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1. Introduction

• MOGA is the most commonly used algorithm in lattice op-
timization for ultra-high brightness storage rings.

• However, MOGA requires extensive runtime to arrive at a
Pareto front due to its stochastic nature and costly evalu-
ations of dynamic aperture (DA) and momentum aperture
(MA) based on many-turn particle tracking.

• Since Machine Learning (ML) has proven its efficiency
in building computational models to solve complex data-
intensive problems compared to traditional statistical meth-
ods, we have applied ML techniques to speed up MOGA.

2. Machine Learning Approach

• We first pre-process training data acquired from prior simu-
lations and use this data to obtain two well-trained models
using the neural network (NN) depicted in Fig. 1.

• We then use these two NN models to replace DA/MA par-
ticle tracking in MOGA while the rest of the MOGA setup
remains the same as in the original tracking-based MOGA
(Tr-MOGA).

• We evaluate this ML-based MOGA (ML-MOGA) on a sim-
pler 2-DoF problem and a more complex 11-DoF problem.
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Figure 1: 8-layer fully-connected (FC) NN architecture for DA
and MA prediction. Output dimension is indicated.

3. Optimization in 2 DoF

• Lattice optimization at ALS-U (before introduction of re-
verse bending and high-field bends) consists of 11 DoF as
well as several constraints and objectives. 9 DoF are linear
(quadrupoles) while 2 DoF are nonlinear.

• In the 2 DoF study, 9 linear DoF were fixed, leaving only 2
harmonic sextupoles (SH1,SH2), for a data input size of 2.

• Random data which is uniformly distributed in input param-
eter space is used for training.
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Figure 2: Solution space comparison between Tr-MOGA
runs and ML-MOGA runs with different random seeds.
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Figure 3: Input space comparison between Tr-MOGA runs
and ML-MOGA runs with different random seeds.

• We also studied the effect of training data sampling size on
the accuracy of our NN predictions.

• The root mean square error (RMSE) proves to be very
robust, allowing us to reduce the sampling to as low as
20×20 without loss of fidelity.

• Consequently, we can arrive at similar ML-MOGA results
with much smaller sets of training data, effectively reduc-
ing tracking effort to 400 samples for ML-MOGA vs. 2.5×
105 for Tr-MOGA.

Figure 4: RMSE increase in percent compared to the initial
sampling size choice of 115×115.

4. Optimization in 11 DoF

• Unlike the 2-DoF problem, the 11-DoF optimization in-
cludes all 9 linear and 2 nonlinear variables. The first
step for both Tr-MOGA and ML-MOGA is to find reason-
able ranges for the 9 linear DoF (cl).

• We then use only the first 10 generations of Tr-MOGA
data (samples violating any constraints are filtered out) as
training data to build NNs. Once the ML-MOGA run con-
verges, we again perform one tracking run involving inputs
(ajl) from the final ML-MOGA generation for validation pur-
poses. Finally, by combining this tracked generation with
the previous training data, we can retrain the NNs allowing
us to iterate this ML pipeline until it fully converges.

• To properly assess convergence among all MOGA runs,
we introduce two Euclidean distance metrics for input
and output space, respectively (M = MA, D = DA,
m = gen. no.):
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Figure 5: Distance metric for input variables (top) and solu-
tion space (bottom) for two Tr-MOGA runs with different ran-
dom seeds and one ML-MOGA run.
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Figure 6: Comparison in reduced solution space (emittance
omitted for clarity) between Tr-MOGA and ML-MOGA runs
with different random seeds.
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