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1. Background

Nonlinear lattice optimization at ALS-U is a complex time-
consuming task which usually consists of 10+ variables and
several constraints and objectives. Currently, it would take days
or even months for a multi-objective genetic algorithm (MOGA)
to reach the Pareto optimal front where the bottleneck is eval-
uating each potential candidate using particle tracking tech-
niques for the next generation. We proposed a new machine
learning pipeline to reduce the time of the evaluation process
by automatically predicting dynamic aperture and momentum
aperture. We got a 25+ speedup based on the preliminary tests
of a two nonlinear knobs problem.

2. Workflow

Below is the workflow of our machine learning pipeline. The
training data is uniformly generated in the input parameter
space without using all generation data from a actual MOGA
run. In the evaluation process, we compared the Pareto front
from a MOGA run with the rank-1 children (non-dominated so-
lutions) from the final ML generation.

3. Neural Network & Training

As described in the workflow, fully connected models work best
for our data. We split the sample data into 80% for training and
20% for testing. The training process usually finishes within
10 minutes. The RMSE of dynamic aperture and momentum
aperture on test data (sample size is 115 * 115) is 17.8601 and
0.0005, respectively (≈ 0.2% of optimized results).

The correlation of actual values and predictions are linear with
no big deviations. Once the training is complete, we replace
the particle tracking part (using Tracy) in MOGA with the two
machine learning models.

Figure below shows the MOGA with machine learning run from
generation 1 to generation 15. The data quickly converged to
the bottom left region.

4. Machine Learning Results

The left figure compares the output parameters, and the right
figure shows the input space. The blue dots are the Pareto
front from original MOGA run at generation 50. The yellow
dots are the final machine learning population at generation
15. MOGA with machine learning run takes fewer generations
to converge. The grey dots are the evaluations of the machine
learning Pareto front. The red dots are the rank-1 points of the
grey population.

Our machine learning results are very close to the original
MOGA results in both parameter space and input space. As
random seeds are used in both Tracy and MOGA, we also
tested the consistency of our machine learning pipeline with
different MOGA settings. The figures above proved the robust-
ness of our pipeline.

5. Smaller Sample Size

We also tested the effect of sample size on the accuracy of our
pipeline. The table below shows the RMSE of dynamic aper-
ture and momentum aperture with different sample size during
the training process.

Even though the RMSE increased somewhat (<7%), small
sample data still has a good prediction accuracy. The machine
learning Pareto fronts are converged in the same region except
50*50 sample data.

The effect of sample size is even smaller by comparing the
rank-1 points of evaluations of previous machine learning
Pareto fronts. For our two nonlinear knobs problem, we can
lower the sample size from 115 * 115 to 70 * 70 which con-
tributes to the 25+ speedup.

6. Discussion

• We showed the application of machine learning on a two
nonlinear knobs problem by replacing the Tracy part with two
trained models.

• Our next step is to extend the pipeline to more complex prob-
lems with a higher expected speedup.
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