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Abstract—Traditional fuzzy logic hydrometeor classification
algorithm is a common way to classify precipitation type from
dual polarization doppler radar. We propose a deep learning-
based method to estimate hydrometeors efficiently using ob-
served radar variables such as horizontal reflectivity (ZH ),
differential reflectivity (ZDR), correlation coefficient (ρHV ) and
specific differential phase (KDP ) from National Weather Service
NEXRAD collected at Vance AFB facility at the first elevation
angle from January 1st, 2015 to July 31th, 2019. We stack
matrices of values from these four polarimetric variables as one
3D array. Samples are preprocessed and divided into training,
validation and test set with four target hydrometeor categories
(Ice Crystals (IC), Dry Snow (DS), Light and/or Moderate Rain
(RA) and Big Drops (rain) (BD)). We developed and optimized
five Convolutional Neural Networks (CNNs) architectures and
achieved an accuracy of 87.23% and 93.736% respectively using
modified ResNet with two different input data selection strategies
for hydrometeor classification. Training data selection strategies
were important to ensure use of available samples in training
for robust performance evaluated by applying the models to
novel time period beyond what was use to train the model.
Seasonal variation in atmospheric conditions lead to seasonal
patterns of liquid vs solid forms of precipitation, that poses
challenge for classifier and offer insights into domain specific
approaches required for problem of hydrometeor identification.
Computationally efficient and scalable approach for classification
of hydrometeors offer opportunities to effectively use the large
volumes of rich time series of radar observations that are
becoming increasingly available.

Index Terms—Convolutional neural network, Hydrometeor
classification, Dual polarization doppler radar, Atmospheric sci-
ence

I. INTRODUCTION

Hydrometeor classification for dual polarization doppler

radar is the process to identify the precipitation type based

on the scattering properties of precipitation particles. Scatter-

ing properties of hydrometeors of different shape, size and

orientation can be used to characterize and identify them.

The classification of weather radar echoes for dual polar-

ization doppler radar often consists of two steps [1]. The

first step is to differentiate between meteorological and non-

meteorological echoes using dual-polarization capability of

doppler radars. The second step is to classify these identified

meteorological echoes by combining the collected polarimetric

variables (i.e., horizontal reflectivity (ZH ), differential reflec-

tivity (ZDR), correlation coefficient (ρHV ), specific differen-

tial phase (KDP ) etc.), which have different properties due to

the difference in shape, size, orientation, phase state, and fall

orientation of each type of hydrometeor [2], [3].

Commonly used method for hydrometeor classification is

the fuzzy logic algorithm, which defines a non linear relation-

ship between polarimetric variables and a specific type of hy-

drometeor with the help of membership functions [1], [4]. The

idea was first explored in [5] and [6], and have since become

the dominating hydrometeor classification algorithm with dif-

ferent variations and refinements. [3] included measurement

conditions and three-dimensional temperature information to

classify hydrometeors. [7] proposed a semi-supervised method

for dual-polarization radars. However, fuzzy logic method is

susceptible to noise in input data, and being a bin based

method is unaware of information from neighboring radar cells

[7].

Deep learning methods like convolutional neural networks

(CNNs) have proven to be effective in image recognition and

classification. They have received wide adoption and attention

especially after the work by [8] at the 2012 ImageNet Large-

Scale Visual Recognition Challenge (ILSVRC-2012) with the

help from improvements in computer hardware. VGG network

increased the depth of CNNs, which was up to 11 layers more

than AlexNet [9]. ResNet addressed the degradation problem

and went even deeper with the number of layers up to 152 [10].

DenseNet improved feature propagation and feature reuse by

connecting each layer with every other layer [11].

CNNs have been applied to automated detection of bird

roosts using dual polarization doppler radar data [12]. They

are also been used to classify hydrometeors by incorporating

into the fuzzy logic algorithm [13]. In this paper, we use only

CNNs to classify precipitation types without fuzzy logic. The

general idea is to treat dual polarization radar data as multi-

dimensional images to do the training and testing. However,

unlike traditional images with three channels (Red, Green and

Blue), radar data has multiple channels and each channel stores

the data from a specific polarimetric variable. Our results show

that CNNs can provide an robust and accurate classification
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Fig. 1. Location and measurement extent of NEXRAD radar station at Vance
Air Force Base, Oklahoma, USA

of hydrometeors based on dual polarization doppler radars.

II. DATASETS AND PROCESSING

Our study focused on National Weather Service (NWS) at

Vance Air Force Base, Oklahoma, USA (Figure 1). We used

NEXRAD Level-III products from weather surveillance radar

(1988 doppler WSR-88D S-band dual-polarization radar) [14].

NEXRAD radar performs scans at multiple elevation angles,

however, we chose the observations at the first elevation angle

(0.5 degree) in plan positional indicator (PPI) mode for the

period January 1st, 2015 to July 31th, 2019.

NEXRAD dataset were downloaded from National Oceanic

and Atmospheric Administration’s (NOAA) National Cen-

ters for Environmental Information (NCEI). Raw data vol-

ume for our period of study was about 500GB. We ex-

tracted data from four polarimetric variables measured at

the first elevation angle, which are horizontal reflectivity

(ZH ), differential reflectivity (ZDR), correlation coefficient

(ρHV ) and specific differential phase (KDP ), from the raw

datasets for further processing. We also extracted variable

radar echo classification as data labels or training targets.

All extracted polarimetric variables were stored in the form

of a 360×1200 matrix. Coarse resolution ZH available as

360×230 matrix was processed to match the dimension of

other variables. A time series of all radar scans, with four

polarimetric variables for each scan, were assembled as 3D

array for analysis.

The 3D radar data array was processed in small chunks

of 4×30×30 for model training. Similarly, we processed

radar echo classification and selected the dominant hy-

drometeor category as the label for each chunk and attach

that label to the corresponding sample. Due to sparse nature of

radar that depend on presence or absence of a meteorological

echoes, a chunk can have missing or invalid values. To ensure

we have sufficient signal for classification, we applied a filter

and selected chunks with at least 45 (out of 30×=900) pixels

with valid values, and the dominant hydrometeor category to

be occupying at least 22 pixels to avoid excessive noise in the

input data. If these conditions are not met, the sample was not

included in the analysis. Four categories (Ice Crystals (IC),

Dry Snow (DS), Light and/or Moderate Rain (RA) and Big

Drops (rain) (BD)) are used in this study as they are the most

common forms of precipitation in the region. The samples

with labels other than these four categories, which were few,

were excluded. This was done to reduce the issue of class

imbalance while training CNNs. Python ARM Radar Toolkit

(Py-ART) [15] was used for processing raw radar datasets.

Data from January 1st, 2015 to October 1st, 2018 are used

for training, validation and testing of CNN models. We employ

two strategies to select these samples (Figure 2). For the first

strategy (S1), we carefully select the samples so that each

category has the same amount of samples. The total sample

size is 460,000 with 400,000 samples in training set, 30,000

samples in validation set and 30,000 samples in test set. The

mean and standard deviation of each channel [ZH , ZDR, ρHV ,

KDP ] of the training set are [0.7324, 0.0816, 4.29, 0.7663]

and [0.1975, 0.4383, 13.1661, 2.118] respectively. We then

normalize the three sets with the above means and standard

deviations. For the second strategy (S2), we use all the samples

and divide them into 2,063,867 training set, 257,984 validation

set and 257,998 test set. The mean and standard deviation of

each channel of this training set are [0.7518, 0.0341, 11.1675,

1.2187] and [0.1988, 0.3581, 11.8194, 2.1971] respectively.

Again, we normalize the three sets with the calculated means

and standard deviations. Notably, using all available samples

makes a key difference (in terms of data space mean and

standard deviation) for RA and BD categories. We use the

rest of sample from November 1st, 2018 to July 31th, 2019

to do further tests on the trained models for their applicability

in operational mode on the “novel time period” representing

future never seen before data.

III. METHODOLOGY

CNNs were first proposed 30 years ago by [16] but has

gained increased popularity across the academia and industry

with availability of GPU-based computing and software frame-

works for neural network. At the beginning, CNNs had only

several layers, for example, the LeNet-5 only has 5 layers [17].

CNNs have become deeper and deeper since the introduction

of AlexNet in 2012. In this paper, we try to find the nonlinear

relationship between the four chosen polarimetric variables

and hydrometeor types. Selected CNN models, which are

AlexNet, VGG, ResNet and DenseNet, have layers ranging

from 8 to 121. We modify these models to fit dual polarization

doppler radar data.

A. Architectures

CNNs usually consist of several layers of convolu-

tion(Conv), one or more fully connected layers, and other

operations such as rectified linear units (ReLU) [18], batch
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TABLE I
CNN ARCHITECTURE FOR NEXRAD HYDROMETEOR CLASSIFICATION, NUMBER OF PARAMETERS (IN MILLIONS) AND COMPUTATIONAL PERFORMANCE

(GFLOPS) OF EACH MODEL. ONLY ONE FULLY CONNECTED LAYER USED IN VGG 19-LAYER MODEL WITH BATCH NORMALIZATION, SO VGG IN THIS

PAPER ONLY HAS 17 LAYERS.

layer name output size 8-layer
conv1 16× 16 4× 4, 64, stride 2

pooling 8× 8 2× 2 max pool, stride 2
conv2 8× 8 5× 5, 192

pooling 4× 4 2× 2 max pool, stride 2
conv3 4× 4 3× 3, 384
conv4 4× 4 3× 3, 256
conv5 4× 4 3× 3, 256

pooling 2× 2 2× 2 max pool, stride 2
1× 1 256-d fc, 256-d fc, 4-d fc, softmax

Params(M) 2.78
GFLOPS 0.06

(a) AlexNet

layer name output size 17-layer

conv1 x 30× 30
[
3× 3, 16

]× 2
pooling 16× 16 2× 2 max pool, stride 2

conv2 x 16× 16
[
3× 3, 32

]× 2
pooling 8× 8 2× 2 max pool, stride 2

conv3 x 8× 8
[
3× 3, 64

]× 4
pooling 4× 4 2× 2 max pool, stride 2

conv4 x 4× 4
[
3× 3, 128

]× 4
pooling 2× 2 2× 2 max pool, stride 2

conv5 x 2× 2
[
3× 3, 128

]× 4
pooling 1× 1 2× 2 max pool, stride 2

1× 1 4-d fc, softmax
Params(M) 1.26
GFLOPS 0.03

(b) VGG

layer name output size 18-layer 101-layer
conv1 30× 30 3× 3, 16, stride 1

30× 30 3× 3 max pool, stride 1

conv2 x 30× 30

[
3× 3, 16
3× 3, 16

]
× 2

⎡
⎣1× 1, 16
3× 3, 16
1× 1, 64

⎤
⎦× 3

conv3 x 15× 15

[
3× 3, 32
3× 3, 32

]
× 2

⎡
⎣ 1× 1, 32
3× 3, 32
1× 1, 128

⎤
⎦× 4

conv4 x 8× 8

[
3× 3, 64
3× 3, 64

]
× 2

⎡
⎣ 1× 1, 64
3× 3, 64
1× 1, 256

⎤
⎦× 23

conv5 x 4× 4

[
3× 3, 128
3× 3, 128

]
× 2

⎡
⎣1× 1, 128
3× 3, 128
1× 1, 512

⎤
⎦× 3

1× 1 average pool, 4-d fc, softmax
Params(M) 0.7 2.68
GFLOPS 0.03 0.16

(c) ResNet

layer name output size 121-layer
convolution 30× 30 3× 3 conv, stride 1

pooling 16× 16 2× 2 max pool, stride 2

dense block (1) 16× 16

[
1× 1 conv
3× 3 conv

]
× 6

transition layer 16× 16 1× 1 conv
(1) 8× 8 2× 2 average pool, stride 2

dense block (2) 8× 8

[
1× 1 conv
3× 3 conv

]
× 12

transition layer 8× 8 1× 1 conv
(2) 4× 4 2× 2 average pool, stride 2

dense block (3) 4× 4

[
1× 1 conv
3× 3 conv

]
× 24

transition layer 4× 4 1× 1 conv
(3) 2× 2 2× 2 average pool, stride 2

dense block (4) 2× 2

[
1× 1 conv
3× 3 conv

]
× 16

1× 1 average pool, 4-d fc, softmax
Params(M) 6.95
GFLOPS 0.23

(d) DenseNet

Fig. 2. Sample sizes available for training, validation and testing of CNN
models under two input data strategy (S1: left bar; S2: right hatched bar) and
their distribution across four target hydrometeor types.

normalization (BN) [19] and pooling [17]. The input data, or

radar samples in this study, go through the whole network and

get a score for each category using the softmax function. The

category with the biggest score is the final classification result.

We maintain the main structure of the selected models with

the same number of layers, except VGG-19 BN with only 17

layers. Also, our sample size is much smaller 4×30×30, com-

pared to commonly used 3×224×224 for image classification

CNN models, so we change the kernel sizes and parameters

of BN, ReLU, Conv and Pooling in each model.

Take AlexNet as an example, the 4×30×30 radar sample

first passes through a Conv layer with kernel size 4×4, stride 2,

and padding 2, thus the feature map size is 64×16×16. ReLU

and 2×2 Pooling with stride 2 filters are then applied to reduce

the size of feature map to 64×8×8. The feature map then goes

through a Conv layer, ReLU and Pooling again, but this time

the Conv layer kernel size is 5×5. So the generated feature

map becomes 192×4×4. It then passes through another Conv

layer with kernel size 3×3, padding 1 and a ReLU filter, and
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repeat the process for two more times with different number

of output channels. At this stage, the size of feature map is

256×4×4. A final Pooling filter with kernel size 2×2, stride 2

is applied, followed by a Dropout function. Finally, three fully

connected layers are applied. Here the first fully connected

layer is combined with ReLU and Dropout, the second fully

connected layer is only followed by a ReLU filter (Table I(a)).

Similarly, more details about other modified CNN models

we developed and applied can be found in Table I. Our

implementation of the VGG-19 BN only has 17 layers after

removing two fully connected layers as our radar samples

are much smaller than images. ResNet-18 has the smallest

number of parameters while DenseNet-121 has the largest

number of parameters. VGG-19 BN and ResNet-18 have the

similar computational performance (in GFLOPS), which is

lower than other models while DenseNet-121 has has the best

computational performance in terms of GFLOPS.

B. Implementation

All CNN models in this paper are implemented in Python

using PyTorch [20] framework. We also implement our own

dataset class for radar data for data loading and processing

using Py-ART. The preprocessing scripts and source code are

available on github. https://github.com/YupingLu/Radar

IV. RESULTS AND DISCUSSIONS

NEXRAD raw datasets were preprocessed on Atmospheric

Radiation Measurement (ARM) Stratus cluster at Oak Ridge

National Laboratory (ORNL) [21], a Cray CS400 with Intel

Xeon E5-2698 v3 and 256 GB of RAM per node. Training

and testing of the CNN models were performed on NVIDIA

DGX station which is a workstation designed for deep learning

with four Tesla V100 GPUs and capable of 500 TFLOPS peak

performance [22].

A. Training and Validation

All CNN models were trained using stochastic gradient

descent (SGD) method. We set the batch size = 256, epochs =

600, learning rate = 0.1, Nesterov momentum = 0.9 [23], and

weight decay = 1e-3 for the training of all neural networks.

Only for DenseNet-121, we set weight-decay to 2e-3 to avoid

overfitting. Weight initialization was also performed before

the training [24]. We also employ dynamic learning rate

once learning stagnate reducing it by a factor of 0.5. Our

experiments show that using dynamic learning rate can help

reach a high accuracy rate faster with fewer epochs compared

to a fixed learning rate or by manually reducing learning

rate at specific epochs. Among all selected models, ResNet
reached the highest accuracy using the samples from the first

selection strategy (S1). Figure 3 shows the training and vali-

dation accuracy and loss of ResNet-18 during the 600 epochs.

Validation accuracy and loss fluctuate heavily at the beginning

of iterations, however, the convergence curves smoothen out

after 100 epochs. Figure 4 shows the convergence behavior

(training accuracy and loss) of all five CNN models based on

inputs from strategy S1. The summary of accuracy and loss

on NEXRAD validation set based on input strategy S1 using

best trained models are shown in Table II. All CNN models

performed well to classify hydrometeor for validation set based

on input strategy S1, while ResNet-18 performed the best.

TABLE II
ACCURACY AND LOSS ON NEXRAD VALIDATION AND TESTING SET

BASED ON INPUT STRATEGY S1 USING BEST TRAINED CNN MODELS

Model
Validation Testing

Accuracy Loss Accuracy Loss
AlexNet 85.617% 0.342 85.880% 0.337

VGG 19-BN 86.520% 0.322 86.323% 0.325
ResNet-18 87.177% 0.305 87.230% 0.306

ResNet-101 87.043% 0.311 87.190% 0.310
DenseNet-121 85.457% 0.353 85.287% 0.353

Best trained model for each of the five CNNs using input

data based on strategy S1 were applied to NEXRAD test data

set that were not used during training or validation of the

models. In a pattern similar to training and validation set,

ResNet-18 achieved the highest accuracy of 87.23%, while

DenseNet-121 had the lowest accuracy of 85.29% (Table II).

ResNet-18 was also applied to the data from novel time

period, however, a significant performance degradation was

observed (Figure 6(a)). This degradation in performance of the

model can be attributed to input data strategy (S1) where in

effort to have balanced sample across all hydrometeor types.

At our study site, liquid precipitation forms (RA and BD)

are experienced more frequently all through the year and

by using only a subset, models were not able to learn all

storm conditions experienced at the site. To address this issue

we implemented input data strategy S2 (where we used all

available samples) to retrain best performing ResNet-18 and

ResNet-101 models. Hyper-parameters used during previous

training (using S1 strategy) were kept the same during this

retraining. Newly trained ResNet-18 and ResNet-101 both

exhibited improved accuracy at 93.479% and 93.736%. Best

performing ResNet-101 trained using S2 input data strategy

was applied to the novel time period and demonstrated high

accuracy (Figure 6(b)). Figure 5 shows the convergence pattern

for ResNet-101 training. With a larger training dataset (Fig-

ure 2), a faster convergence was achieved in fewer number of

iterations.

B. Overfitting

While neural networks developed in current study have

millions of parameters and only four hydrometeor categories

to classify, it is easy for the neural networks to overfit to the

training data and lack generalization to be applicable to future

or novel time periods. Thus we implemented a number of

methods during the training process to avoid overfitting. We

employed a large time series of data and thus a fairly large

and distributed samples to the training step. It helped reduce

the gap between training loss and test loss, however, some

overfitting issues still persisted. While our initial attempt for

training was to use a chunk size of 4×60×60, we iteratively

reduced the size to 4×30×30 used for all reported results.

This allowed improved resolution to detect small scale features
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(a) Improvement in accuracy of ResNet-18 over training epochs. (b) Reduction in Cross-Entropy loss term over training epochs.

Fig. 3. Training and validation accuracy and Cross-Entropy loss of ResNet-18 based on input strategy S1.

(a) Improvement in accuracy of all five CNNs over training epochs. (b) Reduction in Cross-Entropy loss term for all five CNNs over training
epochs.

Fig. 4. Training accuracy and Cross-Entropy loss of all five models based on input strategy S1.

(weather fronts) and also increased the sample size. We also

applied data augmentation strategies to solve the overfitting

problem. For example, we increase each training sample to

4×44×44 by padding mean value of the original sample. Then

we randomly crop 4×30×30 samples from the padded data for

training. Using only part of the information of the radar sample

helps the models to generalize and make right predictions

even under noisy conditions and improves generalization.

Similarly, we also horizontally and vertically flip the cropped

sample randomly with a 0.5 probability. We also performed

hyper-parameter tuning during training. Through a number of

schemes we were able to overcome the issue of overfitting in

the reported results.

C. Discussion

CNN models developed using dual-polarization doppler

radar were able to classify the hydrometeors with very high

accuracy. Using four polarimetric variables from NEXRAD

radar (Figure 7(a.b.d.e), these models were trained to classify

hydrometeors (Figure 7(f)) while using NEXRAD’s hydrome-

teor classification as training label (Figure 7(c)). For purpose

of illustration, data collected at 10:40AM on January 7, 2018

was used for Figure 7). Central plains of Oklahoma where out

study site is located experiences a wide range of atmospheric

conditions and storm systems across seasons making the

hydrometeor detection a challenging problem. Model training

using two input data selection strategies suggest that large

sample size covering wide range of atmospheric conditions to

train the model for robust performance when they are applied

to future/novel time period beyond the period they were

trained on. ResNet-101 model demonstrated robustness and

high accuracy on novel time period of 9 months (Figure 6(b)).

Accuracy of the model however varies through the seasons,
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(a) Improvement in accuracy of ResNet-101 over training epochs. (b) Reduction in Cross-Entropy loss term for ResNet-101 over training
epochs.

Fig. 5. Training accuracy and Cross-Entropy loss of ResNet-101 using training data selection strategy S2.

(a) ResNet-18 (training data selection strategy S1) accuracy during novel time
period

(b) ResNet-101 (training data selection strategy S2) accuracy during novel
time period

Fig. 6. The accuracy of best CNN models trained using two input data strategy when applied to novel time period. Average monthly (solid red line) and
minimum/maximum range of air temperature at the site show strong correspondence to the variability in model accuracy. Dotted horizontal line denotes the
freezing temperature.

with high accuracy during the warm season when precipitation

is predominantly in liquid form (RA and BD), while the perfor-

mance is slightly lower during cold months when precipitation

occurs in form of ice and snow (IC and DS). During the

novel time period of November 2018 – July 2019, IC and

DS are dominant form of precipitation during winter months

(November – March), while RA ad BD dominates spring and

summer months (April – July) (Table III). Accuracy of ResNet-
101 during these months and across different hydrometeor

types (Table IV) highlights the need for further improvement

of models for IC and DS categories under-represented in the

training set.
Among various CNN models explored in our study, ResNet

has the best performance because it adds shortcut connections

to skip one or more layers to help transfer information to

deeper layers. AlexNet and VGG 19-BN also performed well

with slightly lower performance compared to ResNet. Among

AlexNet and VGG 19-BN, VGG 19-BN performs better with

fewer parameters and deeper layers. DenseNet-121 while has

more direct connections between layers and also has the

deepest layers, performs the worst due to its complexity and

large numbers of parameters. These observation are specific

to variants of these network modified in our study for classifi-

cation of NEXRAD radar observations. Our experiments with

training data selection strategy highlights the need for further

improvement of the model to address data imbalance issue

across hydrometeor categories, and further understanding of
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TABLE III
THE NUMBER OF SAMPLES ACROSS DIFFERENT HYDROMETEOR CATEGORIES DURING NOVEL TIME PERIOD OF NOVEMBER 2018 – JULY 2019.

Category 201811 201812 201901 201902 201903 201904 201905 201906 201907
All Categories 72204 50370 66718 72663 60302 77843 111265 106101 47373

Ice Crystals (IC) 25626 12777 7391 12227 13085 74 0 0 0
Dry Snow (DS) 10942 4144 7596 6302 4595 642 4 0 0

Light and/or Moderate Rain (RA) 16965 28043 48363 51169 28736 31467 29584 29573 4890
Big Drops (rain) (BD) 18671 5406 3368 2965 13886 45660 81677 76528 44483

TABLE IV
THE ACCURACY OF EACH CATEGORY OF FUTURE MONTH NEXRAD DATA USING ResNet-101

Category 201811 201812 201901 201902 201903 201904 201905 201906 201907
All Categories 58.754% 77.139% 81.275% 83.379% 76.926% 97.009% 97.995% 97.025% 98.817%

Ice Crystals (IC) 25.708% 44.079% 36.450% 40.255% 44.043% 54.054%
Dry Snow (DS) 36.191% 56.347% 18.984% 46.906% 49.489% 52.181%

Light and/or Moderate Rain (RA) 96.186% 99.497% 98.863% 99.572% 97.181% 98.567% 97.556% 96.132% 94.806%
Big Drops (rain) (BD) 83.322% 55.235% 67.577% 59.292% 75.076% 96.636% 98.159% 97.371% 99.258%

(a) Horizontal reflectivity (b) Differential reflectivity (c) NEXRAD hydrometeor classification

(d) Specific differential phase (e) Cross correlation ratio (f) ResNet-101 based hydrometeor classification

Fig. 7. Four polarimetric variables from NEXRAD S-band radar observations collected at 10:40AM on January 7, 2018 were classified to identify hydrometeors
using ResNet-101 using training data selection strategy S2.

the known seasonal patterns when hydrometeors in liquid vs

solid forms are dominant.

V. CONCLUSIONS

We developed and applied five commonly used CNN mod-

els with our modifications to classify hydrometeors using

NEXRAD dual-polarization doppler radar. Our results indicate

that CNNs are an efficient tool for radar based classification

of hydrometeors. Modified ResNet-101 model achieved test

accuracy of 93.736% and performed well for classification of

hydrometeors (Table IV; Figure 6(b)) when applied to nine

months of future/novel time period beyond its training period.

With efficient implementation and scalability on GPU-based

computational platforms, it offers opportunities to build effec-
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tive hydrometeor classification models from growing number

of weather radar system utilizing the voluminous time series

datasets.
Our future efforts would focus on addressing seasonal

variability in model performance by implementation improved

schemes for training using class imbalanced data [25]. Avail-

ability of labeled data is a key bottleneck for application

of supervised methods like CNNs to radar datasets. While

NEXRAD data used in this study had labeled information

available for training, that is often not the case at other radar

stations operating similar S–band radar, or at Atmospheric

Radiation Measurement program sites operating C–, K– and

X–band radars. Transfer learning approaches in conjunction

with CNNs can provide opportunities to train the models at

locations where labeled datasets are available and then transfer,

adapt, and retrain for their application at sites where little to

none labeled datasets may be available.
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