsky et al. [18] found anomalies from Australian

district rainfall using rotated PCA. Wu et al. [19] detected

precipitation outlier events while working on South American

precipitation data set. Sun et al. [20] extracted locations which

always have different temperature from their surroundings by

exploring the South China area dataset from 1992 to 2002.

Within ARM program, the Data Quality Office (DQO) is

charged with inspecting and assessing approximately 5,000

data fields on a daily to weekly basis. The objective of

DQO is to quickly identify data anomalies and report them

to site operators and instrument mentors so that corrective

actions can be performed and thereby minimize the amount

of unacceptable data collected. With focus on quick near real-

time assessment of data, process relies heavily on univariate

analysis and lacks rigorous detection of outliers. Objective

of this study was to develop efficient and rigorous outlier

detection technique for ARM time series data using univariate,

multivariate and time series statistics techniques.

II. DATASETS

ARM data are stored and distributed in the Network Com-

mon Data Form (NetCDF) format which is self-describing and

machine-independent [21], [22] and has good performance and

data compression. It is commonly used to handle scientific

data, especially in climate and Earth sciences, meteorology,

oceanography, and remote sensing etc. All ARM data are

publicly available and can be downloaded from ARM Data

Center (https://www.arm.gov/data) where a large range of

datasets ranging from meteorology, to atmospheric profiles, to

weather radars to satellite observations are available. Datasets

are collected at a number of different locations using large

number of diverse instruments are available within ARM.

TABLE I
SGPMET DATASETS USED IN THIS STUDY

Facility E1 E3 E4 E5 E6 E7
Begin Year 1996 1997 1996 1997 1997 1996
End Year 2008 2008 2010 2008 2010 2011
Facility E8 E9 E11 E13 E15 E20
Begin Year 1994 1994 1996 1994 1994 1994
End Year 2008 2017 2017 2017 2017 2010
Facility E21 E24 E25 E27 E31 E32
Begin Year 2000 1996 1997 2004 2012 2012
End Year 2017 2008 2001 2009 2017 2017
Facility E33 E34 E35 E36 E37 E38
Begin Year 2012 2012 2012 2012 2012 2012
End Year 2017 2017 2017 2017 2017 2017

In this study, we used the data from Surface Meteorol-

ogy Systems (MET) collected at the ARM Southern Great

Plains (SGP) site in Oklahoma, United States. SGP is ARM’s

largest facility that comprises of a network of core and

extended facilities. In our study we used MET data from

24 extended facilities where surface meteorological obser-

vations have been collected continuously and independently.

While MET instruments collect a large array of direct and

indirect measurements, we focused our analysis on five core

meteorological variables: air temperature (temp mean), vapor

pressure (vapor pressure mean), atmospheric pressure (at-
mos pressure), relative humidity (rh mean) and wind speed

(wspd arith mean). These five core meteorological variables

are inputs for a large number of derived datasets produced by

the ARM and are often essential set of data for most atmo-

spheric analysis, hence focus of our study. Table I provides

details of sites and available time series for the datasets used.

III. METHODOLOGY

From the many outlier detection methods introduced in

the first section, we carefully selected Pearson correlation

coefficient, Singular Spectrum Analysis and k-means for our

study and applied them to ARM time series data.

A. Data Pre-processing

Raw time series data from MET instruments are available at

temporal resolution of one minute for all variables considered

in this study. Data were pre-processed for in various analysis

in our study. One minute temporal resolution time series was

standardized with mean of zero and one standard deviation

for Pearson Correlation analysis. A daily temporal resolution

standardized time series was prepared for use with SSA based

detection method. Multi-variate cluster analysis was conducted

using standardized daily time series of all meteorological

variables.

B. Pearson correlation coefficient

Co-located meteorological variables measure different as-

pect of the atmospheric conditions at any location, and driven

by atmospheric physics are inherently correlated with each

others. Any atmospheric phenomena at the location would
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affect all variables in an expected and correlated fashion.

Analysis of historical time series data would provide us the

baseline correlation structure and patterns for the location.

Any abrupt change or break in correlation structure among

meteorological behavior can be a sign of sensor malfunction

and should be identified as an outlier. In addition, ARM SGP

site comprise of multiple facilities making similar sets of

measurement and any abrupt change in correlation structure

not observed at other facilities will also indicate a potential

outlier.

The Pearson correlation coefficient was first introduced by

Karl Pearson [23] and can be used to measure the linear

correlation between two variables. The Pearson correlation

coefficient is calculated from the covariance of two variables

divided by the multiplication of the standard deviation of those

two variables. This normalization results in a value between

[-1, 1]. If the value is close to -1, it means those two variables

are highly negatively related. On the other hand, if the value

is close to 1, then the two variables are strongly positively

related. If the value is near 0, it means those two variables do

not have linear relation.

We performed a pairwise comparison of the five variables

using Pearson correlation using data from all 24 extended fa-

cilities. Atmospheric dynamics are strongly driven by seasons

and the correlation patterns among meteorological variables

can have season specific patterns. We performed our analysis

seasonally by separating the data among Winter, Spring,

Summer and Fall seasons. Figure 1 shows the distribution

of pairwise correlation for Spring season. All variables show

strong correlations which are normally distributed. The long

tails of the distribution are potentially due to outlier data

points. For example, the Pearson correlation between air

temperature and vapor pressure is positively correlated with

correlation mean close to 0.75. And the Pearson correlation be-

tween atmospheric pressure and air temperature is negatively

correlated with correlation mean close to -0.60. These highly

correlated Pearson correlation coefficients are stored as the

expected values between two variables. We then compare each

Pearson correlation of two variables from a specific season

in a specific year from a specific instrument individually. If

this pairwise Pearson correlation of two variables deviates

far away from our expected historical correlation, we treat

it as an outlier. This method would allow to check incoming

datastream on near-real-time basis to identify outliers.

C. Singular Spectrum Analysis

Univariate time series analysis of meteorological variables

can be applied to identify any unexpected variability and

extreme values observed by the instruments. These anomalous

observations can be indicative of extreme atmospheric events

at the site and are important to identify. However, a range of

natural inter-annual and intra-annual variability in meteoro-

logical times series is also expected and it’s important to not

erroneously flag them as outliers. We applied Singular Spec-

trum Analysis for time series of analysis of meteorological

observations to identify extreme events.

Singular Spectrum Analysis (SSA) is a popular method

for time series data analysis [14], [24]. The general idea is

to use a subset of the decomposition of trajectory matrix

to approximate the original data. Many applications can be

found in [14]. For example, SSA can be applied to monitor

volcanic activity [25]. It can also be used to extract trend [26].

SSA method is designed to remove any number of modes of

specified periodicity from the time series. This is meant to

remove known seasonalities from the data in order to isolate

true anomalous values more accurately.

Assume we have an ARM time series data Y of length T

Y = (y1, . . . , yT )

where T > 2 and yi is not empty. Let L (1 < L ≤ T/2) be the

window size and K = T − L + 1. In general, the algorithm

contains two main parts: decomposition and reconstruction.

The first step is to form the trajectory matrix X from vector Y

by embedding subsets of Y. These subsets of Y Xi are lagged

vectors of length L.

Xi = (yi, . . . , yL+i−1)
T (1 ≤ i ≤ K)

X = [X1, . . . , XK ]

Thus the trajectory matrix is

X = (xij)
L,K
i,j=1 =

⎛
⎜⎜⎜⎜⎝

y1 y2 y3 . . . yK
y2 y3 y4 . . . yK+1

y3 y4 y5 . . . yK+2
...

...
...

. . .
...

yL yL+1 yL+2 . . . yT

⎞
⎟⎟⎟⎟⎠

(1)

where xij = yi+j−1. We can see from equation 1 that

matrix X has equal elements on anti-diagonals and therefore

it is a Hankel matrix. Then we perform the singular value

decomposition (SVD) on S = XXT where the eigenvalues

of S are denoted by λ1, . . . , λL in the decreasing order of

magnitude (λ1 ≥ . . . ≥ λL ≥ 0) and the corresponding

eigenvectors by P1, . . . , PL. Let d = rank X and Vi =
XTPi/

√
λi(i = 1, . . . , d). Thus, the trajectory matrix X can

then be written by its eigendecomposition,

X = X1 + . . .+Xd (2)

where Xi =
√
λiPiV

T
i .

Next we choose a subset of eigenpairs to form an approx-

imation of the trajectory matrix. It is at this point that our

version of the algorithm differs. Given that the time series

we are studying has seasonality at known frequencies, we use

Fast Fourier transform (FFT) to find the dominant frequency

of each eigenvector [27]. We then approximate the trajectory

matrix by including modes which match the frequencies of the

seasonality we wish to remove. For example, we anticipate that

the temperature data will have a annual and possibly monthly

cycle, as shown in Figure 2. SSA allows us to tease out these

contributions in additive fashion. In this example, the signals

from the year, month, and residual sum together to form the

original raw data. This residual is then the noise in the raw

data with the seasonality removed as doing so exposes large

anomalies which are possible outliers.
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Fig. 1. Pearson Correlation patterns for ten meteorological variable pairs during spring season across all the years.

Once the eigenpairs are chosen, we proceed with the clas-

sical definition of the method. If I represents a set of indices

corresponding to the eigenmodes to remove, we approximate

the trajectory matrix

Xt =
∑
i∈I

Xi

An approximation Y t to the original signal Y can be obtained

from Xt by inverting the process used to form the trajectory

matrix, Equation (1). Each column of Xt represents a shifted

approximation to Y t, thus we average each shifted column.

Finally the deseasonalized residual is the difference between

the original signal and the reconstruction, R = Y − Y t.
We applied SSA for analysis of all five meteorological

variables across all facilities (Table I) to identify outliers in

all meteorological observations.

Because SSA requires the time series data to be continuous,

we corrected any missing values in the time series by replacing

them with long term seasonality. We set L = 400 and isolated

the signals corresponding to year and monthly frequency in the

data. Thus Y t = Y t[0] + Y t[1] + Y t[2]. Figure 2 shows the

result of SSA analysis for air temperature variable at facility

E33. The first row of Figure 2 shows the raw daily time series

(Y t) of air temperature, which shows no significant trend

(orange line Y t[0]) at the site during period 2012 to 2017. The

second and third rows show the annual (Y t[1]) and monthly

(Y t[2]) frequencies of the temperature time series respectively.

Temperature time series data shows strong annual and monthly

frequencies at the sites which expected and reflective of long

term weather patterns experienced at the SGP site. The last

row shows the time series of residual after removing the tends,

and annual and monthly frequencies from the data. While

some of the residuals may be reflective if natural variability,

the anomalous positive or negative temperature residuals can

be identified as outliers in the data. Multiple methods are

available to set a threshold for extreme values in the residuals

as outliers. We used the three sigma rule to extract outliers

[28]. For example, the two peak points in Figure 2 are larger

than three sigmas, thus are outliers.

D. K-means

Southern plains, where SGP site is located, are known to

experience frequent extreme storms occurring most frequently

during spring and early summer seasons. Identifying these

extreme events is of interest for scientific users of the data

to study and/or isolate these phenomena. However, meteo-

rological variables during such events won’t be captured by

Pearson Correlation as they may still follow know correlation

structure at seasonal scales or by SSA method since any

individual variable may not show large deviation. Multivariate

approach like k-means clustering have been widely used to

identify weather and climate regimes [29], [30]. We used k-

means clustering algorithm to delineate the weather regimes at

SGP site. While extreme storms and weather events that often

occur at sub-daily timescales may still fall within identified

known weather regimes at the site, they often are out of norm

extremes within the regime and of interest to us.

K-means is a partitioning clustering algorithm [9], [31]. It

starts with user specified k centroids, and assigns the points

to the nearest centroid. Then it computes new k centroids and

assigns all data points to these centroids again. This process

is repeated until convergence criteria is met.

We applied k-means clustering to ARM meteorological data

set to defined weather regimes at SGP site. We then calculated
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Fig. 2. Decomposition of air temperature data from MET instrument at facility E33 using SSA method to isolate various frequencies.

Algorithm 1: K-means Outlier Detection

Input : ARM time series data

Output: Outliers

1 outliers ← ∅

2 df ← ARM time series data

3 data ← df[‘atmos pressure’,‘temp mean’,

‘rh mean’,‘vapor pressure mean’,‘wspd arith mean’]

4 number of clusters ← 4

5 clusters ← K-means(data, number of clusters)

6 distances ← Distance between each point and its centroid

7 mean ← arithmetic mean of distances

8 sigma ← standard deviation of distances

9 threshold ← mean + 3 * sigma

10 for i in range(size of distances) do
11 if distances[i] > threshold then
12 outliers ← outliers ∪ distances[i]

13 end
14 end
15 return outliers

the distance of each point within a cluster to its corresponding

cluster centroid. Vector of distances within each cluster were

used to identify points that are on fringes of the regime they

belong to and considered outliers. All five meteorological

variables were used in this analysis. Algorithm 1 describes

the workflow.

Given known seasonal patterns at the site we set k to

four to determine weather regimes for four seasons. Figure 3

shows the four regimes at facility E33 that representing spring

(cluster 1), winter (cluster 2), summer (cluster 3) and fall

(cluster 4). Data points within each weather regime (or cluster)

that are at significant distance from their clusters (identified

by red squares in Figure 3) were identified as outlier (and may

correspond to extreme weather events).

E. Evaluation of outlier detection

ARM data quality assurance program maintains a database

of outliers that has been been identified, inspected and docu-

mented for all historical data. However, recorded data quality

issues are added manually for historical data when an issue is

identified or reported and are known to be incomplete [32].

A description of the outlier event is included in these DQR

which often are temporary change in operating conditions

such as power failures, frozen and snow covered sensors,

instrument degradation, or contamination. Most often extreme

weather events are not captured and reported by the current

system before. Each DQR entry also contains a specific time

range affected, list of data projects, and specific measurements.

And these entries are usually submitted by either the Data

Quality Office [33] or the instrument mentor [34]. The Data

Quality Reports (DQR) are stored and available as PostgreSQL

database (http://dq.arm.gov). During study period of 1994-

2017, across 24 facilities studied at SGP site, a total of

181 DQRs were reported for MET variables analyzed, each

often spanning multiple day time period totaling 8540 days.

The reported data quality issues covered all five variables:
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Fig. 3. Outliers detected using k-means method at facility E33. X-axis represent the daily meteorological time series, colored by cluster (weather regime)
they belong to, while Y -axis show the distance of the data point from the centroid of its cluster (weather regime).

air temperature (41 events; 8217 days), vapor pressure (42

events; 8194 days), atmospheric pressure (12 events; 76 days),

relative humidity (32 events; 8108 days), and wind speed (52

events; 265 days). We evaluated outliers identified by methods

developed in this study against the DQRs in the database

through database queries and calculated Precision and Recall
metrics [35]. We treated outliers detected in DQR database as

True Positives. The equation 3 and 4 show the calculation of

Precision and Recall.

IV. RESULTS AND DISCUSSION

All three methods were applied to five meteorological

variables across all facilities. The methods identified different

sets of outlier events, with some events identified by more than

one method (Figures 1,2,3).

Among three methods Pearson correlation was least effec-

tive with frequent false negatives. Pearson correlation is also

an aggressive method that it may include many false positives.

Those are all due to the fact that pairwise Pearson correlation

method was applied at seasonal scale. Pearson correlation

coefficient is a pairwise comparison method, however, if the

two variables deviate in the same direction, their correlation

may not change significantly and thus may go undetected.

Due to seasonal nature of the analysis, it was not able to

identify outliers that persisted at hours to days only. Univariate

SSA method was very effective at identifying outliers with

extreme high and low values in the time series but required

the input data to be consistent with no missing values. k-

means could be used to detect extreme storms and weather

events but it was hard to tell which variable mainly caused

the abnormality. However, these drawbacks could be easily

overcome by combining methods together to detect outliers

from three different angles.

In our experiment, SSA method identified largest number

of outlier events (922) (Table II) across the entire dataset,

while k-means identified 508 events. While 378 events were

identified as outliers by both the methods (intersection), 674

events were only identified by one of the methods (Table II).

Figure 4 shows all the outliers detected by Pearson correlation,

SSA and k-means methods at facility E33 for air temperature.

When using Pearson Correlation, we used the interquartile

range (IQR) method to extract outlier seasons that is those

values beyond Tukey’s fences as the three sigmas rule is too

aggressive for Pearson correlation [36]. However, since the

Pearson Correlation was applied at seasonal scale it identified

only a few outlier seasons in the data. For example, at facility

E33 Pearson Correlation analysis of temperature time series

identified spring 2015 that experienced a severe frost event

as outlier season (Figure 4). When combined together SSA

and k-means methods had Precision of 11.10% which shows

that many of the outliers detected are not within ARM DQR

database, which is a known limitation of the current records

that this current study is trying to address. Detected outliers

also had low Recall which in addition to small number of true

positives can be due to fact that DQR database often records a

wide affected date range for an identified outlier instead of a

precise date thus leading to large false negatives, all of which

leads to low Recall values.

Overall, when combined together within a framework, set

of methods applied allows to capture outlier events caused by

a wide range of conditions.
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Precision =
True Positives (Outliers detected in DQR database)

True Positives+ False Positives (Outliers detected not in DQR database)
(3)

Recall =
True Positives (Outliers detected in DQR database)

True Positives+ False Negatives (Undetected records in DQR database)
(4)

Fig. 4. Outliers detected at facility E33 for air temperature by Pearson correlation, SSA and k-means algorithms. The yellow shaded areas are outliers detected
by Pearson correlation. Outliers detected by both SSA and k-means algorithms are shown by red squares, while those identified by SSA and k-means only
are indicated by black stars and orange diamonds respectively. DQR records are denoted by the vertical green shaded areas.

TABLE II
COMPARISON OF SSA AND K-MEANS OUTLIER SET SIZE

Outlier Set Size
SSA 922
K-means 508
Intersection 378
Symmetric Difference 674

TABLE III
PRECISION AND RECALL OF SSA AND K-MEANS

Method Variable Precision Recall
SSA Air Temperature 16.00% 1.20%
SSA Vapor Pressure 20.70% 1.40%
SSA Atmospheric Pressure 0.00% 0.00%
SSA Relative Humidity 14.80% 0.50%
SSA Wind Speed 0.60% 1.50%
Kmeans All Variables 13.00% 1.90%
Combined All Variables 11.10% 4.10%

V. CONCLUSIONS

In this paper we tested pairwise Pearson correlation, univari-

ate SSA and multivariate k-means based method for detection

of outliers in the data at ARM meteorological observations

at SGP site. Combining the approaches within a framework

for streaming data within ARM provides a platform to detect

outliers from a wide range of sensor failure scenarios to

extreme events. While each of the methods developed and

applied in this study has its strengths and limitations, our

evaluation against existing database of data quality issue

suggests that the framework is able to identify known outliers

well. Although our current study focused on meteorological

observations, it provides a framework for an efficient outlier

detection of streaming datasets within ARM that can be

extended to other classes of time series datasets not only tested

MET data from SGP. In the future, we plan to analyze multiple

classes of instruments like meteorological, radiometric, radar

etc. simultaneously for improved detection of outliers. We also

plan to develop multivariate SSA [37] and machine learning

techniques to address this high dimensional problem in an

operational data center environment.

The three algorithms and visualizations presented in this

paper were implemented in Python. All codes and results

are available on GitHub (https://github.com/YupingLu/arm-

pearson and https://github.com/YupingLu/arm-ssa).
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