
ENHANCING THE MOGA OPTIMIZATION PROCESS AT
ALS-U WITH MACHINE LEARNING∗

Y. Lu†, S.C. Leemann, C. Sun, M.P. Ehrlichman, T. Hellert, H. Nishimura, M. Venturini
Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

Abstract
The bare lattice optimization for the linear and nonlinear

ALS-U storage ring lattice, even without reverse bending,
comprises 11 degrees of freedom (DoF) and is therefore
a very complex and highly time-consuming process. This
design process relies heavily on multi-objective genetic al-
gorithms (MOGA), usually requiring many months of expe-
rienced scientists’ time. The main problem lies in having
to evaluate vast numbers of candidate lattices due to the
stochastic process of MOGA. Although almost all of these
candidates are eventually rejected, they nevertheless require
extensive particle tracking to arrive at a Pareto front. We
therefore propose a novel Machine Learning (ML) pipeline
in which nonlinear tracking is replaced by two well-trained
neural networks (NNs) to predict dynamic aperture (DA)
and momentum aperture (MA) for any lattice candidate.
Initial training of these models takes only several minutes
on conventional CPUs while predictions are then rendered
near instantaneously. We present this novel method and
demonstrate the resulting orders of magnitude speedup of
the ML-enhanced MOGA process on a 2-DoF problem as
well as first results on a more complex 11-DoF problem.

INTRODUCTION
MOGA is the most commonly used algorithm in lattice

optimization for ultra-high brightness storage rings [1–4].
Multiple variants of MOGA are available, among which the
Pareto-based algorithm NSGA-II is the most popular [5, 6].
However, it still takes vast amounts of time for MOGA to
arrive at a Pareto front due to costly evaluations of DA and
MA based on many-turn tracking. As ML has proven its ef-
ficiency in building computational models to solve complex
data-intensive problems compared to traditional statistical
methods [7], several groups have attempted applying ML
techniques to speed up MOGA [8–10].

MACHINE LEARNING APPROACH
In this study, we built 8-layer fully-connected NNs for

prediction of DA1 and MA since DA/MA tracking requires
the majority of runtime spent by a MOGA run. With the ap-
plication of ML, we can reduce overall runtime from months
to days. Our proposed ML pipeline is very simple: we
pre-process training data acquired from prior simulations
∗ This research is funded by the US Department of Energy (BES & ASCR

Programs), and supported by the Director of the Office of Science of the
US Department of Energy under Contract No. DEAC02-05CH11231.

† yupinglu@lbl.gov
1 Throughout this study, we actually use total diffusion rate [3] as a proxy

for DA since this ensures convergence towards more stable lattices.

(cf. next Section) and use this data to obtain two well-trained
models using the NN depicted in Fig. 1. Each NN has 8
fully-connected layers of various sizes with the first 7 layers
using ReLU as activation function [11]. Training requires
from several to ≈ 30 min on a single core depending on the
amount of training data. We then use these two NN models
to replace DA/MA particle tracking in MOGA while the
rest of the MOGA setup remains the same as in the original
tracking-based MOGA (Tr-MOGA). We evaluate this ML-
based MOGA (ML-MOGA) on a simpler 2-DoF problem
and a more complex 11-DoF problem.

Input

FC + ReLU, 128FC + ReLU, 128

FC + ReLU, 32 FC + ReLU, 64

FC + ReLU, 256

FC + ReLU, 64 FC + ReLU, 32 FC, 1

Figure 1: 8-layer fully-connected (FC) NN architecture for
DA and MA prediction. Output dimension is indicated.

OPTIMIZATION IN 2 DoF
Lattice optimization at ALS-U—before introduction of

reverse bending and high-field bends—consists of 11 DoF
as well as several constraints and objectives. 9 DoF are
linear (quadrupoles) while 2 DoF are nonlinear (2 harmonic
sextupoles, the 2 chromatic sextupoles are constrained to
correct linear chromaticity) [12]. In a first study, the 9 linear
DoF were fixed, leaving only 2 harmonic sextupoles (SH1,
SH2), for a data input size of 2. We explored primarily two
methods to generate training data. The simplest method is to
use some initial data from a previous Tr-MOGA run. This,
however, requires at least a partial Tr-MOGA run completed
first, which can easily takes days even on the NERSC cluster.
Furthermore, this data is not necessarily transferable when
machine settings are adapted throughout optimization. A
superior method relies on generating random data which
is uniformly distributed in input parameter space, in this
case the two harmonic sextupoles: in units of 𝑏2 [m−3] each
constrained to [-580, 580]. A random sampling of 115×115
was chosen which considerably shortens the initially required
tracking runtime. This method does not require any prior
Tr-MOGA and can quickly be re-applied for various machine
settings.

After optimizing the NN architecture, lowest root mean
square errors (RMSEs) for two ML models for DA and MA
are 17.9 and 4.53 × 10−4, respectively. Compared to target
values around 1100 and 2.7%, this corresponds to relative
errors well below 2%. The difference in runtime between



tracking and NN lookup is dramatic: for each child in ev-
ery generation, tracking DA and MA requires about 88 s,
whereas the NN lookup takes only 16.3 ms when run on
the same NERSC cluster (2048 cores) rendering a direct
speedup beyond 5300. An example for the final solutions
are visualized in Fig. 2 and related input variables are shown
in Fig. 3. Blue dots represent the Tr-MOGA Pareto front

850 900 950 1000 1050 1100
Dynamic Aperture [a.u]

2.40

2.45

2.50

2.55

2.60

M
om

en
tu

m
 A

pe
rtu

re
 [%

]

MOGA Output Parameters - Gen 50

Blue: Tr-MOGA 1
Red: Tr-MOGA 2
Gray: Tr-MOGA 3
Black: ML-MOGA 1
Yellow: ML-MOGA 3

Figure 2: Solution space comparison between Tr-MOGA
runs and ML-MOGA runs with different random seeds.

at generation 502. Since NN predictions are never perfect,
inputs of the final generation of ML-MOGA are tracked for
validation. From these validation results, we can then extract
the rank-1 children (black squares) which end up very close
to the Tr-MOGA Pareto front. In input parameter space as
well, Tr-MOGA and ML-MOGA children are very close, as
shown in Fig. 3.

100 50 0 50 100
SH1 b2 [1/m3]

550

500

450

400

350

SH
2 

b 2
 [1

/m
3 ]

MOGA Input Variables - Gen 50
Blue: Tr-MOGA 1
Red: Tr-MOGA 2
Gray: Tr-MOGA 3
Black: ML-MOGA 1
Yellow: ML-MOGA 3

Figure 3: Input space comparison between Tr-MOGA runs
and ML-MOGA runs with different random seeds.

To quantify how closely ML-MOGA results approach
those of Tr-MOGA, we also ran Tr-MOGA using different
random seeds. Red dots show the Pareto front of a Tr-MOGA
run with a different MOGA random seed (affects breeding
only). Conversely, gray dots show the Pareto front after
2 With 5000 children in every generation, convergence in Tr-MOGA thus

requires tracking a total of 2.5 × 105 samples.

changing both MOGA random seed and lattice error random
seed (affects underlying physics). The effect of changing
the MOGA random seed is much smaller than the lattice
error random seed, and comparable to discrepancies between
ML-MOGA and Tr-MOGA for the same underlying physics.
For the Tr-MOGA run with both random seeds changed
(gray dots), we re-ran the entire ML pipeline to arrive at
corresponding ML-MOGA results (yellow squares). Again,
the overlap is excellent in both solution space and input space
confirming that the proposed ML pipeline can drastically
speed up MOGA without sacrificing fidelity.3

We also studied the effect of training data sample size
on the accuracy of our NN predictions. Figure 4 shows
the RMSE percentage increase for smaller sampling sizes
compared to the initially chosen 115 × 115. The RMSEs

Figure 4: RMSE increase in percent compared to the initial
sampling size choice of 115 × 115.

prove to be very robust allowing us to reduce the sampling to
as low as 20 × 20 without loss of fidelity. Consequently, we
can arrive at similar ML-MOGA results with much smaller
sets of training data, effectively reducing tracking effort to
400 samples for ML-MOGA vs. 2.5 × 105 for Tr-MOGA.

OPTIMIZATION IN 11 DoF
Unlike the 2-DoF problem, the 11-DoF optimization in-

cludes all 9 linear and 2 nonlinear variables. The first step
for both Tr-MOGA and ML-MOGA is to find reasonable
ranges for the 9 linear DoF. Without narrowing their range,
a vast parameter space needs to be searched wherein a large
fraction of samples result in unstable solutions. This can
significantly impede convergence of the MOGA run, par-
ticularly when combining linear and nonlinear lattice opti-
mization. To overcome this problem, we first carry out only
linear optimization using MOGA. This is a comparably fast
optimization process since DA and MA do not have to be
evaluated at this stage. From this linear optimization run,
we are able to identify regions of stable solutions and nar-
row down the parameter range for the 9 linear DoF. Together
with the previously introduced nonlinear DoF range, we then

3 We have investigated retraining of the NNs to improve overlap between
ML-MOGA and Tr-MOGA. Although discrepancies can be reduced
through retraining effort, we do not consider the additional computational
effort justified in light of the stochastic nature of the MOGA breeding
process as well as the much larger deviations resulting from variations in
the underlying error distribution.



start a full Tr-MOGA or ML-MOGA run. The 9 additional
variables make it impossible to randomly generate training
data as the required time and computing resources become
immense. Conversely, we also find that convergence of con-
ventional Tr-MOGA is very slow, requiring over two weeks
of runtime on the aforementioned NERSC cluster for a single
lattice error seed. Therefore, with ML we pursue an alter-
nate path: we use just the first 10 generations of Tr-MOGA
data (with samples violating any constraints filtered out) as
training data to build computational models (NNs for DA
and MA) for use in subsequent ML-MOGA runs. Once the
ML-MOGA run converges, we again perform one tracking
run involving inputs from the final ML-MOGA generation
for validation purposes. Finally, by combining this tracked
generation with the previous training data we can retrain
the NNs allowing us to iterate this ML pipeline until it fully
converges.

To properly assess convergence among all MOGA runs,
we introduce two Euclidean distance metrics for input and
output space, respectively. Equation (1) shows the distance
metric for input variables.

𝛿𝑖 (𝑚) = 1
𝑛(𝑛 − 1)

𝑛∑
𝑗=1

𝑛∑
𝑘=1

√√√√√ 11∑
𝑙=1

©«
𝑎
(𝑚)
𝑗𝑙

− 𝑎
(𝑚−1)
𝑘𝑙

𝑐𝑙

ª®¬
2

(1)

Here, 𝑎 (𝑚)
𝑗𝑙

is input variable 𝑙 of child 𝑗 in generation 𝑚.
Similarly, 𝑎 (𝑚−1)

𝑘𝑙
is input variable 𝑙 of child 𝑘 from previous

generation 𝑚 − 1. 𝑐𝑙 is the predetermined parameter range
of variable 𝑙 as mentioned above. Equation (2) shows the
distance metric for emittance, DA, and MA compared to
reference values {𝜀0, 𝐷0, 𝑀0}, usually chosen as ideal target
values.

𝛿𝑜 (𝑚) = 1
𝑛

√√√ 𝑛∑
𝑗=1

(
𝐴2
𝑚𝑗

+ 𝐵2
𝑚𝑗

+ 𝐶2
𝑚𝑗

)
, where

𝐴𝑚𝑗 =
𝜀𝑚𝑗 − 𝜀0

𝜀0
, 𝐵𝑚𝑗 =

𝐷𝑚𝑗 − 𝐷0

𝐷0
,

𝐶𝑚𝑗 =
𝑀𝑚𝑗 − 𝑀0

𝑀0

(2)

Here 𝐷𝑚𝑗 is the DA of child 𝑗 in generation 𝑚 and similarly
for MA, 𝑀𝑚𝑗 , and emittance, 𝜀𝑚𝑗 .

Both metrics have been defined as normalized quantities.
Convergence in solution space is inferred from vanishing
derivative of 𝛿𝑜 (𝑚 > 𝑚0), but is independent of absolute
values since that is determined by the choice of reference
values. Figure 5 shows evolution of the distance metrics for
two Tr-MOGA runs with different random seeds and one
ML-MOGA run. In this example, Tr-MOGA run 2 (gray
dots) converges at roughly generation 500 as both 𝛿𝑖 (𝑚) and
𝛿𝑜 (𝑚) become stable for 𝑚 ≳ 500.

ML-MOGA runs complete much faster: 1500 genera-
tions can be produced within 48 hrs on the aforementioned
NERSC cluster, compared to less than 100 generations with
Tr-MOGA within the same time on the same cluster. Figure 6

0 100 200 300 400 500 600 700
Generation Number

0.4

0.5

0.6

0.7

0.8

0.9

Di
st

an
ce

 M
et

ric
 

i [
a.

u.
]

Tr-MOGA 1
Tr-MOGA 2
ML-MOGA 1

0 100 200 300 400 500 600 700
Generation Number

0.016

0.017

0.018

0.019

0.020

0.021

Di
st

an
ce

 M
et

ric
 

o [
a.

u.
]

Tr-MOGA 1
Tr-MOGA 2
ML-MOGA 1

Figure 5: Distance metric for input variables (top) and solu-
tion space (bottom) for two Tr-MOGA runs with different
random seeds and one ML-MOGA run.

shows a comparison in solution space between Tr-MOGA
and ML-MOGA runs with different random seeds for the
11-DoF problem. Blue dots show Tr-MOGA run 1 at gener-

0 10000 20000 30000 40000 50000
Dynamic Aperture [a.u]

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

M
om

en
tu

m
 A

pe
rtu

re
 [%

]

MOGA Output Parameters

Blue: Tr-MOGA 1
Gray: Tr-MOGA 2
Black: ML-MOGA 1
Yellow: ML-MOGA 2

Figure 6: Comparison in reduced solution space (emittance
omitted for clarity) between Tr-MOGA and ML-MOGA runs
with different random seeds.

ation 643, while gray dots represent Tr-MOGA 2 (different
MOGA random seed and lattice error random seed) at gen-
eration 635. Rank-1 children of the validated ML-MOGA
results (for a first ML-MOGA iteration) are shown as black
squares (same random seeds as Tr-MOGA 1) and yellow
squares (same random seeds as Tr-MOGA 2). Note the good
agreement for the same underlying physics. Further iter-
ations of the ML-MOGA process are expected to reduce
the remaining discrepancies. Note also, the ML-MOGA
runs shown here require the tracking equivalent of just 11
generations, including initial training effort.



REFERENCES
[1] M. Tadahiko and I. Hisao, “MOGA: Multi-objective ge-

netic algorithms”, in Proc. IEEE International Conference
on Evolutionary Computation, 1995, pp. 289–294. doi:
10.1109/icec.1995.489161

[2] W. Gao, L. Wang, and W. Li, “Simultaneous optimization of
beam emittance and dynamic aperture for electron storage
ring using genetic algorithm”, in Phys. Rev. Spec. Top. Accel
Beams, vol. 14, no. 9, p. 094001, Sep. 2011.
doi:10.1103/PhysRevSTAB.14.094001

[3] C. Sun, D. S. Robin, H. Nishimura, C. Steier, and W. Wan
“Small-emittance and low-beta lattice designs and optimiza-
tions”, in Phys. Rev. Spec. Top. Accel Beams, vol. 15, no. 5,
p. 054001, May 2012.
doi:10.1103/PhysRevSTAB.15.054001

[4] L. Yang, D. Robin, F. Sannibale, C. Steier, and W. Wan,
“Global optimization of an accelerator lattice using multi-
objective genetic algorithms”, in Nucl. Instrum. Methods
Phys. Res., Sect. A, vol. 609, no. 1, pp. 50–57, Oct. 2009.
doi:10.1016/j.nima.2009.08.027

[5] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and
elitist multiobjective genetic algorithm: NSGA-II”, in IEEE
Trans. Evol. Comput., vol. 6, no. 2, pp. 182–197, Aug. 2002.
doi:10.1109/4235.996017

[6] M. T. M. Emmerich and A. H. Deutz, “A tutorial on multiob-
jective optimization: fundamentals and evolutionary meth-
ods”, in Natural computing, vol. 17, no. 3, pp. 585–609,
Sep. 2018. doi:10.1007/s11047-018-9685-y

[7] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning”, Nature,
vol. 521, no. 7553, pp. 436–444, May 2015.
doi:10.1038/nature14539

[8] Y. Li, W. Cheng, L. H. Yu, and R. Rainer, “Genetic algorithm
enhanced by machine learning in dynamic aperture optimiza-
tion”, in Phys. Rev. Spec. Top. Accel Beams, vol. 21, no. 5,
p. 054601, May 2018.
doi:10.1103/PhysRevAccelBeams.21.054601

[9] M. Kranjčević, B. Riemann, A. Adelmann, and A. Streun,
“Multiobjective optimization of the dynamic aperture using
surrogate models based on artificial neural networks”, in
Phys. Rev. Spec. Top. Accel Beams, vol. 24, no. 1, pp. 014601,
Jan. 2021.
doi:10.1103/PhysRevAccelBeams.24.014601

[10] J. Wan, P. Chu, and Y. Jiao, “Neural network-based multiob-
jective optimization algorithm for nonlinear beam dynamics”,
in Phys. Rev. Spec. Top. Accel Beams, vol. 23, no. 8, p. 081601,
Aug. 2020.
doi:10.1103/PhysRevAccelBeams.23.081601

[11] V. Nair and G. E. Hinton, “Rectified linear units improve
restricted boltzmann machines”, in Proc. 27th International
Conference on Machine Learning (ICML’10), Haifa, Israel,
Jan. 2010, pp. 807–814.
doi:10.5555/3104322.3104425

[12] C. Sun et al., “Design of the ALS-U Storage Ring Lattice”, in
Proc. 8th Int. Particle Accelerator Conf. (IPAC’17), Copen-
hagen, Denmark, May 2017, pp. 2827–2829.
doi:10.18429/JACoW-IPAC2017-WEPAB105


